JPH0347592A - Removal of hydrogen peroxide - Google Patents

Removal of hydrogen peroxide

Info

Publication number
JPH0347592A
JPH0347592A JP18258889A JP18258889A JPH0347592A JP H0347592 A JPH0347592 A JP H0347592A JP 18258889 A JP18258889 A JP 18258889A JP 18258889 A JP18258889 A JP 18258889A JP H0347592 A JPH0347592 A JP H0347592A
Authority
JP
Japan
Prior art keywords
sludge
water
treated
liquid
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18258889A
Other languages
Japanese (ja)
Other versions
JPH0696144B2 (en
Inventor
Nohiro Yaide
乃大 矢出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP1182588A priority Critical patent/JPH0696144B2/en
Publication of JPH0347592A publication Critical patent/JPH0347592A/en
Publication of JPH0696144B2 publication Critical patent/JPH0696144B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To easily and perfectly remove H2O2 at a low cost by aerating H2O2- containing water to be treated under an alkaline condition to remove H2O2 and separating the treated water into a liquid part and sludge by a solid-liquid separation means to return the sludge. CONSTITUTION:The H2O2-containing waste water 1 from a treatment process is sent to the aeration tank 2 of a H2O2 removing process at first and aerated while the pH thereof is held to about 10-12 by an alkali agent to decompose H2O2 into hydrogen and oxygen. The treated liquid from the tank 2 is supplied to the sedimentation basin 7 of a solid-liquid separation process to be separated into a liquid part L and sludge S based on Fe(OH)3. Thereafter, the sludge S is recycled to the H2O2 removing process through a return pipe 6. By this method, H2O2 is removed perfectly within a short time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はH2O,を使用する廃水処理における残留H2
0□の除去やH2O2含有水からのH20□除去方法に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the treatment of residual H2 in wastewater treatment using H2O.
The present invention relates to a method for removing 0□ and H20□ from H2O2-containing water.

〔従来の技術〕[Conventional technology]

従来からの■20.除去方法としては次の方法がある。 Conventional ■20. The following methods are available for removal.

■ 亜硫酸ソーダ等の還元剤で還元処理。■ Reduction treatment with a reducing agent such as sodium sulfite.

■ アルカリ性で充填塔内に充填した活性炭と接触させ
て分解。
■ Decomposed by contacting with alkaline activated carbon packed in a packed tower.

この方法の一例として第8図に示したフローでは、H2
0□含有水1にNaOHを添加してアルカリ性とし活性
炭を充填した第1活性炭塔12および第2活性炭塔13
に順次通過させて該H!0.を水と酸素に分解処理し、
次いでこの処理水は中和槽10で中和処理され処理水1
1を得る。
In the flow shown in FIG. 8 as an example of this method, H2
0□ First activated carbon tower 12 and second activated carbon tower 13 which are made alkaline by adding NaOH to water 1 and filled with activated carbon.
The H! 0. is decomposed into water and oxygen,
Next, this treated water is neutralized in a neutralization tank 10 and becomes treated water 1.
Get 1.

■ 酵素(カタラーゼ)による分解除去、(例えば特開
昭64−11689) 上記従来技術■〜■の問題点を次に示す。
(2) Decomposition and removal by enzymes (catalase) (for example, JP-A-64-11689) Problems with the above-mentioned prior art techniques (1) to (2) are shown below.

■については還元剤が高価であることや還元処理を完全
に行うには過剰の還元剤が必要となるために処理水に還
元剤が残留する。
Regarding (2), the reducing agent remains in the treated water because the reducing agent is expensive and an excessive amount of reducing agent is required to completely perform the reduction treatment.

■については原水のHtozi4度の変動や原水性状(
懸濁物質)により処理性能が安定しない。
Regarding ■, the fluctuation of Htozi 4 degrees of raw water and the raw water properties (
Treatment performance is unstable due to suspended solids).

使用する活性炭が高価である。The activated carbon used is expensive.

■については原水のotog1度の変動、原水性状(毒
性物質等)により処理が不安定。反応速度が遅いために
反応容器が過大になる。
Regarding (①), treatment is unstable due to fluctuations in raw water otog of 1 degree and raw water properties (toxic substances, etc.). The reaction vessel becomes too large due to the slow reaction rate.

