JPH0348254A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH0348254A
JPH0348254A JP8838590A JP8838590A JPH0348254A JP H0348254 A JPH0348254 A JP H0348254A JP 8838590 A JP8838590 A JP 8838590A JP 8838590 A JP8838590 A JP 8838590A JP H0348254 A JPH0348254 A JP H0348254A
Authority
JP
Japan
Prior art keywords
group
photoreceptor
charge
substd
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8838590A
Other languages
Japanese (ja)
Inventor
Yasuyuki Yamada
康之 山田
Naoto Ito
伊藤 尚登
Hiroyuki Akahori
赤堀 宏行
Isao Nishizawa
西沢 功
Teruhiro Yamaguchi
彰宏 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP8838590A priority Critical patent/JPH0348254A/en
Publication of JPH0348254A publication Critical patent/JPH0348254A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain the electrophotographic sensitive body having a sufficient sensitivity and good durability by incorporating a specific hydrazone compd. into the photosensitive layer on a conductive base. CONSTITUTION:The hydrazone compd. expressed by formula I is incorporated into the photosensitive layer 4 on the conductive base 1. In the formula I, R1, R2 are an aryl group which may be substd.; R1 and R2 may be combined directly or via a combination group with each other; R3 denotes a hydrogen atom, halogen atom, alkyl group or phenyl group which may be substd.; R4, R5 denote an alkyl group, aralkyl group or aryl group which may be substd.; at least one of which is an aryl group which may be substd. The electrophotographic sensitive body which has the high sensitivity, is not deteriorated in performance in spite of repetitive use and has the excellent performance is obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、電子写真用感光体に関するものである.さら
に詳しくは、導電性支持体上の感光層に電荷輸送物質と
して新規なヒドラゾン化合物を含有することを特徴とす
る電子写真用感光体に関する. 〔従来の技術〕 従来、電子写真用感光体の感光材料としてセレン、硫化
カドミウム、酸化亜鉛などの無機系感光材料が広く使用
されてきた.しかしながら、これらの感光材料を用いた
感光体は、感度、光安定性、耐湿性、耐久性などの電子
写真用感光体としての要求性能を十分に満足するもので
はなかった.例えば、セレン系材料を用いた感光体は優
れた感度を有するが、熱または汚れの付着などにより結
晶化し、感光体の特性が劣化しやすい。また、真空蒸着
により製造するのでコストが高く、また可撓性かないた
めベルト状に加工するのが難しいなどの多くの欠点も同
時に有している.硫化カドミウム系材料を用いた感光体
では、耐湿性および耐久性、また酸化亜鉛を用いた感光
体では耐久性に問題があった. これら無機系感光材料を用いた感光体の欠点を克服する
ために、有機系感光材料を使用した感光体が種々検討さ
れてきた. 近年、上記のような欠点を改良するために開発された感
光体の中で、電荷発生機能と電荷輸送機能を別個の物質
に分担させた機能分離型感光体が注目されている.この
機能分離型感光体においては、それぞれの機能を有する
物質を広い範囲のものから選択し、組み合わせることが
できるので、高感度、高耐久性の感光体を作製すること
が可能である. 電荷輸送物質に要求される電子写真特性として(I)電
荷発生物質で発生した電荷を受け入れる能力が十分に高
いこと、 (2)受け入れた電荷を迅速に輸送すること、(3)低
電界においても十分に電荷輸送を行い、電荷を残存させ
ないこと、 などがある.さらに感光体として複写時の帯電、露光、
現像、転写の繰り返し工程において受ける光、熱などに
対して安定であり、原画に忠実な再現性のよい複写画像
を得る耐久性が要求される.電荷輸送物質としては、種
々の化合物が提案されている.例えば、ポリーN−ビニ
ルカルバゾールは古くから光導電性物質として知られて
おり、これを電荷輸送物質として用いたものが実用化さ
れたが、それ自身可撓性に乏しく、もろく、ひび割れを
生じ易いので反復使用に対して耐久性が劣ったものであ
った.また、バインダーと併用して可撓性を改良すると
、電子写真特性が劣るという欠点を有してした. 一方、低分子系化合物は、一般に被膜特性を有しないた
めに、通常バインダーと任意の組威で混合して感光層を
形威している.低分子系化合物で多数の電荷輸送物質が
提案されている.例えば、ヒドラゾン系化合物が電荷輸
送物質として高感度を有しており、特開昭55−467
61、特開昭55−52064号、特開昭57−581
56号、特開昭57−58157号などに記載されてい
る.しかし、コロナ帯電時に発生するオゾンによる分解
、あるいは光、熱に対する安定性に問題があり、初期性
能は優れているものの反復使用により電荷保持能力の低
下、もしくは残留電位の蓄積などの原因で、コントラス
トの低下あるいはかぶりの多い画像となっていた.その
他多くの電荷輸送物質が提案されたが、実用的に電子写
真用感光体としての要求性能を十分に満足するものがな
いのが現状であり、さらに優れた感光体の開発が望まれ
ていた. 〔発明が解決しようとする課題〕 本発明の課題は、十分な感度を有し、かつ耐久性良好な
電子写真用感光体を提供することであり、これに用いる
新規な電荷輸送物質を提供することである. 〔課題を解決するための手段〕 本発明者らは、上記課題を解決するために鋭意検討しそ
の結果、一般式(I) (I) (式中、R1及びR!は2換されていてもよいアリール
基であり、R,とR2は直接もしくは連結基を介して結
合してもよく、R,は水素原子、ハロゲン原子、アルキ
ル基もしくは置換されていてもよいフエニル基であり%
R4及びR,はアルキル基、アラルキル基もしくは置換
されていてもよいアリール基であり、少なくとも一方は
置換されていてもよいアリール基である.) で表される新規なヒドラゾン化合物が高感度及び高耐久
性などの優れた特性を有する電子写真用感光体を与える
ことを見出し、本発明に至った.すなわち、本発明は、
導電性支持体上の感光層に一般式(I) (I) (式中、R.及びR8は置換されていてもよいアリール
基であり、R.とR8は直接もしくは連結基を介して結
合してもよく、R,は水素原子、ハロゲン原子、アルキ
ル基もしくは置換されていてもよいフエニル基であり、
R4及びR,はアルキル基、アラルキル基もしくは置換
されていてもよいアリール基であり、少なくとも一方は
置換されていてもよいアリール基である.) で表されるヒドラゾン化合物を含有することを特徴とす
る電子写真用感光体である. 前記一般式(I)のR1及びR!において、アリール基
としてはフエニル基、ナフチル基などが例示でき、アリ
ール基が2換基を有する場合、置換−基としてメチル基
、エチル基などのアルキル基、メトキシ基、エトキシ基
などのアルコキシ基、塩素原子、臭素原子などのハロゲ
ン原子、ジメチルアミノ基、ジエチルアミノ基などのジ
アルキルアミノ基などが例示できる.R1とtriが直
接又は連結基を介してR.及びR!が結合している炭素
原子と共に形成する芳香環としては、フルオレン、ヰサ
ンテン、チオキサンテンなどが例示できるm R3のハ
ロゲン原子としては塩素原子、臭素原子などが例示でき
、アルキル基としてはメチル基、エチル基、直鎖又は分
岐鎖状のプロビル基、ブチル基、オクチル基などが例示
でき、R,が置換基を有するフェニル基の場合、置換基
としてメチル基、エチル基などのアルキル基、メトヰシ
基、エトキシ基などのアルコキシ基、塩素原子、臭素原
子などのハロゲン原子、ジメチルアミノ基、ジェチルア
ミノ基などのジアルキルア且ノ基などが例示できる.R
4及びR,においてアルキル基としては、メチル基、エ
チル碁、直鎖又は分岐鎖状のプロビル基、ペンチル基、
ヘキシル基、オクチル基などが例示でき、アラルキル基
としてはベンジル基、フエネチル基、ナフチルメチル基
などが例示でき、アリール基としてはフェニル基、ナフ
チル基などが例示でき、R4及びR,が置換基を有する
アリール基の場合、置換基としてメチル基、エチル基な
どのアルキル基、メトキシ基、エトキシ基などのアルコ
キシ基、塩素原子、臭素原子などのハロゲン原子、ジメ
チルアミノ基、ジエチルア旦ノ基などのジアルキルアミ
ノ基などが例示できる. 本発明に用いることのできる化合物をさらに具体的に第
1表に示すが、本発明の使用できる化合物はこれらに限
