JPH0348152B2 - - Google Patents

Info

Publication number
JPH0348152B2
JPH0348152B2 JP61092398A JP9239886A JPH0348152B2 JP H0348152 B2 JPH0348152 B2 JP H0348152B2 JP 61092398 A JP61092398 A JP 61092398A JP 9239886 A JP9239886 A JP 9239886A JP H0348152 B2 JPH0348152 B2 JP H0348152B2
Authority
JP
Japan
Prior art keywords
heat
particles
refractory particles
magnesia
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61092398A
Other languages
Japanese (ja)
Other versions
JPS62252363A (en
Inventor
Yoichi Takamya
Yukio Kato
Akihiko Kusano
Shinichi Fukunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61092398A priority Critical patent/JPS62252363A/en
Publication of JPS62252363A publication Critical patent/JPS62252363A/en
Publication of JPH0348152B2 publication Critical patent/JPH0348152B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は熔融金属を移送、又は精練処理する容
器の内表面に塗布することにより容器への伝熱を
少なくするかあるいは熔融金属の表面に浮遊させ
て外気との接触を少なくし熔融金属からの熱の損
失を防ぎ、さらに外気と熔融金属との反応を防止
するための断熱耐火粒子である。
Detailed Description of the Invention [Industrial Application Field] The present invention reduces heat transfer to the container by coating the inner surface of the container in which molten metal is transported or smelted, or coats the surface of the molten metal with These are heat-insulating refractory particles that are suspended to reduce contact with the outside air, prevent heat loss from the molten metal, and further prevent reactions between the outside air and the molten metal.

[従来の技術] タンデイシユや取鍋など熔融金属を移送、又は
精錬処理する際、容器内表面に断熱性の物質を塗
布し容器への伝熱を少なくすること及び熔融金属
の表面に断熱耐火性の粒子を散布し、熔融金属表
面から外気への熱の損失と外気と熔融金属との反
応とを防ぐことを主な目的とする技術思想は公知
である。
[Prior art] When transporting or refining molten metal in a tundish or ladle, a heat insulating material is applied to the inner surface of the container to reduce heat transfer to the container, and the surface of the molten metal is coated with heat insulating and fire-resistant material. A technical idea whose main purpose is to prevent heat loss from the molten metal surface to the outside air and reaction between the outside air and the molten metal by scattering particles of the molten metal is known.

従来断熱材として、籾殻ないしは籾殻を蒸し焼
きにしたものが主に用いられている。しかしなが
ら、このものは非常に安価であるという特徴を有
するものの、その主成分がシリカと炭素であるた
め、このシリカがカルシア等と反応し低融点の化
合物をつくること、炭素分及びケイ素が成分調製
された熔融金属に取り込まれ製品として得られる
金属の性質を低下させる欠点が知られている。こ
のため、わずかな成分の差が問題とされる高級鋼
では籾殻の使用は大きな問題になりつつあつた。
従来、籾殻のこの欠点を解決するため、炭素分の
少ない低融点の化合物をつくり難い物質を使用す
る試みがいくつかおこなわれている。
Traditionally, rice husks or steamed rice husks have been mainly used as insulation materials. However, although this product has the characteristic of being very inexpensive, its main components are silica and carbon, so the silica reacts with calcia etc. to create a compound with a low melting point, and the carbon content and silicon are It is known that the metal is incorporated into the molten metal produced and deteriorates the properties of the metal obtained as a product. For this reason, the use of rice husks was becoming a big problem in high-grade steel, where slight differences in composition are a problem.
In order to solve this drawback of rice husks, several attempts have been made to use substances with low carbon content and low melting point compounds that are difficult to form.