〔発明が解決しようとする課題] 前記したように従来技術ではH2O□を除去するのに過
大な設備や高価な薬品が必要であった。
[Problems to be Solved by the Invention] As described above, in the conventional technology, excessive equipment and expensive chemicals were required to remove H2O□.

本発明はHgo□を容易にかつ低コストで完全に除去す
る方法を提供することを解決課題とする。
An object of the present invention is to provide a method for completely removing Hgo□ easily and at low cost.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はH2O,含有被処理水をアルカリ剤でpH10
〜12に維持しつつエアレーションすることにより該H
20!を水と酸素に分解する脱H1Og工程、該脱Hz
Ot工程で脱HtOzされた該被処理水を液部とFe 
(OH) s主体の汚泥に分離する固液分離工程、およ
び該固液分離工程のFe(OH) 3主体の汚泥の一部
または全量を該脱hO□工程に返送する返送工程からな
ることを特徴とする過酸化水素の除去方法である。
In the present invention, the water to be treated containing H2O is adjusted to pH 10 using an alkaline agent.
By aerating while maintaining the H
20! The de-H1Og step decomposes into water and oxygen, the de-Hz
The treated water from which HtOz was removed in the Ot process is transferred to the liquid part and the Fe
(OH) It consists of a solid-liquid separation step in which the sludge is separated into s-based sludge, and a return step in which part or all of the Fe(OH) 3-based sludge from the solid-liquid separation step is returned to the de-HO□ step. This is a unique method for removing hydrogen peroxide.

即ち、本発明はエアレーションを行う脱H!08工程と
その後段の固液分離工程および返送工程で構成する。
That is, the present invention performs aeration to remove H! It consists of the 08 step, the subsequent solid-liquid separation step, and the return step.

脱HtOz工程のp)Iをアルカリ剤でpHl0〜12
に維持しつつエアレーションを行うと共にその後段の固
液分離工程で固液分離されたFe (OH) s主体の
汚泥の一部または全量を前記脱HtO□工程に返送する
ことによりH,0□の接触分解除去を行う。
p)I in the HtOz removal step is adjusted to pH 0 to 12 with an alkaline agent.
H,0□ is removed by performing aeration while maintaining the temperature at Perform catalytic decomposition removal.

本発明において、Fe (0)1) s主体の汚泥とは
Fe (0)1) xを主成分とする無機成分とそれ以
外の有機成分、例えば汚水成分であるCOD、色度等と
化合した難溶解性塩類、汚水中のSS、からなる汚泥を
意味する。ここで、該無機成分としては、Fe (O)
l) xの他、例えば、Al (OH) !、Mn (
OH) z等を含有してかまわない。
In the present invention, Fe (0) 1) s-based sludge is a mixture of inorganic components mainly composed of Fe (0) 1) x and other organic components, such as sewage components such as COD and chromaticity. It means sludge consisting of hardly soluble salts and SS in sewage. Here, the inorganic component is Fe (O)
l) In addition to x, for example, Al (OH)! , Mn (
OH) may contain z, etc.

脱H20,工程(エアレーション槽)の汚泥濃度はFe
 (OH) 3として500mg/ 1.以上、好まし
くは500+wg/l〜2000mg/ j!になるよ
うにその後段の固液分離工程の汚泥の一部または全量を
返送して調整する。
The sludge concentration in the deH20 process (aeration tank) is Fe
(OH) 500mg/1 as 3. Above, preferably 500+wg/l to 2000mg/j! Some or all of the sludge from the subsequent solid-liquid separation process is returned and adjusted so that

処理設備の試運転、本運転等の立ち上げ時には必要によ
り上記汚泥および/又は鉄塩(塩化第2鉄、硫酸第1鉄
、硫酸第2鉄、鉄イオンを含む廃水等)等を添加して脱
H20,工程が上記汚泥濃度になるように調整するのが
好ましいが、被処理水に鉄イオンが含有されていれば特
に添加する必要はない。
At the time of trial run or start-up of the treatment equipment, the above sludge and/or iron salts (ferric chloride, ferrous sulfate, ferric sulfate, wastewater containing iron ions, etc.), etc. are added as necessary to remove the water. It is preferable to adjust the H20 step so that the sludge concentration is as described above, but if the water to be treated contains iron ions, it is not necessary to add iron ions.

