JPH0347942A - Sintered body of high hardness tungsten-molybdenum alloy - Google Patents

Sintered body of high hardness tungsten-molybdenum alloy

Info

Publication number
JPH0347942A
JPH0347942A JP18209389A JP18209389A JPH0347942A JP H0347942 A JPH0347942 A JP H0347942A JP 18209389 A JP18209389 A JP 18209389A JP 18209389 A JP18209389 A JP 18209389A JP H0347942 A JPH0347942 A JP H0347942A
Authority
JP
Japan
Prior art keywords
tungsten
sintered body
cobalt
powder
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18209389A
Other languages
Japanese (ja)
Inventor
Seiji Yabe
矢部 清司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP18209389A priority Critical patent/JPH0347942A/en
Publication of JPH0347942A publication Critical patent/JPH0347942A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain the sintered body of a tungsten-molybdenum alloy having high hardness and excellent workability without deteriorating its corrosion resistance to zinc by using an alloy having specified content of tungsten and incorporated with a specified amt. of cobalt. CONSTITUTION:Tungsten metallic powder and molybdenum metallic powder are mixed so that the content of tungsten is regulated, by weight, to 20 to 50%, or tungsten-molybdenum alloy oxide is heated in hydrogen to obtain metallic powder. Next, the metallic powder is mixed with metallic cobalt powder in the range of 0.5 to 3%, and the alloy powder is thereafter compacted and heated to obtain a sintered body. At this time, as for the content of cobalt, for 0.2%, its hardness is deteriorated, and for 14.0%, its corrosion resistance to zinc is deteriorated and the crystalline grains of the sintered body are coarsened to cause embrittlement, so that the one in the above range is preferably regulated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、タングステン−モリブデン合金の焼結体、特
に、コバルトを含有し 耐摩耗性に優れたタングステン
−モリブデン合金の焼結体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a sintered body of a tungsten-molybdenum alloy, particularly a sintered body of a tungsten-molybdenum alloy that contains cobalt and has excellent wear resistance.

[従来の技術〕 従来、一般にタングステン−モリブデン合金が亜鉛に対
する耐腐食性に優れていることは周知である。
[Prior Art] It is well known that tungsten-molybdenum alloys generally have excellent corrosion resistance against zinc.

このため、亜鉛使用工場での各種機械の部品として広く
使用されているが、この場合、硬度が不足する場合があ
り、このタングステン−モリブデン合金の焼結体の硬度
不足と遷移温度の高さによる問題を補うため、タングス
テン−モリブデン合金の焼結インゴットを鍛造又は、圧
延加工等を加工率の50%以上施し1機械的強度を高め
て使用していた。
For this reason, it is widely used as parts for various machines in factories that use zinc, but in this case, the hardness may be insufficient. To compensate for this problem, sintered ingots of tungsten-molybdenum alloys have been forged or rolled to a processing rate of 50% or more to increase their mechanical strength.

[発明が解決しようとする課題] しかしながら 上述した従来の焼結インゴットから鍛造
又は、圧延加工によって部品を製作する場合、耐摩耗性
を表す硬度について1部品の加工時の加熱温度が150
0度以上必要なため、50%の加工率を施しても、Hv
硬度320未満の硬度しか得られなかった。
[Problems to be Solved by the Invention] However, when manufacturing parts from the above-mentioned conventional sintered ingot by forging or rolling, the heating temperature during processing of one part is 150% with respect to hardness representing wear resistance.
Since 0 degrees or more is required, even if a processing rate of 50% is applied, Hv
A hardness of less than 320 was obtained.

また、この硬度を向上させようとすると2割れの発生が
高くなり、経済的に割り合わないという問題があるばか
りか、前述のように、高い加熱温度が必要なため、大型
な部品の製作には適さなかった。
In addition, if you try to improve this hardness, the occurrence of two cracks will increase, which not only causes the problem that it is not economically viable, but also, as mentioned above, requires a high heating temperature, which makes it difficult to manufacture large parts. was not suitable.

そこで、本発明の技術的課題は、上記欠点に鑑み、亜鉛
に対する耐腐食性を低下させることなく。
Therefore, the technical problem of the present invention is to solve the above-mentioned drawbacks without reducing the corrosion resistance against zinc.

高硬度で加工性に優れたタングステン−モリブデン合金
の焼結体を得ることを目的とする。
The purpose is to obtain a sintered body of a tungsten-molybdenum alloy that has high hardness and excellent workability.

[課題を解決するための手段] 本発明によれば、タングステン−モリブデン合金の焼結
体であって、前記タングステンを重量比で20乃至50
%の範囲で含有せしめるとともに。
[Means for Solving the Problems] According to the present invention, there is provided a sintered body of a tungsten-molybdenum alloy, wherein the tungsten is contained in a weight ratio of 20 to 50.
% range.