マグネシアはこの二つの条件を満たす物質であ
るがこのもの自身は熱伝導率が高いため、このも
のに断熱性を付与する試みが行われている。その
一つとして従来公知の真珠岩やバーミキユライト
等の発泡体にマグネシアの微粉をコーテイングす
る方法があり、各種の製品がつくられて入る。し
かしながら、これらの製品では製法上マグネシア
の含有率を60%以上とすることが難しいため低融
点の化合物をつくりやすく、又、断熱層とマグネ
シア層の部分とが分かれているため断熱性も十分
とは言えなかつた。さらに、これらの製品では熔
融金属の温度で大きな収縮と強度の低下があるた
め、容器内表面に塗布し容器への伝熱を少なくす
る用途には使用できない。そして、従来、マグネ
シア煉瓦の断熱性を改善するためにその素材とな
る発泡マグネシアをつくる方法が検討されてい
る。これらは例えば特公昭47−47565、特公昭48
−7485等に記載されている。しかしながら、従来
の方法で得られる発泡マグネシアは本発明の用途
に用いるには過剰品質であり、又、製品コストも
高いので実際に使い難いという問題があつた。
Magnesia is a substance that satisfies these two conditions, but since it itself has high thermal conductivity, attempts are being made to provide it with heat insulating properties. One such method is to coat a foamed material such as pearlite or vermiculite with fine powder of magnesia, which is used to produce various products. However, in these products, it is difficult to increase the magnesia content to 60% or more due to the manufacturing method, which makes it easy to create compounds with low melting points, and the insulation layer and magnesia layer are separated, so the insulation properties are not sufficient. I couldn't say it. Furthermore, these products undergo large shrinkage and decrease in strength at the temperature of the molten metal, so they cannot be used to reduce heat transfer to the container by coating it on the inner surface of the container. In order to improve the heat insulating properties of magnesia bricks, methods for producing foamed magnesia, which is the raw material for magnesia bricks, have been studied. These are, for example, Tokuko Sho 47-47565, Tokko Tokuko 48
-7485 etc. However, the expanded magnesia obtained by the conventional method is of excessive quality for use in the purpose of the present invention, and the product cost is high, so there is a problem that it is difficult to use in practice.

[発明が解決しようとする問題点] 本発明は熔融金属を移送、又は精錬処理する容
器の内表面に塗布することにより容器へ伝熱を少
なくするかあるいは熔融金属の表面に浮遊させて
外気との接触を少なくし熔融金属からの熱の損失
を防ぎ、さらに外気と熔融金属との反応を防止す
るための安価に製造でき、かつ、優れたマグネシ
アを生成分とする耐火粒子を提供するものであ
る。
[Problems to be Solved by the Invention] The present invention reduces heat transfer to the container by coating it on the inner surface of the container in which molten metal is transferred or refined, or floats it on the surface of the molten metal and connects it to the outside air. The purpose of the present invention is to provide refractory particles containing magnesia as a component that can be manufactured at low cost and are superior in order to reduce contact between metals, prevent heat loss from the molten metal, and further prevent reactions between the outside air and the molten metal. be.

[問題点を解決するための手段] 上記問題点を解決するための本発明の構成は、
酸化マグネシウムの含有量が60%以上で、比表面
積が15〜1m2/gr、好ましくは15〜5m2/gr(ベ
ツト法)容積比量が0.2〜1.5好ましくは0.5〜1.5、
より好ましくは0.35〜0.60、粒径が0.5〜15mm、好
ましくは1〜10mmである断熱耐火粒子である。
[Means for solving the problems] The configuration of the present invention for solving the above problems is as follows:
The content of magnesium oxide is 60% or more, the specific surface area is 15 to 1 m 2 /gr, preferably 15 to 5 m 2 /gr (Bett method), the volume ratio is 0.2 to 1.5, preferably 0.5 to 1.5,
More preferably, the heat-insulating refractory particles have a particle size of 0.35 to 0.60 mm, and a particle size of 0.5 to 15 mm, preferably 1 to 10 mm.

また、上記断熱耐火粒子の製造はマグネサイト
の塊を焼成した後、破砕し、粒径0.5〜15mmの粒
子に整粒する方法、あるいは、マグネシウム化合
物を焼成後MgOとして60%以上となるように、
かつ、その中のマグネシウム化合物としての軽焼
マグネシアを40%以上含有する粉体に水または水
溶液を混合、乾燥後、0.5〜15mmの粒子に整粒後、
焼成することよつて行なうものである。
In addition, the above-mentioned heat-insulating refractory particles can be produced by firing magnesite lumps, then crushing them, and sizing them into particles with a particle size of 0.5 to 15 mm, or by firing a magnesium compound so that the MgO content becomes 60% or more. ,
In addition, water or an aqueous solution is mixed with the powder containing 40% or more of lightly calcined magnesia as a magnesium compound, dried, and sized into particles of 0.5 to 15 mm.
This is done by firing.