本発明における固液分離工程の固液分離手段としては、
沈殿池等を利用する自然沈降、tlFlll等による膜
分離等が挙げられ、被処理水の種類、処理目的に応じて
適宜選択できる。
As the solid-liquid separation means in the solid-liquid separation step in the present invention,
Examples include natural sedimentation using a sedimentation tank or the like, membrane separation using tlFlll, etc., and can be selected as appropriate depending on the type of water to be treated and the purpose of treatment.

次にアルカリ剤を加えてpH10〜12に調整しつつエ
アレーションを行いHzOtを水と酸素に接触分解させ
る。
Next, an alkaline agent is added to adjust the pH to 10 to 12 while aeration is performed to catalytically decompose HzOt into water and oxygen.

11.0□の分解反応式は次の通り。The decomposition reaction formula for 11.0□ is as follows.

21120、→2Hio +o、↑ アルカリ剤はNaOH,NazCOs+ Ca(011
)z等、いずれのアルカリ剤でも使用できるが難溶解性
塩によるCOD除去が期待できることや価格面よりCa
 (OH) zの使用が望ましい。
21120, →2Hio +o, ↑ Alkaline agents include NaOH, NazCOs+ Ca (011
Although any alkaline agent can be used, such as Ca
(OH) It is preferable to use z.

エアレーシッン時間は15分〜60分で良い。Air racing time may be 15 to 60 minutes.

空気量は単位槽容量、単位時間当り30〜3001/−
3・分が良い。
The amount of air is 30 to 3001/- per unit tank capacity and unit time.
3 minutes is good.

以下、本発明の一実施態様を第1図のフローチャートを
参照して説明する。
Hereinafter, one embodiment of the present invention will be described with reference to the flowchart of FIG.

フェントン処理等により生じた廃水のH!08含有水1
は、まず、脱H!08工程のエアレーシッン槽2に移送
され、ここで、散気設備5からの空気により本発明の該
Fe(OH)を主体の汚泥とH2O2とを接触反応させ
てutotをHtOと08に分解する。該エアレーショ
ン槽2はアルカリ剤Ca (ON) tを含有し槽内の
piを該所定の値to−12に保持している。エアレー
ション槽2から排出された処理液は、必要により凝集槽
3に送られ、高分子凝集剤と処理液とを攪拌機4により
混合し、脱I18島工程でLOzが分解された処理液は
、固液分離工程の沈殿池7にて液部りとFe(Oll)
s主体の汚泥Sに分離し、該汚泥Sは返送汚泥ポンプ8
により返送管6を通じて脱HxOt工程ヘリサイクルさ
れる。一方、余剰な汚泥Sは排泥管9により排出される
。又、液部りは中和槽10に送られH,SO,等により
中和され処理水11となる。処理水11はそのまま放流
されるか、更に別の図示していない処理工程へ回される
H! of wastewater generated from Fenton treatment, etc. 08 containing water 1
Well, first of all, get rid of sex! The sludge is transferred to the air lacing tank 2 in the 08 step, where the Fe(OH)-based sludge of the present invention and H2O2 are brought into contact reaction with the air from the aeration equipment 5 to decompose utot into HtO and 08. The aeration tank 2 contains an alkaline agent Ca (ON) t to maintain pi in the tank at the predetermined value to-12. The treated liquid discharged from the aeration tank 2 is sent to the flocculation tank 3 if necessary, and the polymer flocculant and the treated liquid are mixed by the stirrer 4. In the settling tank 7 of the liquid separation process, the liquid part and Fe (Oll)
The sludge S is separated into sludge S mainly composed of
It is recycled to the HxOt removal process through the return pipe 6. On the other hand, excess sludge S is discharged through the sludge pipe 9. Further, the liquid portion is sent to a neutralization tank 10, where it is neutralized with H, SO, etc., and becomes treated water 11. The treated water 11 is either discharged as is or sent to another treatment step (not shown).

〔実施例〕〔Example〕

(実施例−1) 本発明を実施例を用いて説明するが、本発明はこれに限
定されるものではない。
(Example-1) The present invention will be explained using Examples, but the present invention is not limited thereto.

本発明の実施例に使用した廃水は冷間圧延スラッジの浸
出水でその性状は次の通りである。
The wastewater used in the examples of the present invention was leachate of cold-rolled sludge, and its properties were as follows.