定されるものではない。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a photoreceptor for electrophotography. More specifically, it relates to an electrophotographic photoreceptor characterized in that the photoreceptor layer on a conductive support contains a novel hydrazone compound as a charge transporting substance. [Prior Art] Conventionally, inorganic photosensitive materials such as selenium, cadmium sulfide, and zinc oxide have been widely used as photosensitive materials for electrophotographic photoreceptors. However, photoreceptors using these photosensitive materials do not fully satisfy the performance requirements for electrophotographic photoreceptors, such as sensitivity, photostability, moisture resistance, and durability. For example, a photoreceptor using a selenium-based material has excellent sensitivity, but it tends to crystallize due to heat or adhesion of dirt, and the characteristics of the photoreceptor deteriorate. In addition, it has many drawbacks, such as high cost because it is manufactured by vacuum evaporation, and difficulty in processing it into a belt shape because it is not flexible. Photoreceptors using cadmium sulfide-based materials had problems with moisture resistance and durability, and photoreceptors using zinc oxide had problems with durability. In order to overcome the drawbacks of photoreceptors using inorganic photosensitive materials, various photoreceptors using organic photosensitive materials have been investigated. In recent years, among photoreceptors developed to improve the above-mentioned drawbacks, functionally separated photoreceptors, in which the charge generation function and charge transport function are divided into separate materials, have been attracting attention. In this function-separated photoreceptor, materials with each function can be selected from a wide range of materials and combined, making it possible to produce a highly sensitive and highly durable photoreceptor. The electrophotographic properties required of a charge transport material are (I) a sufficiently high ability to accept the charge generated by the charge generation material, (2) the ability to rapidly transport the accepted charge, and (3) the ability to transport the charge even in a low electric field. These include ensuring sufficient charge transport and not leaving any residual charge. Furthermore, it is used as a photoreceptor for charging, exposing, and
It is required to be stable against light, heat, etc. during the repeated development and transfer processes, and to be durable enough to produce reproduced images that are faithful to the original. Various compounds have been proposed as charge transport materials. For example, poly-N-vinylcarbazole has long been known as a photoconductive material, and products using it as a charge transport material have been put into practical use, but it itself has poor flexibility, is brittle, and easily cracks. Therefore, it had poor durability against repeated use. Furthermore, when it is used in combination with a binder to improve flexibility, it has the disadvantage of poor electrophotographic properties. On the other hand, since low-molecular-weight compounds generally do not have film properties, they are usually mixed with a binder in an arbitrary composition to form a photosensitive layer. Many charge transport materials have been proposed as low molecular weight compounds. For example, hydrazone compounds have high sensitivity as charge transport substances, and
61, JP-A-55-52064, JP-A-57-581
No. 56, JP-A No. 57-58157, etc. However, there are problems with decomposition due to ozone generated during corona charging, and stability against light and heat.Although the initial performance is excellent, repeated use causes a decrease in charge retention ability or accumulation of residual potential, resulting in contrast The result was an image with a decrease in color or a lot of fog. Although many other charge transport materials have been proposed, the current situation is that none of them sufficiently satisfies the required performance as a photoreceptor for electrophotography in practice, and the development of an even better photoreceptor has been desired. .. [Problems to be Solved by the Invention] An object of the present invention is to provide an electrophotographic photoreceptor having sufficient sensitivity and good durability, and to provide a novel charge transport material for use therein. That's true. [Means for Solving the Problems] In order to solve the above problems, the present inventors have made extensive studies and as a result, the general formula (I) (I) (wherein R1 and R! are diconverted and R, and R2 may be bonded directly or through a linking group, and R is a hydrogen atom, a halogen atom, an alkyl group, or an optionally substituted phenyl group.