コバルトを重量比で0.5乃至3%の範囲で含有して成
ることを特徴とする高硬度タングステン−モリブデン合
金の焼結体が得られる。
A sintered body of a high hardness tungsten-molybdenum alloy is obtained, which is characterized by containing cobalt in a range of 0.5 to 3% by weight.

[作用] タングステン金属粉末とモリブデン金属粉末とを混合さ
せて得た合金粉末又は、タングステンモリブデン合金酸
化物を水素中で加熱して得た合金粉末に、金属コバルト
粉末を混合させ、その後。
[Operation] Cobalt metal powder is mixed with an alloy powder obtained by mixing tungsten metal powder and molybdenum metal powder, or an alloy powder obtained by heating a tungsten molybdenum alloy oxide in hydrogen, and then.

その合金粉末を成型加熱する。The alloy powder is shaped and heated.

[実施例] 以下1本発明の一実施例を詳述する。[Example] An embodiment of the present invention will be described in detail below.

第1工程として2合金粉末を製作する。この方法は。In the first step, 2 alloy powder is produced. This method is.

■タングステン金属粉末とモリブデン金属粉末を混合器
、粉砕器等で混合して合金粉末を得る方法。
■A method to obtain alloy powder by mixing tungsten metal powder and molybdenum metal powder in a mixer, pulverizer, etc.

■タングステン、モリブデン合金酸化物を水素中で70
0乃至1100度に加熱して得る方法とがある。
■Tungsten, molybdenum alloy oxide in hydrogen at 70%
There is a method of heating to 0 to 1100 degrees.

第2工程として、この合金粉末を得る過程で金属コバル
トを加える。■の方法では、タングステン、モリブデン
金属粉末の混合時に9重量比0.5乃至5%の範囲の金
属コバルト粉末を加え混合する。■の方法では9合金酸
化物に硝酸コバルト水溶液と水を加え、スラリー状にし
た後乾燥し水素還元して金属コバルトを加える。
As a second step, metallic cobalt is added during the process of obtaining this alloy powder. In method (2), when tungsten and molybdenum metal powders are mixed, a metal cobalt powder in a weight ratio of 0.5 to 5% is added and mixed. In method (2), an aqueous cobalt nitrate solution and water are added to the 9-alloy oxide to form a slurry, which is then dried, reduced with hydrogen, and metallic cobalt is added.

第3工程として、これらの方法で得られた合金粉末を目
的の部品形状に金型プレスあるいは、静水圧ラバープレ
スで圧粉体とした後に、1700度以上で10時間以上
加熱して焼結体を得る。
As the third step, the alloy powder obtained by these methods is made into a compact by mold pressing or isostatic rubber press into the desired part shape, and then heated at 1700 degrees or higher for 10 hours or more to form a sintered compact. get.

第4工程として、この焼結体を切削、軽鍛造して最小製
品の機械部品を得る。
In the fourth step, this sintered body is cut and lightly forged to obtain the smallest mechanical parts.

次に、焼結体に残るコバルトの量を重量比で0.2 、
0.5 、1.0 、2.0 、3.0としたタングス
テン−モリブデン合金(タングステン含有量2重量比5
0%)粉末に金属コバルトを混合した後、金型内で3 
ton/cTIIの圧力でプレス加工した後、更に18
00乃至1850度Cで水素中30時間の焼結を行って
得られた焼結体より小試験片を切り出したものをビッカ
ース硬度計にて荷重10kgで測定した。また、従来の
コバルト添加を行わない焼結体、及びその焼結体を50
%加工率で圧延加工して得られたものより切り出した小
試験片に対して同一条件で測定し、これらの結果を第1
表に示す。
Next, the amount of cobalt remaining in the sintered body is 0.2 by weight,
Tungsten-molybdenum alloy with 0.5, 1.0, 2.0, 3.0 (tungsten content 2 weight ratio 5
0%) After mixing metal cobalt into the powder, 3% is added in the mold.
After pressing at a pressure of ton/cTII, further 18
A small test piece was cut out from the sintered body obtained by sintering in hydrogen at 00 to 1850 degrees Celsius for 30 hours and measured using a Vickers hardness tester under a load of 10 kg. In addition, we have developed a conventional sintered body without adding cobalt, and 50% of the sintered body.
Measurements were made under the same conditions on a small test piece cut out from the one obtained by rolling at a working rate of %, and these results were compared to the first
Shown in the table.

以下余白 第  1  表 また、亜鉛に対する耐腐食性の比較として、700度C
の亜鉛溶液体に500時間浸漬した後。
Table 1 below is a margin. Also, as a comparison of corrosion resistance against zinc,
After being immersed in a zinc solution for 500 hours.

亜鉛との反応部を除去するために希硫酸にして各試料の
重量の減量を測定し、その減量速度を基として耐食性を
比較した結果、第2表の数値が得られた。
The weight loss of each sample was measured using dilute sulfuric acid to remove the reaction site with zinc, and the corrosion resistance was compared based on the rate of weight loss, and the values shown in Table 2 were obtained.

第  2  表 尚、コバルト含有量が4.0%以上になると亜鉛に対す
る耐食性が低下するとともに、焼結体の結品位が粗大化
し脆くなるという実験結果が得られているので3.0%
以下か好ましい。
Table 2 Experimental results have shown that when the cobalt content exceeds 4.0%, the corrosion resistance against zinc decreases, and the sintered body becomes coarse and brittle.
The following is preferred.

[発明の効果コ 上述したように1本発明は、タングステン−モリブデン
合金粉末にコバルトを混合し、その混合合金粉末によっ
て、焼結体を形成することによって、亜鉛に対する耐腐
食性利を低下させることなく、高硬度の焼結体により、
比較的大型な所望の機械部品を製造することができる。
[Effects of the Invention] As described above, the present invention reduces the corrosion resistance benefit of zinc by mixing cobalt with tungsten-molybdenum alloy powder and forming a sintered body with the mixed alloy powder. Due to the high hardness of the sintered body,
Relatively large desired mechanical parts can be manufactured.

Claims (1)

【特許請求の範囲】[Claims] (1)タングステン−モリブデン合金の焼結体であって
、前記タングステンを重量比で20乃至50%の範囲で
含有せしめると共に、コバルトを重量比で0.5乃至3
%の範囲で含有して成ることを特徴とするタングステン
−モリブデン合金の焼結体。
(1) A sintered body of tungsten-molybdenum alloy, which contains tungsten in a weight ratio of 20 to 50% and cobalt in a weight ratio of 0.5 to 3.
% of tungsten-molybdenum alloy.
JP18209389A 1989-07-14 1989-07-14 Sintered body of high hardness tungsten-molybdenum alloy Pending JPH0347942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18209389A JPH0347942A (en) 1989-07-14 1989-07-14 Sintered body of high hardness tungsten-molybdenum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18209389A JPH0347942A (en) 1989-07-14 1989-07-14 Sintered body of high hardness tungsten-molybdenum alloy

Publications (1)

Publication Number Publication Date
JPH0347942A true JPH0347942A (en) 1991-02-28

Family

ID=16112231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18209389A Pending JPH0347942A (en) 1989-07-14 1989-07-14 Sintered body of high hardness tungsten-molybdenum alloy

Country Status (1)

Country Link
JP (1) JPH0347942A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105420579A (en) * 2015-12-11 2016-03-23 天津爱田汽车部件有限公司 High-temperature-resistant tungsten-molybdenum alloy and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105420579A (en) * 2015-12-11 2016-03-23 天津爱田汽车部件有限公司 High-temperature-resistant tungsten-molybdenum alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
CN101124058B (en) Stainless steel powder
US4963183A (en) Corrosion resistant cemented carbide
JPH04231404A (en) Method for powder metallurgy by means of optimized two-times press-two-times sintering
US4681629A (en) Powder metallurgical process for manufacturing copper-nickel-tin spinodal alloy articles
JP2012513541A (en) Method for producing diffusion-alloyed iron or iron-based powder, diffusion-alloyed powder, composition comprising the diffusion-alloyed powder, and molded and sintered parts produced from the composition
US2793951A (en) Powder metallurgical process for producing dense tungsten alloys
CN110026561B (en) Method for producing tungsten-rhenium thermocouple wire for temperature measurement with high reliability by using combination technology
US4165982A (en) Molybdenum base alloy having excellent high-temperature strength and a method of producing same
EP0042654B1 (en) Powder metal composition
EP0200691B1 (en) Iron-based powder mixture for a sintered alloy
JPH0347942A (en) Sintered body of high hardness tungsten-molybdenum alloy
EP0274542B1 (en) Alloy steel powder for powder metallurgy
CN107043869B (en) A kind of high performance-price ratio titanium alloy and preparation method thereof
JPS6318031A (en) Hot press die
JPH01156449A (en) Molybdenum sintered compact and its production
JPH073357A (en) High hardness cemented carbide excellent in oxidation resistance
CN113088758A (en) Production method of TB3 titanium alloy disc wire for fasteners
CZ302590B6 (en) Tantalum-based alloy, products in which the alloy is contained and process of its manufacture
JPH0336230A (en) Erosion-resistant alloy steel and its manufacture
CA1094362A (en) Method of manufacturing sintered steel for components
EP0157750B1 (en) Material for the powder metallurgical manufacture of soft magnetic components
JP3347773B2 (en) Pure iron powder mixture for powder metallurgy
JPH032335A (en) Manufacture of titanium powder or titanium alloy powder sintered product
CN111014685A (en) Bismuth-containing copper penetrating agent and preparation method thereof
JPS63171847A (en) Molybdenum crucible and its production