上記廃水を次に示す処理条件でフェントン処理した。The above wastewater was subjected to Fenton treatment under the following treatment conditions.

上記処理条件で得られたフェントン処理水に試薬のH7
0□を加えてhO□濃度を200pp−に調整後、pH
によるH2O2除去性能を試験した。
The reagent H7 was added to the Fenton-treated water obtained under the above treatment conditions.
After adjusting the hO□ concentration to 200 pp- by adding 0□, the pH
The H2O2 removal performance was tested.

試験条件は次の通りである。The test conditions are as follows.

第2図に結果を示す。Figure 2 shows the results.

H20□除去のための至適puは10以上であった。The optimal pu for H20□ removal was 10 or more.

(実施例−2) 実施例−1のフェントン処理水に試薬のH2O2を加え
てHzOt濃度を200ppmに調整したものを11用
意した。
(Example-2) 11 samples were prepared by adding H2O2 as a reagent to the Fenton-treated water of Example-1 to adjust the HzOt concentration to 200 ppm.

これに実施例−1で沈殿分離された汚泥をFe (OH
) s濃度として各々200〜2000ppmになるよ
うに加えてCa (Oil) zでpH11,0〜11
.2に維持しつつ通気量毎分0.21で30分間エアレ
ージジンした。
Fe (OH
) s concentration to be 200 to 2000 ppm each, and Ca (Oil) z to pH 11.0 to 11.
.. Airing was carried out for 30 minutes at an air flow rate of 0.21 per minute while maintaining the air flow rate at 0.2.

第3図に結果を示す。The results are shown in Figure 3.

Fe (OH) sとしてsooppm以上、混合槽に
汚泥として存在すると残留■zotの除去性能は非常に
良かった。
When sooppm or more of Fe (OH) s was present in the mixing tank as sludge, the removal performance of residual ■zot was very good.

(実施例−3) 実施例−1で沈殿分離された汚泥をFe(OIl)i濃
度として500.11000ppになるように加えて実
施例−2と同様に試験してエアレーシッン時間を調べた
(Example 3) The sludge precipitated and separated in Example 1 was added so that the Fe(OIl)i concentration was 500.11000 pp, and tested in the same manner as in Example 2 to examine the air lacing time.

第4図に結果を示す。Figure 4 shows the results.

Fe(OR)x 500pp−ならエアレーション時間
は30分、11000ppなら15分で残留H20、が
分解除去できた。
For Fe(OR)x 500pp-, the aeration time was 30 minutes, and for 11000pp, residual H20 could be decomposed and removed in 15 minutes.

(実施例−4) NzO* 200pp−を含有する水溶液、11にre
 (OR) sとして1000pps+になるようにF
eC1,を添加してCa (OR) zでpH11,o
に調整した。
(Example-4) Aqueous solution containing 200 pp- of NzO*, re
(OR) F to be 1000pps+ as s
Add eC1, and adjust pH to 11,o with Ca (OR) z.
Adjusted to.

通気量毎分0.22で30分間エアレージジンすると処
理水のIl*Ot濃度は1 pps+以下になった。
When aeration was performed for 30 minutes at an aeration rate of 0.22 per minute, the Il*Ot concentration of the treated water became 1 pps+ or less.

(実施例−5) Hoot  200ppmを含有する水溶液12に実施
例4で沈降分離した汚泥を全量添加し、Ca (OH)
 *でpH11,0に調整した。
(Example-5) The entire amount of the sludge separated by sedimentation in Example 4 was added to the aqueous solution 12 containing 200 ppm of Hoot, and Ca (OH)
*The pH was adjusted to 11.0.

実施例4と同様にエアレーションすると処理水のHzO
t濃度はlppm1以下であった。
When aerated in the same manner as in Example 4, the HzO of the treated water
The t concentration was less than lppm1.

(実施例−6) 実施例−5で沈降分離した汚泥を用い、実施例−5と同
様に試験すると処理水の11zOti11度は1ρp■
以下であった。
(Example 6) Using the sludge that was sedimented and separated in Example 5, a test was conducted in the same manner as in Example 5. 11zOti11 degrees of the treated water was 1ρp■
It was below.

実施例4〜6の結果を第5図〜第7図に示す。The results of Examples 4 to 6 are shown in FIGS. 5 to 7.

