JPH0348163A - Very small constant integration tracking type measuring device - Google Patents

Very small constant integration tracking type measuring device

Info

Publication number
JPH0348163A
JPH0348163A JP18272989A JP18272989A JPH0348163A JP H0348163 A JPH0348163 A JP H0348163A JP 18272989 A JP18272989 A JP 18272989A JP 18272989 A JP18272989 A JP 18272989A JP H0348163 A JPH0348163 A JP H0348163A
Authority
JP
Japan
Prior art keywords
value
time
measured
estimated value
delta2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18272989A
Other languages
Japanese (ja)
Other versions
JP2736325B2 (en
Inventor
Fusakichi Ono
小野 房吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAIJO HOANCHIYOU CHOKAN
Original Assignee
KAIJO HOANCHIYOU CHOKAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAIJO HOANCHIYOU CHOKAN filed Critical KAIJO HOANCHIYOU CHOKAN
Priority to JP1182729A priority Critical patent/JP2736325B2/en
Publication of JPH0348163A publication Critical patent/JPH0348163A/en
Application granted granted Critical
Publication of JP2736325B2 publication Critical patent/JP2736325B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

PURPOSE:To prevent that a measuring system gets into disorder with respect to strong pulse-like noise appearing at low frequency by allowing an estimated value to follow the most probable value of physical quantity when the value calculated by subtracting the estimated value from a measured value becomes positive or negative. CONSTITUTION:Now, primary measured rows are set to A1, A2...Ai and the estimated values thereof are set to B1, B2...Bi and DELTA1=A1-B1 is calculated with respect to the first measured value A1 and the first estimated value B1. Next, the code of DELTAis discriminated to perform the next calculation. That is, at the time of DELTA1>0, B2=B1+B is formed and, at the time of DELTA1=0, B2=B1+0 is formed and, at the time of DELTA1<0, B2-B is formed. Herein, DELTAB is a properly determined constant. Next, the same calculation is repeated with respect to the measured value A2 of the second time. That is, at the time of DELTA2=A2-B2 and DELTA2>0, B3=B2+DELTAB is formed and, at the time of DELTA2=0, B3=B2+0 is formed and, at the time of DELTA2<0, B3=B2-DELTAB is formed. By this method,when the estimated value B is corrected at every measured value and the next estimated value B is corrected to obtain the next estimated value, the value of B shown in a steady measuring state approaches the mean value of measured values Ai.

Description

【発明の詳細な説明】 ある物理量を複数Ii!測定すれば、それらの測定値は
細かい桁まで一敗するとは限らない、むしろ相当なバラ
ツキを示すことが一般的である。こうした誤差を含む1
1建値が多数ある場合、その値をそのまま使っても差し
支えない場合もあるが、普通は不都合で、何等かの平滑
化処理により精度を上げて利眉する。この場合従来の一
般的手法は移動平均であった。ところがこの移動平均は
一次測定値を一旦適当な記録媒体に記録し、後で数値処
理するオフライン方式では開運ないが、Il定された数
値を直ちに他の制御に使ったり、或いは他の測定量とマ
ージした値を実時間で知りたい場合等のオンライン方式
では、不都合のことが多い、m理的に移動平均では、求
めた値の対応時刻が最後に得られた測定値の時刻よりか
なり前になるからである。
[Detailed Description of the Invention] A plurality of physical quantities Ii! When measured, the measured values are not necessarily consistent down to the smallest digit, but rather generally show considerable variation. 1 including these errors
If there are many single price points, it may be okay to use that value as is, but normally it is inconvenient and some kind of smoothing process is used to improve accuracy and profit. In this case, the conventional common method was a moving average. However, this moving average does not work well with an offline method in which primary measured values are recorded on a suitable recording medium and then numerically processed later. The online method is often inconvenient when you want to know the merged value in real time.In theory, with a moving average, the corresponding time of the obtained value is long before the time of the last measured value. Because it will be.

さて、この発明は従来のように移動平均+6埋をするこ
となく、測定量の最確値を実時間でポめることとした測
定器に関する。
The present invention relates to a measuring device that calculates the most probable value of a measured quantity in real time, without using the moving average plus 6 as in the conventional method.

いま−次測定値列を ^1 + A2+・・・A。Now, the -th measurement value sequence is ^1 + A2 +...A.

その推定値を     81+82+・・・B。The estimated value is 81+82+...B.

とし、最初の測定値Al+推定値B1についてΔs=A
+−B+               (1)を計算
する0次にこのΔの符号を判別して次の計算をする。す
なわち。
and Δs=A for the first measured value Al+estimated value B1
Calculate +-B+ (1) 0th order Determine the sign of this Δ and perform the next calculation. Namely.

ここでΔBは適当に決めた定数 次に第28mの測定値A2について同じ計算を繰返す、
すなわち Δ*= Ae−82(3) こうして測定値毎に推定値Bを修正し、次の推定値を得
ることとすれば測定の定常状態で示すBの値は測定値A
 I(1+r+−n*slの平均にちかずく。
Here, ΔB is an appropriately determined constant. Next, repeat the same calculation for the 28th m measured value A2.
That is, Δ* = Ae-82 (3) If the estimated value B is corrected for each measured value and the next estimated value is obtained, the value of B shown in the steady state of measurement will be the measured value A.
I(approaching the average of 1+r+-n*sl.

ここでΔBは必要な測定最小分解能の17211度に設
定する。
Here, ΔB is set to 17211 degrees, which is the required minimum measurement resolution.

3、実施例 船舶に設置された音波流速計で海流を測定する方式はジ
ャイロコンパスで船首方位、対水速度を船底から海中に
発射した超音波パルスの水中各層から屓射してくる反射
波のドツプラー周波数、対地速度を海底反射波のドツプ
ラー周波数又は電波航法装置で測定して対地、対水速度
の差として求める。すなわち。
3. Example A method for measuring ocean currents using a sonic current meter installed on a ship is to use a gyro compass to measure the ship's heading and water speed by measuring the reflected waves of ultrasonic pulses emitted into the sea from the bottom of the ship and reflected from each layer of the water. The Doppler frequency and ground speed are measured using the Doppler frequency of seafloor reflected waves or a radio navigation device, and are determined as the difference between the ground and water speeds. Namely.

音波ログで測定される対水速度を  v−ジャイロコン
パスが示す船首方位を zH航法電波で測定される対地
速度を  v0岡じ電波で測定される船の進行方向をZ
The speed over water measured by the sonic log is v - the ship's heading indicated by the gyro compass. zH is the speed over the ground measured by navigation radio waves. v0 is the ship's heading direction measured by radio waves.
.

とすると南北及び東西方向対水速度成分v88.ν1は 南北及び東西方向対地速度成分V。Nw VOEはこれ
より海流の絶対値Vは V=(五;印[2 流れの方向2は θ= cos−’(VcH/V ) (8) (9) これで個々の測定データについて、海流が求まるが、こ
うして求まる海流値は相当な誤差が含まれ、精度が悪い
Then, the water velocity component in the north-south and east-west directions v88. ν1 is the north-south and east-west ground velocity component V. From this, Nw VOE is the absolute value V of the ocean current. However, the ocean current values determined in this way contain considerable errors and are not accurate.

そこで従来は2個々のデータについて過去のデータをメ
モリーに蓄積し移動平均を行ったデータに対し以上の計
算を実行したのであるが、この発明の原理を適用すれば
こうした複雑な演算を行うことなく必要な精度が確保で
きる。
Conventionally, the above calculations were performed on data obtained by accumulating past data in memory and performing a moving average on two individual pieces of data, but by applying the principles of this invention, such complicated calculations can be avoided. The necessary accuracy can be ensured.

(7)式は、これを書換えて、 とすると、これが0″になるようにV。Novol−を
決定しているが、このときVCN+VCEとして推定値
を代入することとする。
Equation (7) is rewritten as follows.V.Novol- is determined so that it becomes 0'', but at this time, the estimated value is substituted as VCN+VCE.

すなわち、第1vR12のデータについてこれより海流
の南北及び東西方向成分VCNsVCIEはを計算。
That is, for the data of 1st vR12, calculate the north-south and east-west direction components of the ocean current VCNsVCIE.

この符号が 同様に第2回目のデータについて を計算し 4、特徴 1、(1)、(3)式等の正負を判断し、その正負の表
れる頻度が五分五分になるように推定値を微小定数積算
方式で修正し追尾するので、測定値のバラツキの大きさ
は測定系の刺御に直接関係がなく、低頻度で表れる゛強
大なパルス性雑音に対して測定系が乱調に陥いることが
ない。
This sign is calculated in the same way for the second data 4, and the sign of feature 1, (1), (3), etc. is determined to be positive or negative, and the estimated value is set so that the frequency of positive and negative expressions is 50/50. Since the value is corrected and tracked using a minute constant integration method, the magnitude of the variation in measured values is not directly related to the stabilization of the measurement system, and the measurement system becomes unstable due to strong pulse noise that appears at low frequencies. I'm never there.

2、ΔBを小さく設定すれば精度をあげることができる
2. Accuracy can be increased by setting ΔB small.

こうして第3回目以後のデータについても次々に計算を
実行してい(。
In this way, calculations are performed one after another for the data from the third time onwards (.

勿論海流は、各回毎にVC帽tVcl:lより(8)〜
(10)式を実行して求めておく、ここでΔBが測定最
小分解能より小さく設定されていれば、一定時間経過し
た以後のVCNIelll:El’は、(7)式で求ま
る流れの平均に限りなく近付く、最も最・終的に±ΔB
のバラツキは止む得ない。
Of course, the ocean current is determined by the VC cap tVcl:l (8) ~
Find it by executing equation (10). If ΔB is set smaller than the minimum measurement resolution, VCNIell:El' after a certain period of time is limited to the average of the flow determined by equation (7). approach, most finally ±ΔB
The variation in the results is unavoidable.

5、利用上の注意 1、この方式は、種々の物理量の測定に利用できるが、
測定量の変化速度が大きい場合は、追尾速度について注
意が必要である。
5. Precautions for use 1. This method can be used to measure various physical quantities, but
When the rate of change of the measured quantity is large, care must be taken regarding the tracking speed.

2、追尾速度は、微小定数ΔBの大きさおよび信号のS
/Nが関係する。
2. The tracking speed is determined by the magnitude of the infinitesimal constant ΔB and the signal S
/N is involved.

以上that's all

Claims (1)

【特許請求の範囲】[Claims] 「ある物理量の測定値から、その推定値を差引いた値Δ
が正のときは推定値に微小定数を加え、負のときは減ず
る方式で、推定値をその物理量の最確値に追尾させるこ
ととした微小定数積算追尾方式測定器」
"The value Δ that is calculated by subtracting the estimated value from the measured value of a certain physical quantity
An infinitesimal constant integration tracking method measuring device that adds an infinitesimal constant to the estimated value when it is positive, and subtracts it when it is negative, so that the estimated value tracks the most probable value of that physical quantity.
JP1182729A 1989-07-17 1989-07-17 Small constant integration tracking measurement method Expired - Lifetime JP2736325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1182729A JP2736325B2 (en) 1989-07-17 1989-07-17 Small constant integration tracking measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1182729A JP2736325B2 (en) 1989-07-17 1989-07-17 Small constant integration tracking measurement method

Publications (2)

Publication Number Publication Date
JPH0348163A true JPH0348163A (en) 1991-03-01
JP2736325B2 JP2736325B2 (en) 1998-04-02

Family

ID=16123425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1182729A Expired - Lifetime JP2736325B2 (en) 1989-07-17 1989-07-17 Small constant integration tracking measurement method

Country Status (1)

Country Link
JP (1) JP2736325B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311865A (en) * 1986-07-02 1988-01-19 Furuno Electric Co Ltd Ship speed measuring apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311865A (en) * 1986-07-02 1988-01-19 Furuno Electric Co Ltd Ship speed measuring apparatus

Also Published As

Publication number Publication date
JP2736325B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
KR960704260A (en) ASSURED-INTEGRITY MONITORED EXTRAPOLATION NAVIGATION APPARATUS
US4533918A (en) Pilot assistance device
JPH02504428A (en) Method and apparatus for determining the position and velocity of a target in inertial space
US5761153A (en) Method of locating hydrophones
Heckman et al. An acoustic navigation technique
JPH0348163A (en) Very small constant integration tracking type measuring device
CN110411480B (en) Acoustic navigation error prediction method for underwater maneuvering platform under complex marine environment
Sanford Recent improvements in ocean current measurement from motional electric fields and currents
Gade et al. An aided navigation post processing filter for detailed seabed mapping UUVs
US5381383A (en) Sonar transducer calibration apparatus and method
JPS59191608A (en) Improvement in processing through put speed
JPH0785019B2 (en) Heading measurement device
RU2085850C1 (en) System of course and vertical and method determining magnetic course
JPH037787Y2 (en)
JPH0454892B2 (en)
RU2768547C1 (en) Device for autonomous determination of distance travelled by ground vehicle
Spindel et al. Precision tracking systems for sonobuoys
RU2188432C1 (en) Contactless velocity-vector meter
SU1107082A1 (en) Method of determination of wind speed and direction from moving object
Gaby A new type of seismic cross-section wherein accuracy of representation is rendered insensitive to velocity error
SU658960A1 (en) Method of determining distribution of pressure in detonation front
McCloskey jr et al. Integrated navigation system performance in deep ocean mining surveys
JPS62211507A (en) Ship position measuring instrument using sea bottom depth map
Haskell et al. Precision of the Long Baseline Acoustic Navigation System used by Pegasus
SU1672379A1 (en) Current velocity probe

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term