[作用] 本発明の断熱耐火粒子はその化学組成における
酸化マグネシウムの含有量(以下マグネシア純度
と称する)が60%以上であることが必要である。
[Function] It is necessary that the content of magnesium oxide (hereinafter referred to as magnesia purity) in the chemical composition of the heat-insulating refractory particles of the present invention is 60% or more.

断熱耐火粒子のマグネシア純度が高まるにした
がつて耐火粒子の融点が高まる。その具体的な温
度は、共存する他の成分によつても異なるか、マ
グネシア純度が60%以上になると熔融金属の温度
では断熱耐火粒子自身の熔融は極めて少なくな
る。
As the magnesia purity of the heat-insulating refractory particles increases, the melting point of the refractory particles increases. The specific temperature may vary depending on other coexisting components, or when the purity of magnesia exceeds 60%, the melting of the heat-insulating refractory particles themselves becomes extremely small at the temperature of the molten metal.

マグネシア純度が更に高くなると、熔融金属に
付随するスラグ成分との反応軟化も少なくなり、
マグネシア成分が90%を越えるとスラグ成分との
反応も極端に少なくなる現象が認められた。
As the purity of magnesia increases, the softening caused by the reaction with the slag components accompanying the molten metal decreases.
It was observed that when the magnesia component exceeds 90%, the reaction with the slag component becomes extremely low.

結局、本発明の断熱耐火粒子に必要な耐火性を
維持するにはマグネシア純度が60%以上であるこ
とが必要である。また、製品のマグネシア純度を
60%以上にするには本発明の方法によつて製造す
るのが有効である。
After all, in order to maintain the fire resistance necessary for the heat-insulating refractory particles of the present invention, it is necessary that the magnesia purity is 60% or more. We also check the magnesia purity of our products.
It is effective to produce by the method of the present invention in order to increase the ratio to 60% or more.

本発明の断熱耐火粒子の比表面積は1m2/gr以
上であることが断熱性を高める上から必要であ
る。耐火粒子の断熱性は比表面積の大きい程大き
くなり望ましい。しかしながら、比表面積が大き
くなると耐火粒子の強度は低下する傾向にあり輸
送時に粒子が崩壊したり、粒子同士がこすれて粉
化するなどの弊害を生じる。粒子が崩壊したり粉
化したりして生じる粉体は耐火粒子の使用時に粉
が舞い上がり操業の障害になるばかりでなく、操
業現場の環境汚染の問題を生じる。これらのこと
を考慮すると耐火粒子の比表面積は15m2/gr以下
であることが必要であり、先の断熱性も考慮すれ
ば耐火粒子の比表面積は15〜5m2/grであること
がとくに望ましい。
It is necessary for the specific surface area of the heat-insulating refractory particles of the present invention to be 1 m 2 /gr or more in order to improve the heat-insulating properties. The greater the specific surface area, the greater the heat insulating properties of the refractory particles, which is desirable. However, as the specific surface area increases, the strength of the refractory particles tends to decrease, resulting in problems such as the particles collapsing during transportation, or particles rubbing against each other and turning into powder. Powder produced by particles disintegrating or turning into powder not only flies up when refractory particles are used and becomes a hindrance to operations, but also causes the problem of environmental pollution at the operation site. Taking these things into consideration, the specific surface area of the refractory particles must be 15 m 2 /gr or less, and if the above-mentioned thermal insulation properties are also considered, the specific surface area of the refractory particles should be 15 to 5 m 2 /gr. desirable.

また本発明の断熱耐火粒子は通常0.5〜15mmの
大きさに整粒される。この大きさは使用目的によ
つて任意に選択することができる。しかし粒子径
が15mmをこえると本発明の用途としては大き過ぎ
熔融金属表面に散布した場合均一な分散状態が得
られなくなる現象が認められた。この粒子の大き
さは10mm以下であることがとくに望ましい。又、
粒子径が0.5mm以下の場合には熔融金属表面への
投入時に発じん等の弊害がみとめられた。
Further, the heat-insulating refractory particles of the present invention are usually sized to a size of 0.5 to 15 mm. This size can be arbitrarily selected depending on the purpose of use. However, if the particle size exceeds 15 mm, it is too large for the purpose of the present invention, and a phenomenon was observed in which a uniform dispersion state could not be obtained when sprayed on the surface of molten metal. It is particularly desirable that the particle size be 10 mm or less. or,
When the particle size was 0.5 mm or less, adverse effects such as dust generation were observed when the particles were poured onto the surface of the molten metal.

耐火粒子の容積比重はメスシリンダーで測定さ
れた一定容積の粒子の重量から計算される。容積
比重が小さい程、耐火粒子の断熱性は向上するが
スラグ等と反応して粒子としての形状を保つてい
る時間は短くなり、又、粒子の強度も弱くなる。
耐火粒子の容積比重が0.2より小さい場合には耐
火粒子の強度が著しく低下し、輸送時の包装等に
余分の費用を必要とし、また輸送の費用もかさむ
ことになる。容積比重が大きくなると本発明の目
的である断熱性が低下するが、耐火粒子の製造コ
ストは安くなる傾向にある。以上のコストと効果
を総合的に勘案すると容積比重は0.2〜1.5が適当
な範囲と見られる。
The volume specific gravity of refractory particles is calculated from the weight of a certain volume of particles measured in a graduated cylinder. As the volume specific gravity decreases, the heat insulation properties of the refractory particles improve, but the time for reacting with slag and the like to maintain the shape of the particles becomes shorter, and the strength of the particles also becomes weaker.
If the volume specific gravity of the refractory particles is less than 0.2, the strength of the refractory particles will be significantly reduced, requiring extra costs for packaging, etc. during transportation, and will also increase transportation costs. As the volumetric specific gravity increases, the heat insulating property, which is the object of the present invention, decreases, but the manufacturing cost of the refractory particles tends to decrease. Considering the above costs and effects comprehensively, a volume specific gravity of 0.2 to 1.5 is considered to be an appropriate range.

本発明の耐火粒子を製造するためのマグネシア
原料としては海水マグネシアクリンカーの原料で
ある水酸化マグネシウムは勿論、天然のマグネサ
イト等の安価な原料も用いることが出来る。
As the magnesia raw material for producing the refractory particles of the present invention, not only magnesium hydroxide, which is a raw material for seawater magnesia clinker, but also inexpensive raw materials such as natural magnesite can be used.

本発明の耐火粒子には複数の製造方法が存在す
る。製造方法は入手できる原料、工場立地等を勘
案して決定される。以下に述べる二つの方法は中
でも特に優れた方法とみられる。
There are multiple manufacturing methods for the refractory particles of the present invention. The manufacturing method is determined by taking into account available raw materials, factory location, etc. The two methods described below are considered to be particularly excellent methods.

その一つは、産地によつて多少条件は変るが天
然マグネサイトを、例えば、シヤフトキルン、ロ
ータリーキルン等の焼成炉を用いて1000〜1450℃
温度で焼成することによつてその比表面積を15〜
1m2/grにした酸化マグネシウムを破砕等によつ
て0.5〜15mmに大部分がなるように整粒する方法
であり、その二はマグイネシウム化合物を焼成後
MgOとして60%以上となるように、かつ、その
中のマグネシウム化合物としての軽焼マグネシア
を40%以上含む粉体に水または酸、けい酸ソーダ
等の水溶液を滴下等の方法によつて混合し、必要
あれば乾燥した後、整粒し、400℃以上の温度で
焼成する方法である。この場合、粉体中の軽焼マ
グネシウムの含有率が40%以上あると水だけでも
かなりの強度を発現させることもでき経済的なプ
ロセスを作ることが出来る。
One method is to heat natural magnesite to 1000 to 1450°C using a firing furnace such as a shaft kiln or rotary kiln, although the conditions vary depending on the production area.
By firing at a temperature of 15~
This is a method of sizing magnesium oxide at 1 m 2 /gr by crushing, etc. so that most of the particles are 0.5 to 15 mm in size.
Water or an aqueous solution of acid, sodium silicate, etc. is mixed by a method such as dropping into a powder containing 60% or more of MgO and 40% or more of lightly calcined magnesia as a magnesium compound. After drying if necessary, the particles are sized and fired at a temperature of 400°C or higher. In this case, if the content of lightly calcined magnesium in the powder is 40% or more, considerable strength can be developed even with water alone, making it possible to create an economical process.

以下、実施例により本発明の効果を説明する。
なお、実施例に記載の各成分の量(%)は重量%
である。
Hereinafter, the effects of the present invention will be explained with reference to Examples.
In addition, the amount (%) of each component described in the examples is weight %.
It is.

実施例 1 天然のマグネサイトの5〜10cmの固りを電気炉
中で1200℃2時間の焼成を行なつた。この焼成物
をジヨークラツシヤーで破砕し、5〜10mmの粒子
を篩分した。この粒子の容積比重は0.98であり、
比表面積は8.2m2/grであつた。
Example 1 A 5-10 cm block of natural magnesite was fired at 1200°C for 2 hours in an electric furnace. This fired product was crushed with a dior crusher, and particles of 5 to 10 mm were sieved. The volume specific gravity of this particle is 0.98,
The specific surface area was 8.2 m 2 /gr.

この断熱耐火粒子の分析値は次の通りであつ
た。
The analytical values of the heat-insulating refractory particles were as follows.

MgO 92% CaO 1.4% Al2O3 1.3% Fe2O3 0.3% SiO2 2.4% [比較例] 上記実施例1のものと特性を比較するため発泡
したバーミユキユライトに天然のマグネシア粉を
コーテイングしたものを製造した。このものの化
学組成ならびに物性は次の通りであつた。
MgO 92% CaO 1.4% Al 2 O 3 1.3% Fe 2 O 3 0.3% SiO 2 2.4% [Comparative example] In order to compare the properties with those of Example 1 above, foamed vermiyukilite was coated with natural magnesia powder. manufactured. The chemical composition and physical properties of this product were as follows.

MgO 50.7% CaO 0.6% Al2O3 9.7% Fe2O3 1.8% SiO2 20.5% Na2O 2.5% Ig・loss 10.4% 容積比重 0.50 保温性試験 直径15cmのルツボに溶鉄を入れ、1550℃に保つ
たのち断熱耐火粒子を6cmの厚さになるように投
入し、投入後の温度降下速度を測定した。その結
果は次の通りであつた。
MgO 50.7% CaO 0.6% Al 2 O 3 9.7% Fe 2 O 3 1.8% SiO 2 20.5% Na 2 O 2.5% Ig・loss 10.4% Volume specific gravity 0.50 Heat retention test Place molten iron in a crucible with a diameter of 15 cm and heat to 1550℃. After the temperature was maintained, heat-insulating refractory particles were added to a thickness of 6 cm, and the rate of temperature drop after the addition was measured. The results were as follows.

温度降下速度 実施例1 11.4℃/分 比較例 11.8℃/分 耐スラグ性 連続鋳造現場のタンデイツシユに断熱耐火粒子
を一定量投入して粒子の消滅する時間を測定し比
較した。その結果、実施例1はいずれの場合にお
いても比較例に対して1.5〜4倍の耐スラグ性を
示した。
Temperature drop rate Example 1 11.4°C/min Comparative example 11.8°C/min Slag resistance A certain amount of heat-insulating refractory particles was put into a tundish at a continuous casting site, and the time taken for the particles to disappear was measured and compared. As a result, Example 1 showed 1.5 to 4 times higher slag resistance than Comparative Example in all cases.

実施例 2 焼成物換算でMgO92%を含む天然のマグネサ
イトを1100℃で1時間焼成したものをボールミル
で110℃に加熱しながら微粉砕して比表面積9
m2/grの軽焼マグネシアを得た。
Example 2 Natural magnesite containing 92% MgO in terms of fired product was fired at 1100°C for 1 hour and finely pulverized while heating to 110°C in a ball mill to have a specific surface area of 9.
Lightly calcined magnesia of m 2 /gr was obtained.

この軽焼マグネシア50%と海水水酸化マグネシ
ウムの乾燥微粉を混合し、120℃に加熱したもの
に約90℃の水を滴下して造粒物を得た。この造粒
物を最高温度1450℃のロータリーキルンで焼成し
た。
50% of this lightly calcined magnesia and dried fine powder of seawater magnesium hydroxide were mixed, heated to 120°C, and water at about 90°C was added dropwise to obtain a granulated product. This granulated material was fired in a rotary kiln at a maximum temperature of 1450°C.