〔発明の効果〕〔Effect of the invention〕

本発明は脱l(!Ot工程に後段の分離汚泥を戻すこと
によって ■ 短時間に完全な11□0□除去が可能。
The present invention enables complete removal of 11□0□ in a short time by returning the separated sludge in the latter stage to the de-l removal (!Ot process).

■ 残留H2O2濃度の変動に対して対応が容易。■ Easily responds to fluctuations in residual H2O2 concentration.

■ 運転管理が容易。■ Easy operation management.

本発明は従来法に比べて残留HtChを容易にかつ完全
、低コストで除去する方法を提供することができる。
The present invention can provide a method for removing residual HtCh more easily, completely, and at lower cost than conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の処理フローシートの一例を示す図、第
2図〜第7図は本発明の実施例1〜実施例6に各々に対
応する結果を示すグラフである。 第8図は活性炭を用いた従来法の一例を示す。 符号の説明 1:)lzo、含有水、 2:脱H2O2工程のエアレーション槽、3:凝集槽、
 4;攪拌機、 散気設備、 沈殿汚泥Sの返送管、 固液分離工程の沈殿池、 返送汚泥ポンプ、 9:排泥管、 中和槽、     11:処理水、 第1活性炭塔、  13:第2活性炭塔、Fe (OH
) s主体の汚泥、 L:液部。 (ばか3名) 第  2  図 PH(−) 第  1 図 1:丸O令肩水 3: ン騒、墳ttrt 5、を気録A 7;I!IJ今讐工1−波灘氾 9・抑泡1 11゛処狸大 し、涜i! 2:flLt%O□工%l#Ilγレーン、ン埼4、ギ
tキを−1 6攪M汚泥!遁直〒 8:VL凍8堤ボ′:J7゜ 10、”? %Q埼 S、F七(oH)、1休−汚泥 第  3 図 第 Fa(DH>z (PP啼−ン 図 エアレーンーン哨q司(4+) 第 5 図 第 図 第 第 図 1:l−1,0,令肩本 槽特梅 10漕ち榎 1 処a号永 12゛wA1:tI)t、l 5jL 13樋21竹及寿
FIG. 1 is a diagram showing an example of a processing flow sheet of the present invention, and FIGS. 2 to 7 are graphs showing results corresponding to Examples 1 to 6 of the present invention, respectively. FIG. 8 shows an example of a conventional method using activated carbon. Explanation of symbols 1:) lzo, contained water, 2: Aeration tank for deH2O2 process, 3: Coagulation tank,
4: Stirrer, aeration equipment, return pipe for settled sludge S, settling tank for solid-liquid separation process, return sludge pump, 9: Sludge pipe, neutralization tank, 11: Treated water, 1st activated carbon tower, 13: 1st 2 activated carbon towers, Fe (OH
) s-based sludge, L: liquid part. (3 idiots) 2nd figure PH (-) 1st figure 1: Maru Orei shoulder water 3: Noisy, mound ttrt 5, wo kiroku A 7;I! IJ now enemy work 1 - wave flood 9, bubble control 1 11゛It's a raccoon big, sacrilege! 2:flLt%O□工%l#Ilγ Lane, Nsai 4, Gitki -1 6 Stir M sludge! 8: VL frozen 8th embankment: J7゜10, %Q S, F7 (oH), 1st rest - sludge Figure 3 Fa (DH>z (PP sound diagram Air lane guard) q Tsukasa (4+) Fig. 5 Fig. Fig. Fig. 1: l-1, 0, Rei shoulder main tank special plum 10 rowing Enoki 1 place a No. 12゛ wA1: tI) t, l 5jL 13 gutter 21 bamboo longevity

Claims (1)