R4 and R are an alkyl group, an aralkyl group, or an optionally substituted aryl group, and at least one of them is an optionally substituted aryl group. The present inventors have discovered that a novel hydrazone compound represented by the following formula provides an electrophotographic photoreceptor having excellent properties such as high sensitivity and high durability, leading to the present invention. That is, the present invention
The photosensitive layer on the conductive support has the general formula (I) (I) (wherein R. and R8 are optionally substituted aryl groups, and R. and R8 are bonded directly or through a linking group). and R is a hydrogen atom, a halogen atom, an alkyl group or an optionally substituted phenyl group,
R4 and R are an alkyl group, an aralkyl group, or an optionally substituted aryl group, and at least one of them is an optionally substituted aryl group. ) This is an electrophotographic photoreceptor characterized by containing a hydrazone compound represented by: R1 and R! of the general formula (I) above! Examples of the aryl group include a phenyl group and a naphthyl group, and when the aryl group has two substituents, the substituents include an alkyl group such as a methyl group and an ethyl group, an alkoxy group such as a methoxy group and an ethoxy group, Examples include halogen atoms such as chlorine and bromine atoms, and dialkylamino groups such as dimethylamino and diethylamino groups. R1 and tri are directly or via a linking group R. and R! Examples of the aromatic ring formed with the carbon atom to which m is bonded include fluorene, ananthene, thioxanthene, etc. Examples of the halogen atom of R3 include chlorine atom and bromine atom, and examples of the alkyl group include methyl group and ethyl group. Examples include linear or branched probyl groups, butyl groups, octyl groups, etc., and when R is a phenyl group having a substituent, the substituents include an alkyl group such as a methyl group or an ethyl group, a methoxy group, Examples include alkoxy groups such as ethoxy groups, halogen atoms such as chlorine atoms and bromine atoms, and dialkylamino groups such as dimethylamino and jetylamino groups. R
In 4 and R, the alkyl group includes a methyl group, ethyl group, a linear or branched probyl group, a pentyl group,
Examples of the aralkyl group include a hexyl group and an octyl group; examples of the aralkyl group include a benzyl group, phenethyl group, and naphthylmethyl group; examples of the aryl group include a phenyl group and a naphthyl group; In the case of an aryl group, the substituent is an alkyl group such as a methyl group or an ethyl group, an alkoxy group such as a methoxy group or an ethoxy group, a halogen atom such as a chlorine atom or a bromine atom, or a dialkyl group such as a dimethylamino group or a diethylamino group. An example is an amino group. More specific compounds that can be used in the present invention are shown in Table 1, but the compounds that can be used in the present invention are not limited thereto.

第1表に例示した化合物の中で感度が優れ、かつ工業的
に安価に製造できる点から、例示化合物弘1、狙2、N
ll5、阻13などが好ましい。
Among the compounds exemplified in Table 1, the exemplified compounds Hiroshi 1, Ai 2, N
115, 13, etc. are preferred.

又、一II式←■で表される化合物のトリフェニルアミ
ン骨格部分のベンゼン環にアルキル基、アルコキシ基、
ハロゲン原子などの置換基を有する化合物も電荷輸送物
質として良好な性能を具備するが、コスト面において工
業的に有利ではない。
In addition, an alkyl group, an alkoxy group,
Compounds having substituents such as halogen atoms also have good performance as charge transport materials, but are not industrially advantageous in terms of cost.

第1表(続き) 前記一般式(I)で表されるヒドラゾン化合物は、例え
ば以下のように合戊できる.一般式(It)(式中、R
1、R.およびR,は一般式(I)におけるR,R8及
びR,と同じである.) で表されるアルデヒド化合物と一般式(III)R4 (式中、R4およびR,は一般式(I)におけるR4及
びt’sと同じである.) で表されるヒドラジン化合物を適当な溶媒中で反応させ
て容易に得ることができる. 一般式(III)のヒドラジン化合物は、アルデヒドに
対して等モルあるいは若干量過剰、好ましくは1.0〜
1.2モル比使用する.またヒドラジン化合物は塩酸塩
などの鉱酸塩のかたちで使用することもできる. 使用する溶媒としては、メタノール、エタノール、メチ
ルセロソルブ、エチルセロソルプなどのアルコール類、
テトラヒドロフラン、1.4−ジオキサンなどのエーテ
ル類、エチレングリコール、プロピレングリコールなど
のグリコール類、N,N一ジメチルホルムアミド、ジメ
チルスルホキシド、酢酸などが例示できる.使用量は特
に制限はなく、反応系が完溶状態及び懸濁状態のいづれ
においても反応は進行する. 反応は加熱することなく室温で十分に進行するが、反応
を促進させるために加熱してもよい.また、反応系に酸
触媒を添加して反応を促進することができる.酸として
は、塩酸、硫酸などの絋酸、酢酸などの有機酸などが例
示できる.反応の進行は薄層クロマトグラフィー、高速
液体クロマトグラフィーにより知ることができる.反応
終了後は析出した結晶を濾取するか、結晶が析出しない
場合は水などで希釈して生成した沈澱を濾取することな
どにより目的物を取り出すことができる.そして再結晶
あるいはカラムクロマトグラフィーなどによりさらに純
度の高い本発明の化合物を得ることができる. 本発明のヒドラゾン化合物は電荷輸送物質として、電荷
発生物質と組み合わせて使用して、電子写真用感光体を
構成するものである. 電荷発生物質としては、電荷発生能を有する物質であれ
ばいづれも使用できるが、セレン、セレン合金、無定形
シリコン、硫化カドミウムなどの無機系材料およびフタ
ロシアニン系、ペリレン系、ペリノン系、インジゴ系、
アントラキノン系、シアニン系、アゾ系などの有機染料
、顔料などが例示できる.特にアゾ系化合物が好適に使
用できる.本発明のヒドラゾン化合物は、それ自身で皮
膜形成能を有しないのでバインダーと併用して感光層を
形威する.バインダーとしては絶縁性高分子重合体を使
用するが、例えば、ボリスチレン、ポリアクリルア【ド
、ポリ塩化ビニル、ポリエステル樹脂、ボリカーボネイ
ト樹脂、エポキシ樹脂、フエノキシ樹脂、ボリアξド樹
脂などを挙げることができる. 特に、ポリエステル樹脂、ポリカーボネイト樹脂が好適
に使用できる.また、それ自身電荷輸送能力を有するポ
リーN−ビニルカルバゾールもバインダーとして使用す
ることができる。
Table 1 (Continued) The hydrazone compounds represented by the general formula (I) can be combined as follows, for example. General formula (It) (wherein, R
1.R. and R are the same as R, R8 and R in general formula (I). ) and a hydrazine compound represented by the general formula (III) R4 (wherein, R4 and R are the same as R4 and t's in the general formula (I)) in a suitable solvent. It can be easily obtained by reacting in The hydrazine compound of general formula (III) is used in equimolar or slightly excess amount relative to the aldehyde, preferably from 1.0 to
Use a molar ratio of 1.2. Hydrazine compounds can also be used in the form of mineral acid salts such as hydrochloride. Solvents used include alcohols such as methanol, ethanol, methylcellosolve, and ethylcellosolve;
Examples include ethers such as tetrahydrofuran and 1,4-dioxane, glycols such as ethylene glycol and propylene glycol, N,N-dimethylformamide, dimethyl sulfoxide, and acetic acid. There is no particular restriction on the amount used, and the reaction proceeds whether the reaction system is in a completely dissolved state or in a suspended state. The reaction proceeds satisfactorily at room temperature without heating, but heating may be used to accelerate the reaction. Additionally, the reaction can be accelerated by adding an acid catalyst to the reaction system. Examples of acids include hydrochloric acid, sulfuric acid, and other hydrochloric acids, and acetic acid and other organic acids. The progress of the reaction can be monitored by thin layer chromatography and high performance liquid chromatography. After the reaction is complete, the desired product can be removed by filtering the precipitated crystals or, if no crystals are precipitated, by diluting with water and filtering the resulting precipitate. The compound of the present invention with even higher purity can then be obtained by recrystallization or column chromatography. The hydrazone compound of the present invention is used as a charge transporting material in combination with a charge generating material to constitute an electrophotographic photoreceptor. As the charge-generating substance, any substance that has charge-generating ability can be used, but inorganic materials such as selenium, selenium alloys, amorphous silicon, cadmium sulfide, phthalocyanine-based, perylene-based, perinone-based, indigo-based,
Examples include anthraquinone-based, cyanine-based, and azo-based organic dyes and pigments. In particular, azo compounds can be suitably used. Since the hydrazone compound of the present invention does not have film-forming ability by itself, it is used in combination with a binder to form a photosensitive layer. An insulating polymer is used as the binder, and examples thereof include polystyrene, polyacrylic acid, polyvinyl chloride, polyester resin, polycarbonate resin, epoxy resin, phenoxy resin, and boria ξ resin. can. In particular, polyester resins and polycarbonate resins can be suitably used. Poly N-vinylcarbazoles, which themselves have charge transport capabilities, can also be used as binders.

感光体の構威としては、第1図に示すように導電性支持
体上に電荷発生物質と電荷輸送物質を同一層に含有せし
めたもの、第2図に示すように、導電性支持体上に電荷
発生物質を含有する電荷発生層を形威し、その上に電荷
輸送物質を含有する電荷輸送層を積層したもの、及び電
荷発生層と電荷輸送層を逆に積層したものなどである.
上記横或の感光体のいずれも本発明に有効であるが、優
れた電子写真特性が得られる点で第2U;IIに示した
積層型感光体が好ましい. 感光体の構或を第2園を例にさらに詳しく説明する. 導電性支持体としては、アルξニウム、銅、亜鉛等の金
属板、ポリ、エステル等のプラスチックシ一トまたはプ
ラスチックフィルムにアルミニウム、SnOm等の導電
材料を蒸着したもの、あるいは導電処理した紙、樹脂等
が使用される. 電荷発生層は、導電性支持体上に電荷発生物質を真空蒸
着する方法、電荷発生物質の溶液を塗布、乾燥する方法
、電荷発生物質の微粒子分散液を塗布、乾燥する方法な
どがあり、前記電荷発生物質を任意の方法を選択して電
荷発生層を形戒することができる.電荷発生層の厚みは
、好ましくは0.01〜5μ、さらに好ましくは0.0
5〜2μである.この厚さが0.01μ未満では電荷の
発生は十分でなく、また5μを超えると残留電位が高く
実用的には好ましくない. 電荷輸送層は、少なくとも一種の本発明のヒドラゾン化
合物と前記バインダーを適当な有機溶媒に混合溶解、塗
布乾燥して形或する.電荷輸送層には本発明のヒドラゾ
ン化合物以外の電荷輸送物質を添加し、本発明の化合物
と組合せて使用することもできる.電荷輸送層には電荷
輸送物質を10〜95重量%、好ましくは30〜90重
量%で含有させる.i荷輸送物質が10重量%未満であ
ると、電荷の輸送がほとんど行われず、95重量%を超
えると感光体の機械的強度が悪く実用的には好ましくな
また電荷輸送層の厚みは、好ましくは3〜50μであり
、さらに好ましくは5〜30μであり、この厚さが3μ
未満では帯電量が不十分であり、50μを超えると残留
電位が高く実用的には好ましくない. また、感光層と導電性支持体の間に中間層を設けること
ができるが、材料としてはボリア逅ド、ニトロセルロー
ス、カゼイン、ポリビニルアルコールなどが適当で、膜
厚は1μ以下が好ましい。
The structure of the photoreceptor is one in which a charge generating substance and a charge transport substance are contained in the same layer on a conductive support, as shown in Fig. 1, and one in which a charge generating substance and a charge transport substance are contained in the same layer on a conductive support, as shown in Fig. These include those in which a charge generation layer containing a charge generation substance is laminated on top of a charge generation layer containing a charge generation substance, and a charge transport layer containing a charge transport substance is laminated thereon, and those in which a charge generation layer and a charge transport layer are laminated in reverse.
Although any of the above-mentioned photoreceptors are effective in the present invention, the laminated photoreceptor shown in Section 2U; II is preferred because it provides excellent electrophotographic properties. The structure of the photoreceptor will be explained in more detail using the second example as an example. Examples of the conductive support include a metal plate made of aluminum, copper, zinc, etc., a plastic sheet or plastic film made of poly, ester, etc., on which a conductive material such as aluminum or SnOm is vapor-deposited, or paper treated with conductivity. Resin etc. are used. The charge generation layer can be formed by various methods such as vacuum deposition of a charge generation substance on a conductive support, coating and drying a solution of a charge generation substance, and coating and drying a fine particle dispersion of a charge generation substance. The charge generation layer can be shaped by selecting any method for the charge generation material. The thickness of the charge generation layer is preferably 0.01 to 5μ, more preferably 0.0μ.
It is 5 to 2μ. If the thickness is less than 0.01 μm, charge generation is not sufficient, and if it exceeds 5 μm, the residual potential is high and is not practical. The charge transport layer is formed by mixing and dissolving at least one hydrazone compound of the present invention and the binder in a suitable organic solvent, coating and drying. A charge transport substance other than the hydrazone compound of the present invention may be added to the charge transport layer and used in combination with the compound of the present invention. The charge transport layer contains a charge transport material in an amount of 10 to 95% by weight, preferably 30 to 90% by weight. If the content of the charge transport material is less than 10% by weight, almost no charge transport will occur, and if it exceeds 95% by weight, the mechanical strength of the photoreceptor will be poor and this is not practical. is 3 to 50μ, more preferably 5 to 30μ, and this thickness is 3μ
If it is less than 50μ, the amount of charge will be insufficient, and if it exceeds 50μ, the residual potential will be high, which is not practical. Further, an intermediate layer can be provided between the photosensitive layer and the conductive support, and suitable materials include boria oxide, nitrocellulose, casein, polyvinyl alcohol, etc., and the thickness of the layer is preferably 1 μm or less.

以上のように、本発明の電子写真用感光体は、一般式(
I)のヒドラゾン化合物の外、前記導電性支持体、電荷
発生物質、バインダーなどを含有して構威されるが、感
光体の他の構戒要素は感光体の構戒要素としての機能を
有するものであればとくに限定されることはない. 〔作用及び効果〕 本発明の電子写真用感光体は、一般式(I)で表わされ
るヒドラゾン化合物を電荷輸送物質として使用すること
により高感度でかつ反復使用に対して性能劣化しない優
れた性能を有する.〔実施例〕 以下、実施例により本発明を具体的に説明するが、これ
により本発明の実施の態様が限定されるものではない. 製造例l 例示化合物漱1の合或 N,N−ジメチルホルムアξド200dに下式で表わさ
れるトリフェニルアミン化合物28.7 gを分散し、
0〜5゜Cでオキシ塩化リン15.6 gを滴下した.
同温度で1時間攬拌した後、70〜75゜Cまで昇温し
、3時間攪拌した.室温まで冷却した後、反応液を氷水
800dに注ぎ、水酸化ナトリウム水溶液を加え、アル
カリ性とした.さらに室温で1時間攪拌した後、沈殿物
を濾取、乾燥した.含水エタノールより再結晶して黄色
結晶(65゜Cよりシンター)の下記構造式 で表されるアルデヒド化合物2.05 gを得た.この
アルデヒド化合物2.7gと1.1−ジフェニルヒドラ
ジン塩酸塩1.5 gをN,N−ジメチルホルムア果ド
5Mに混合溶解し、室温で3時間撹拌した.原料のアル
デヒド化合物の消失を確認した後、水50mを加え、生
じた沈澱を濾別、乾燥した.粗生戒物を少量の酢酸エチ
ルに溶解し、エタノールを加え、生した沈澱を濾別、乾
燥し、黄色粉体(92゜Cよりシンター)を得た.この
ものは元素分析値により例示化合物Nlllであること
を確認した. 元素分析値  C    HN 計算値(X)  87.52  5.67  6.81
実測値(χ)  87.68  5,54  6.77
製造例2 例示化合物Na5の合威 ジクロルメタン700dにトリフエニルアミン165g
及び塩化亜鉛91.4 gを装入後、撹拌しながらジフ
ェニルアセチルクロライド155gを室温で滴下した.
12時間加熱還流後、放置した.反応液を塩酸で酸性に
した氷水1Nに排出し、有機層を分液ロートにて分取し
、ジクロルメタンを留去した.カラムクロマトグラフィ
ー(シリカゲルーベンゼン/ヘキサン)により精製し、
淡黄色結晶(融点55゜Cよりシンター〉の下記構造式
で表される化合物138gを得た. この化合物44gをN.N−ジメチルホルムアミド20
0 mに溶解し、0゜Cでオキシ塩化リン23gを滴下
した.0゜Cで2時間保温した後、85゜Cで4時間保
温した.反応液を氷水3lに排出し、苛性ソーダ水溶液
でアルカリ性にした.沈澱を濾取、乾燥し、カラムクロ
マトグラフィー(シリカゲルーベンゼン)により精製し
、淡黄色結晶(融点146.7〜14B.3゜C)の下
記構造式 で表されるアルデヒド化合物18gを得た.上記アルデ
ヒド化合物4.7gと1.1−ジフェニルヒドラジン塩
酸塩2.4gをN,N−ジメチルホルムアミド100−
に(昆合溶解し、室温で5時間攪拌した.水150 m
を加え、生した沈澱を濾別、水洗、メタノール洗浄後、
乾燥した. クロロホルムーエタノールより再結晶して 淡黄色結晶
(融点191〜192.5゜C)5.7gを得た.この
ものは元素分析値により例示化合物隘5であることを確
認した. 元素分析値  C    H    N   Cl計算
値(χ)  87.89  5.22  6.45  
5.45実測値(χ)  82.54  5.03  
6.32  5.62製造例3 例示化合物Nal3の
合戒 N,N−ジメチルホルムアξド60dに下式で表わされ
るトリフェニルア壽ン化合物(融点149〜151.5
℃)8.8 gを分散し、0〜5゜Cでオキシ塩化リン
6.4gを滴下した.同温度で1時間撹拌した後、70
〜75℃まで昇温し、3時間a拝した.反応液を室温ま
で冷却した後、氷水40(ldに注ぎ、水酸化ナトリウ
ム水溶液を加え、アルカリ性とした.さらに1時間攪拌
した後、沈殿物を濾取した.濾塊をベンゼン200dに
溶解し、希水酸化ナトリウム水溶液、水の順に洗浄後、
無水硫酸マグネシウムで乾燥した.乾燥剤を除去した後
、カラムクロマトグラフィー(シリカゲルーベンゼン)
により分離し、流出液を濃縮して褐色油状(放置後固化
;93゜Cよりシンター)の下記構造式で表されるアル
デヒド化合物7.0gを得た.上記アルデヒド化合物5
.2gと1.1−ジフェニルヒドラジン塩酸塩2.8g
を原料に用い、製造例2と同様に合成を行い、黄色結晶
(融点163〜165.5℃)5.9gを得た.このも
のは元素分析値により例示化合物kl3であることを確
認した.元素分析値  C    HN 計算値(X)  87.81  5.37  6.83
実測値(X)  87.84  5.31  6.71
実施例l ポリエステル樹脂(東洋紡製、商品名「バイロン200
J )  0.5g、次記構造式で表されるテトラキス
アゾ色素0.5g (CG − 1 )である.) 及びテトラヒドロフラン50gをボールξルで粉砕混合
し、得られた分散液をアルミニウム板にワイヤーバーを
用いて塗布、80゜Cで20分乾燥して約0.5μの電
荷発生層を形威した. この電荷発生層上に例示化合物Nnl. 1 g、ポリ
カーボネート樹脂(商品名「パンライ}K−1300J
帝人化威製)Igをクロロホルム10gに溶解した溶液
をワイヤーバーを用いて塗布、80”Cで30分乾燥し
て厚さ約18μの電荷輸送層を形威して、第2図に示し
た積層型感光体を作製した. 静電複写紙試験装置(■川日電機製作所製モデルEP^
−8100 )を用いて感光体を印加電圧−6κVのコ
ロナ放電により帯電させ、その時の表面電位v0を測定
し、2秒間暗所に放置しその時の表面電位V,を測定し
、続いて感光体の表面照度が51u×となる状態でハロ
ゲンランプ(色温度2856゜κ)よりの光を照射して
表面電位がV,のAになる時間を測定し、半M露光量E
′A(lux  −sec )を計算した.また光照射
10秒後の表面電位v1!即ち、残留電位を測定した.
さらに帯電露光の操作を1000回繰り返した. 実施例2〜25 電荷発生物質として、前記テトラキスアゾ色素(CG−
 1 )及び下記構造式 9 である. ) である. ) r1 (CC 4) である. ) (CG 5) である。) で表されるジスアゾ色素(CG−2)、(cc−3)、
(CG−4)、(cc−5)及びτ−フタロシアニン(
CG−6)を使用し、本発明のしドラゾン化合物と組み
合わせて実施例lと同様にして感光体を作製し、同様の
測定をした. 用いた電荷発生物賞、電荷輸送物質及び測定結果を実施
例lと共に第2表に示した. 比較例1 電荷発生物質として前記ジスアゾ色素(CG−3)電荷
輸送物質として2.5−ビス(4−ジエチルアξノフエ
ニル) − 1.3.4−オキサジアゾール(CT−1
)を用いた以外は、実施例1と同様に感光体を作製し、
同様の測定を行った。測定結果を第2表に示した. 実施例26 実施例1で作製した感光体を市販の電子写真複写装置に
装着して複写したが、1万枚目においても原画に忠実な
かぶりのない鮮明な画像が得られた. 以上のように本発明のヒドラゾン化合物を用いた電子写
真感光体は、高感度でかつ繰り返し使用にも安定した性
能が得られ、耐久性においても優れたものであることが
いえる. 本発明の感光体は、電子写真複写機に利用できるばかり
でなく電子写真複写原理を応用した各種プリンター、電
子写真製版システムなどに広く利用できる.
As described above, the electrophotographic photoreceptor of the present invention has the general formula (
In addition to the hydrazone compound (I), the photoreceptor may contain the conductive support, charge generating substance, binder, etc., and other structural elements of the photoreceptor function as structural elements of the photoreceptor. There are no particular restrictions as long as it is a thing. [Functions and Effects] The electrophotographic photoreceptor of the present invention has high sensitivity and excellent performance that does not deteriorate with repeated use by using the hydrazone compound represented by the general formula (I) as a charge transport material. have. [Examples] Hereinafter, the present invention will be specifically explained with reference to Examples, but the embodiments of the present invention are not limited thereto. Production Example 1 Disperse 28.7 g of a triphenylamine compound represented by the following formula in 200 d of N,N-dimethylformamide,
15.6 g of phosphorus oxychloride was added dropwise at 0 to 5°C.
After stirring at the same temperature for 1 hour, the temperature was raised to 70-75°C and stirred for 3 hours. After cooling to room temperature, the reaction solution was poured into 800 d of ice water, and aqueous sodium hydroxide solution was added to make it alkaline. After further stirring at room temperature for 1 hour, the precipitate was collected by filtration and dried. Recrystallization from aqueous ethanol gave 2.05 g of yellow crystals (sintered at 65°C) of an aldehyde compound represented by the following structural formula. 2.7 g of this aldehyde compound and 1.5 g of 1.1-diphenylhydrazine hydrochloride were mixed and dissolved in 5M N,N-dimethylformamide, and the mixture was stirred at room temperature for 3 hours. After confirming the disappearance of the raw material aldehyde compound, 50 ml of water was added, and the resulting precipitate was filtered and dried. The crude raw material was dissolved in a small amount of ethyl acetate, ethanol was added, and the resulting precipitate was filtered off and dried to obtain a yellow powder (sintered at 92°C). This compound was confirmed to be exemplified compound Nllll by elemental analysis. Elemental analysis value C HN Calculated value (X) 87.52 5.67 6.81
Actual value (χ) 87.68 5,54 6.77
Production Example 2 165 g of triphenylamine was added to 700 d of exemplified compound Na5 in dichloromethane.
After charging 91.4 g of zinc chloride, 155 g of diphenylacetyl chloride was added dropwise at room temperature while stirring.
After heating under reflux for 12 hours, it was left to stand. The reaction solution was poured into 1N ice water acidified with hydrochloric acid, the organic layer was separated using a separating funnel, and dichloromethane was distilled off. Purified by column chromatography (silica gel-benzene/hexane),
138 g of a compound represented by the following structural formula of pale yellow crystals (sintered from a melting point of 55°C) was obtained. 44 g of this compound was mixed with 20 g of N.N-dimethylformamide.
23 g of phosphorus oxychloride was added dropwise at 0°C. After keeping warm at 0°C for 2 hours, it was kept warm at 85°C for 4 hours. The reaction solution was poured into 3 liters of ice water and made alkaline with an aqueous solution of caustic soda. The precipitate was collected by filtration, dried, and purified by column chromatography (silica gel-benzene) to obtain 18 g of an aldehyde compound represented by the following structural formula as pale yellow crystals (melting point: 146.7-14B.3°C). 4.7 g of the above aldehyde compound and 2.4 g of 1,1-diphenylhydrazine hydrochloride were mixed with N,N-dimethylformamide 100-
(dissolved in water) and stirred at room temperature for 5 hours.
was added, and the resulting precipitate was separated by filtration, washed with water, and washed with methanol.
It was dry. Recrystallization from chloroform-ethanol gave 5.7 g of pale yellow crystals (melting point 191-192.5°C). This compound was confirmed to be Exemplified Compound 5 by elemental analysis. Elemental analysis value C H N Cl calculated value (χ) 87.89 5.22 6.45
5.45 Actual value (χ) 82.54 5.03
6.32 5.62 Production Example 3 A triphenylamine compound represented by the following formula (melting point 149-151.5
℃) was dispersed, and 6.4 g of phosphorus oxychloride was added dropwise at 0 to 5℃. After stirring at the same temperature for 1 hour,
The temperature was raised to ~75°C and incubated for 3 hours. After cooling the reaction solution to room temperature, it was poured into 40 ml of ice water, and an aqueous sodium hydroxide solution was added to make it alkaline. After further stirring for 1 hour, the precipitate was collected by filtration. The filtered mass was dissolved in 200 ml of benzene, After washing with dilute aqueous sodium hydroxide solution and water,
It was dried with anhydrous magnesium sulfate. After removing the desiccant, column chromatography (silica gel-benzene)
The effluent was concentrated to obtain 7.0 g of an aldehyde compound represented by the following structural formula in the form of a brown oil (solidified after standing; sintered at 93°C). The above aldehyde compound 5
.. 2g and 2.8g of 1,1-diphenylhydrazine hydrochloride
The synthesis was carried out in the same manner as in Production Example 2 using as a raw material, and 5.9 g of yellow crystals (melting point 163-165.5°C) were obtained. This compound was confirmed to be exemplified compound kl3 by elemental analysis. Elemental analysis value C HN Calculated value (X) 87.81 5.37 6.83
Actual value (X) 87.84 5.31 6.71
Example 1 Polyester resin (manufactured by Toyobo, trade name: Byron 200)
J) 0.5g, and 0.5g of tetrakisazo dye (CG-1) represented by the following structural formula. ) and 50 g of tetrahydrofuran were pulverized and mixed in a ball ξ mill, the resulting dispersion was applied to an aluminum plate using a wire bar, and dried at 80° C. for 20 minutes to form a charge generation layer of about 0.5 μm. .. Exemplary compound Nnl. 1 g, polycarbonate resin (product name "Panrai" K-1300J
A solution of Ig (manufactured by Teijin Chemical Co., Ltd.) dissolved in 10 g of chloroform was applied using a wire bar, and dried at 80"C for 30 minutes to form a charge transport layer with a thickness of about 18 μm, as shown in Figure 2. A laminated photoreceptor was fabricated. An electrostatic copying paper tester (■Model EP manufactured by Kawanichi Denki Seisakusho)
-8100), the photoreceptor was charged by corona discharge with an applied voltage of -6κV, the surface potential v0 at that time was measured, the photoreceptor was left in a dark place for 2 seconds, the surface potential V, at that time was measured, and then the photoreceptor With the surface illuminance at 51 u×, we irradiated it with light from a halogen lamp (color temperature 2856°κ) and measured the time for the surface potential to reach A of V, and the half M exposure amount E
′A(lux −sec) was calculated. Also, the surface potential v1 after 10 seconds of light irradiation! That is, the residual potential was measured.
Furthermore, the charging exposure operation was repeated 1000 times. Examples 2 to 25 The tetrakisazo dye (CG-
1) and the following structural formula 9. ). ) r1 (CC 4). ) (CG 5). ) Disazo dyes (CG-2), (cc-3),
(CG-4), (cc-5) and τ-phthalocyanine (
A photoreceptor was prepared in the same manner as in Example 1 using CG-6) in combination with the shidrazone compound of the present invention, and the same measurements were carried out. The charge generating material used, the charge transporting material, and the measurement results are shown in Table 2 together with Example 1. Comparative Example 1 The disazo dye (CG-3) was used as a charge generating substance, and 2.5-bis(4-diethylanξnophenyl)-1.3.4-oxadiazole (CT-1) was used as a charge transporting substance.
) A photoreceptor was produced in the same manner as in Example 1, except that
Similar measurements were made. The measurement results are shown in Table 2. Example 26 The photoreceptor produced in Example 1 was attached to a commercially available electrophotographic copying machine to make copies, and even on the 10,000th copy, clear images with no fogging that were faithful to the original images were obtained. As described above, it can be said that the electrophotographic photoreceptor using the hydrazone compound of the present invention has high sensitivity, stable performance even after repeated use, and excellent durability. The photoreceptor of the present invention can be used not only in electrophotographic copying machines, but also in various printers, electrophotographic engraving systems, etc. that apply electrophotographic copying principles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は電子写真用感光体の構戒例を示し
た断面図である. 第1図、第2図において各符号は次の通りである.
Figures 1 and 2 are cross-sectional views showing examples of the structure of electrophotographic photoreceptors. The respective symbols in Figures 1 and 2 are as follows.

Claims (1)

【特許請求の範囲】 1)導電支持体上の感光層に一般式( I ) ▲数式、化学式、表等があります▼( I ) (式中、R_1及びR_2は置換されていてもよいアリ
ール基であり、R_1とR_2は直接もしくは連結基を
介して結合してもよく、R_3は水素原子、ハロゲン原
子、アルキル基もしくは置換されていてもよいフェニル
基であり、R_4及びR_5はアルキル基、アラルキル
基もしくは置換されていてもよいアリール基であり、少
なくとも一方は置換されていてもよいアリール基である
。) で表されるヒドラゾン化合物を含有することを特徴とす
る電子写真用感光体。
[Claims] 1) The photosensitive layer on the conductive support has the general formula (I) ▲mathematical formula, chemical formula, table, etc.▼(I) (in the formula, R_1 and R_2 are optionally substituted aryl groups) , R_1 and R_2 may be bonded directly or through a linking group, R_3 is a hydrogen atom, a halogen atom, an alkyl group, or an optionally substituted phenyl group, and R_4 and R_5 are an alkyl group, an aralkyl group. or an optionally substituted aryl group, at least one of which is an optionally substituted aryl group.
JP8838590A 1989-04-10 1990-04-04 Electrophotographic sensitive body Pending JPH0348254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8838590A JPH0348254A (en) 1989-04-10 1990-04-04 Electrophotographic sensitive body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8804889 1989-04-10
JP1-88048 1989-04-10
JP8838590A JPH0348254A (en) 1989-04-10 1990-04-04 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH0348254A true JPH0348254A (en) 1991-03-01

Family

ID=26429489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8838590A Pending JPH0348254A (en) 1989-04-10 1990-04-04 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH0348254A (en)

Similar Documents

Publication Publication Date Title
JPH0251162A (en) Electrophotographic sensitive body
GB2055803A (en) Hydrazones of 9-ethylcarbazole-3- aldehyde and their use in electrophotography
US4396694A (en) Organic electrophotographic sensitive materials
JPS6329736B2 (en)
CA2116738C (en) Organic photoconductive material and a photosensitive material for electronic photography using it
JP2654198B2 (en) Electrophotographic photoreceptor
JPH0272372A (en) Electrophotographic sensitive body
JPH04329547A (en) Electrophotographic sensitive body
JPH0348254A (en) Electrophotographic sensitive body
US5422211A (en) Imaging members with trisazo photogenerating materials
JPH0296767A (en) Electrophotographic sensitive body
JP3086365B2 (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JP2507559B2 (en) Electrophotographic photoreceptor
JPS63206758A (en) Electrophotographic sensitive body
JPH0466506B2 (en)
JP2654188B2 (en) Electrophotographic photoreceptor
JPH0561224A (en) Electrophotographic sensitive body
JP3086367B2 (en) Organic photoconductive material and electrophotographic photoreceptor using the same
JPH08101520A (en) Electrophotographic photoreceptor
JPH0496068A (en) Electrophotographic sensitive body
JPH0876393A (en) Electrophotographic photoreceptor
JPH04276760A (en) Electrophotographic sensitive body
JPH07209887A (en) Electrophotographic photoreceptor
JPH1138657A (en) Electrophotographic photoreceptor and bisenamine compound, amine compound and nitro compound and method for manufacturing these compounds
JPH0469951B2 (en)