この造粒物から粒径0.5〜10mmの粒子を篩分し
たところ、比表面積7m2/gr、MgO含有率93%、
容積比重1.04の断熱耐火粒子が得られた。
When particles with a particle size of 0.5 to 10 mm were sieved from this granule, the specific surface area was 7 m 2 /gr, the MgO content was 93%,
Insulating refractory particles with a volume specific gravity of 1.04 were obtained.

[発明の効果] 以上説明したように本発明の断熱耐火粒子は高
温における断熱性が優れており、しかも、本発明
の製造方法によれば製造原価が安価であるので広
い用途に使用できることが期待できる。
[Effects of the Invention] As explained above, the heat-insulating refractory particles of the present invention have excellent heat insulating properties at high temperatures, and according to the manufacturing method of the present invention, the manufacturing cost is low, so it is expected that they can be used in a wide range of applications. can.

Claims (1)

【特許請求の範囲】 1 酸化マグネシウムの含有量が60%以上で、比
表面積が15〜1m2/gr、容積比量が0.2〜1.5、粒
径が0.5〜15mmであることを特徴とする断熱耐火
粒子。 2 酸化マグネシウムの含有量が90%以上である
特許請求の範囲1記載の断熱耐火粒子。
[Scope of Claims] 1. A thermal insulation characterized by having a magnesium oxide content of 60% or more, a specific surface area of 15 to 1 m 2 /gr, a volume ratio of 0.2 to 1.5, and a particle size of 0.5 to 15 mm. Refractory particles. 2. The heat-insulating refractory particles according to claim 1, wherein the content of magnesium oxide is 90% or more.
JP61092398A 1986-04-23 1986-04-23 Heat insulating refractory particle Granted JPS62252363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61092398A JPS62252363A (en) 1986-04-23 1986-04-23 Heat insulating refractory particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61092398A JPS62252363A (en) 1986-04-23 1986-04-23 Heat insulating refractory particle

Publications (2)

Publication Number Publication Date
JPS62252363A JPS62252363A (en) 1987-11-04
JPH0348152B2 true JPH0348152B2 (en) 1991-07-23

Family

ID=14053307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61092398A Granted JPS62252363A (en) 1986-04-23 1986-04-23 Heat insulating refractory particle

Country Status (1)

Country Link
JP (1) JPS62252363A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100436506B1 (en) * 1997-04-30 2004-08-18 주식회사 포스코 Ladle heat-insulating material for ultra-low carbon special molten steel, excellent in heat keeping ability, alumina absorptivity, and corrosion-resistance to magnesia refractory
CN103341606B (en) * 2013-07-03 2015-02-11 北京科技大学 High-magnesium covering agent material capable of being used for tundish and preparing method thereof

Also Published As

Publication number Publication date
JPS62252363A (en) 1987-11-04

Similar Documents

Publication Publication Date Title
CN102976771B (en) High temperature resistant lightweight heat insulation castables
JPH0123426B2 (en)
JPH0348152B2 (en)
US3649313A (en) Refractory mortar
CN106045540A (en) High-strength wearing-resistant refractory casting material
CA1079753A (en) Process for repairing basic refractory linings
CN109776100A (en) Vacuum induction melting coating
JPH01237049A (en) Heat insulating refractory grain for molten metal
US2567088A (en) Refractory material and method of making
JPS59209455A (en) Heat insulating material for molten metal
JPS6241774A (en) Non-burnt refractory heat insulator
JPS62216975A (en) Manufacture of heat insulative refractory particle for molten metal
JPS5829268B2 (en) Al↓2O↓3-SiO↓2-P↓2O↓5-based porous fireproof insulation brick manufacturing compound
US4383044A (en) Slaking-resistant calcia refractory
US1373854A (en) Refractory brick
CN113354401B (en) Ammonium ion stable silica sol combined iron runner castable
WO1995008520A1 (en) Thermally insulating bricks
JPS6120646A (en) Heat insulating material for molten metal
SU1323552A1 (en) Method of producing carbon-containing refractory
SU1114666A1 (en) Composition for making heat insulating materials
GB2024046A (en) Process for the production of a granular synthetic slag for continuous steel casting
CN112321290A (en) Method for producing sintered forsterite
JPH0226816A (en) Preparation of raw material for refractory containing carbon
JPS6225633B2 (en)
JPH03205362A (en) Graphite-silicon carbide refractory brick and production thereof