【特許請求の範囲】[Claims] H_2O_2含有被処理水をアルカリ剤でpH10〜1
2に維持しつつエアレーションすることにより該H_2
O_2を水と酸素に分解する脱H_2O_2工程、該脱
H_2O_2工程で脱H_2O_2された該被処理水を
液部とFe(OH)_3主体の汚泥に分離する固液分離
工程、および該固液分離工程のFe(OH)_3主体の
汚泥の一部または全量を該脱H_2O_2工程に返送す
る返送工程からなることを特徴とする過酸化水素の除去
方法。
The pH of the water to be treated containing H_2O_2 is adjusted to 10 to 1 using an alkaline agent.
By aerating while maintaining the H_2
A de-H_2O_2 step in which O_2 is decomposed into water and oxygen, a solid-liquid separation step in which the water to be treated that has been de-H_2O_2 in the de-H_2O_2 step is separated into a liquid part and sludge mainly composed of Fe(OH)_3, and the solid-liquid separation. A method for removing hydrogen peroxide, comprising a return step of returning part or all of Fe(OH)_3-based sludge from the process to the H_2O_2 removal step.
JP1182588A 1989-07-17 1989-07-17 How to remove hydrogen peroxide Expired - Fee Related JPH0696144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1182588A JPH0696144B2 (en) 1989-07-17 1989-07-17 How to remove hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1182588A JPH0696144B2 (en) 1989-07-17 1989-07-17 How to remove hydrogen peroxide

Publications (2)

Publication Number Publication Date
JPH0347592A true JPH0347592A (en) 1991-02-28
JPH0696144B2 JPH0696144B2 (en) 1994-11-30

Family

ID=16120918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1182588A Expired - Fee Related JPH0696144B2 (en) 1989-07-17 1989-07-17 How to remove hydrogen peroxide

Country Status (1)

Country Link
JP (1) JPH0696144B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707868A1 (en) * 1993-03-30 1996-04-24 Bovar Inc. Chemical destruction of toxic organic agent
JP2002172384A (en) * 2000-12-05 2002-06-18 Kurita Water Ind Ltd Method for treating waste water containing ammonia and hydrogen peroxide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112556A (en) * 1978-02-22 1979-09-03 Kankyo Eng Disposal method of organic waste water
JPS5528720A (en) * 1978-08-22 1980-02-29 Sankyo Yuki Kk Method and apparatus for treatment of liquid waste matter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112556A (en) * 1978-02-22 1979-09-03 Kankyo Eng Disposal method of organic waste water
JPS5528720A (en) * 1978-08-22 1980-02-29 Sankyo Yuki Kk Method and apparatus for treatment of liquid waste matter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707868A1 (en) * 1993-03-30 1996-04-24 Bovar Inc. Chemical destruction of toxic organic agent
JP2002172384A (en) * 2000-12-05 2002-06-18 Kurita Water Ind Ltd Method for treating waste water containing ammonia and hydrogen peroxide
JP4524525B2 (en) * 2000-12-05 2010-08-18 栗田工業株式会社 Method for treating wastewater containing ammonia and hydrogen peroxide

Also Published As

Publication number Publication date
JPH0696144B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
US11377374B2 (en) System and process for treating water
WO2000073220A1 (en) A disposal method for pig ordure
JP3793937B2 (en) Silicon wafer polishing wastewater treatment method
CN113184972B (en) Method for removing organic pollutants in wastewater by sequencing batch reaction
JPH0347592A (en) Removal of hydrogen peroxide
JP3642516B2 (en) Method and apparatus for removing COD components in water
JP4639309B2 (en) Treatment method of wastewater containing cyanide
CN211644870U (en) Device for treating low-concentration COD wastewater
JPS5930153B2 (en) Treatment method for wastewater containing sterilization/disinfectant
JP2005185967A (en) Treatment method and treatment apparatus for organic waste water
JP2001259688A (en) Waste liquid treating method
JP4049711B2 (en) Wastewater treatment method including ethylene carbonate
JPH0141110B2 (en)
CN216584651U (en) High concentration chemical industry effluent disposal system of high-efficient stable coupling technique
JP2002292399A (en) Organic wastewater disposal equipment
CN211847590U (en) Cyanide-containing wastewater treatment system is smelted to gold
CN212425808U (en) System for high-efficient domestic sewage that purifies
JP2002018485A (en) Method for treating metal-containing wastewater and method for recovery of valence metal from the metal- containing wastewater
JPH0314519B2 (en)
CN117023904A (en) Method for treating sulfur-containing wastewater of oil and gas field
JPS59186696A (en) Treatment of waste water
JPS606718B2 (en) Wastewater treatment method
JP4096372B2 (en) Paper pulp wastewater treatment method and treatment equipment
KR19980043481A (en) Hardly degradable organic material treatment method
TWM582501U (en) Wastewater treatment system for integrating chemical oxidation and reduction, advanced oxidation and biofilm filtration

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees