JPH0347457B2 - - Google Patents

Info

Publication number
JPH0347457B2
JPH0347457B2 JP1075984A JP1075984A JPH0347457B2 JP H0347457 B2 JPH0347457 B2 JP H0347457B2 JP 1075984 A JP1075984 A JP 1075984A JP 1075984 A JP1075984 A JP 1075984A JP H0347457 B2 JPH0347457 B2 JP H0347457B2
Authority
JP
Japan
Prior art keywords
reaction tank
cod
automatic
measuring instrument
titration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1075984A
Other languages
Japanese (ja)
Other versions
JPS60154151A (en
Inventor
Shigehiko Sakaki
Yasunori Suga
Masaru Shiozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP1075984A priority Critical patent/JPS60154151A/en
Publication of JPS60154151A publication Critical patent/JPS60154151A/en
Publication of JPH0347457B2 publication Critical patent/JPH0347457B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1806Water biological or chemical oxygen demand (BOD or COD)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、故障個所を簡単迅速に見分けうると
共に、その定期点検の際の監視作業を大幅に軽減
することのできる化学的酸素要求量(以下COD
という)自動計測器の使用方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention provides a system for detecting chemical oxygen demand (chemical oxygen demand) that enables easy and quick identification of failure locations and greatly reduces monitoring work during periodic inspections. COD below
This is related to how to use automatic measuring instruments.

(従来の技術) COD自動計測器は、水質の一指標としての
CODを常時把握する重要な手段として、工場や
下水処理場において汎用されている。
(Conventional technology) COD automatic measuring instruments are used as an indicator of water quality.
It is widely used in factories and sewage treatment plants as an important means of constantly monitoring COD.

COD自動計測器は、その方式、メーカー等に
より多種多様のものがあるが、一般に、試料の計
量取り込み機構、PH調整のための試薬の計量取り
込み機構、酸化剤の計量取り込み機構、還元剤の
計量取り込み機構、反応槽、加熱機構、滴定機
構、洗浄機構、反応槽からの液の排出機構等から
なり、これらが所定のシーケンスに従つて作動す
る複雑かつ精巧な自動分析計器である。そして滴
定機構には、通常終点検知センサーとして酸化還
元電位差(以下ORPという)計が組み込まれて
いる。
There are a wide variety of COD automatic measuring instruments depending on their methods and manufacturers, but in general, they include a sample measurement/intake mechanism, a reagent measurement/intake mechanism for pH adjustment, an oxidizing agent measurement/intake mechanism, and a reducing agent measurement/intake mechanism. It is a complex and sophisticated automatic analysis instrument that consists of an intake mechanism, a reaction tank, a heating mechanism, a titration mechanism, a cleaning mechanism, a mechanism for discharging liquid from the reaction tank, etc., and operates according to a predetermined sequence. The titration mechanism usually incorporates an oxidation-reduction potential difference (hereinafter referred to as ORP) meter as an end point detection sensor.

(発明が解決しようとする課題) COD自動計測器は、このように複雑かつ精巧
な計器であり、正常に稼動している限りにおいて
は非常に便利な計器であるが、反面、これが正常
に稼動するように日常の保守管理に費す時間と労
力は多大のものとなつており、たとえば、定期点
検の際、工程通りにシーケンスが作動するかを確
認するだけでも約1時間をかけて監視しなければ
ならなかつた。また、この計測器が異常を来たし
ても、計測器のどの部分に故障が生じてそうなつ
たのか知ることは熟練者でもかなりの時間を要
し、ましてや未熟練者においてはそう簡単になし
うることではなかつた。そして計器が正常に復す
るまでの間は水質の把握ができないわけであり、
いかに迅速に故障原因を究明して必要な対策を施
すかは、当業者が常に苦慮しているところであつ
た。
(Problem to be solved by the invention) The COD automatic measuring instrument is such a complex and sophisticated instrument, and it is a very convenient instrument as long as it is operating normally. As a result, a large amount of time and effort is spent on daily maintenance management.For example, during regular inspections, it takes about an hour to monitor and check that the sequence is operating according to the schedule. I had to. Furthermore, even if this measuring instrument malfunctions, it would take a considerable amount of time even for an experienced person to figure out which part of the measuring instrument caused the failure, and it would be difficult for an unskilled person to know. That wasn't the case. The water quality cannot be determined until the meter returns to normal.
Those skilled in the art have always struggled with how to quickly determine the cause of failure and take necessary measures.

本発明は、従来のCOD自動計測器の持つ上述
の問題を解決すべく鋭意検討した結果到達したも
のであり、故障個所を簡単迅速に見分けうると共
に、その定期点検の際の監視作業を大幅に軽減す
ることのできるCOD自動計測器の使用方法を提
供することを目的とするものである。
The present invention was arrived at as a result of intensive study to solve the above-mentioned problems of conventional COD automatic measuring instruments.It not only allows for easy and quick identification of failure points, but also greatly reduces the monitoring work required during periodic inspections. The purpose is to provide a method of using an automatic COD measuring device that can reduce the amount of COD.

(課題を解決するための手段) 本発明の化学的酸素要求量(COD)自動計測
器の使用方法は、 試料の計量取り込み機構、必要試薬の計量取り
込み機構、反応槽、加熱機構、滴定量終点検知セ
ンサーとしての酸化還元電位差(ORP)計を組
み込んだ滴定機構、洗浄機構、液排出機構を備
え、かつ、前記反応槽内に前記酸化還元電位差計
(ORP)の電極と比較電極および液排出パイプを
配置した化学的酸素要求量(COD)自動計測器
を使用し、 前記酸化還元電位差(ORP)計の電極および
比較電極の先端の位置を、前記反応槽の底部まで
挿入されている液排出パイプの先端と同レベルに
設定して、試料の計量取り込みから反応槽の洗浄
水排出完了に至る化学的酸素要求量(COD)自
動計測サイクルの全工程にわたつて酸化還元電位
差(ORP)を自動測定すると共に、得られた記
録のパターンを予め求めてある正常時、異常時の
パターンと対比して、前記自動計測器の作動状態
を把握することを特徴とするものである。
(Means for Solving the Problems) The method of using the automatic chemical oxygen demand (COD) measuring instrument of the present invention includes: a sample measurement mechanism, a necessary reagent measurement mechanism, a reaction tank, a heating mechanism, and a titration end point. It is equipped with a titration mechanism incorporating an oxidation-reduction potentiometer (ORP) meter as a detection sensor, a cleaning mechanism, and a liquid discharge mechanism, and an electrode of the oxidation-reduction potentiometer (ORP), a reference electrode, and a liquid discharge pipe are provided in the reaction tank. Using an automatic chemical oxygen demand (COD) meter placed with Automatically measures the oxidation-reduction potential difference (ORP) during the entire automatic chemical oxygen demand (COD) measurement cycle, from sample measurement to completion of washing water discharge from the reaction tank. At the same time, the operating state of the automatic measuring device is grasped by comparing the obtained recording pattern with patterns of normal and abnormal times determined in advance.

以下本発明を詳細に説明する。 The present invention will be explained in detail below.

先に述べた通り、COD自動計測器には滴定量
の終点検知センサーとしてORP計が使用されて
いるが、本発明者らはこのORP計の電極および
比較電極の先端の位置に着目した。
As mentioned above, an ORP meter is used in the COD automatic measuring device as a sensor for detecting the end point of titration, and the present inventors focused on the positions of the tips of the electrode and reference electrode of this ORP meter.

すなわち、ORP計の電極および比較電極は、
その使用目的からしてその先端が反応槽内の液の
ほぼ中央部に位置するように装着されているのが
普通であるが、本発明者らはこれらを意識的に、
反応槽底部まで挿入されている液排出パイプの先
端と同レベルにまで調整して位置させ、反応槽内
に液が存在している間中、つまり試料の計量取り
込みから反応槽の洗浄水排出完了までの間、電極
および比較電極の先端が絶えず反応槽内の液に触
れるようにし、これによつてCOD自動計測サイ
クルの全工程にわたつて反応槽内容物のORPを
自動記録できるようにした。なお、本発明者ら
は、上記のように電極および比較電極の先端の位
置を変更しても、電極および比較電極の本来の使
用目的(滴定量の終点検知)にとつて何の支障も
生じないことを確認している。
In other words, the electrodes and reference electrodes of the ORP meter are
Considering its intended use, it is normally installed so that its tip is located approximately in the center of the liquid in the reaction tank, but the inventors intentionally
Adjust and position the pipe to the same level as the tip of the liquid discharge pipe that has been inserted to the bottom of the reaction tank, and use it for the entire time that the liquid is present in the reaction tank, that is, from the measurement of the sample to the completion of draining the washing water from the reaction tank. Until then, the tips of the electrodes and reference electrodes were kept in constant contact with the liquid in the reaction tank, thereby making it possible to automatically record the ORP of the reaction tank contents throughout the entire COD automatic measurement cycle. The inventors have determined that even if the positions of the tips of the electrode and reference electrode are changed as described above, there will be no hindrance to the original purpose of use of the electrode and reference electrode (detection of the end point of titration). We have confirmed that there are no.

かくして得られる自動記録は、上記COD自動
計測器が正常か異常かの判定並びに故障個所の究
明のための有力な情報として、有効に活用するこ
とができる。すなわち、該COD自動計測器が正
常であれば、ORPの自動記録はある一定のパタ
ーンを描き、COD計測サイクルの中のどれかの
工程に異常があれば、その異常に応じ正常時とは
異つた特有のパターンを描くので、得られたパタ
ーンを予め求めてある正常時、異常時のパターン
と対比すれば、COD自動計測器が正常に稼動し
ているかどうか、異常の場合は故障個所はどこか
の判断が、熟練者でなくても直ちになしうるわけ
である。
The automatic records thus obtained can be effectively utilized as powerful information for determining whether the COD automatic measuring device is normal or abnormal and for investigating the location of failure. In other words, if the automatic COD measuring device is normal, the automatic recording of ORP will draw a certain pattern, and if there is an abnormality in any process in the COD measurement cycle, it will be different from normal depending on the abnormality. Since it draws a pattern unique to each type of ivy, by comparing the obtained pattern with the pre-determined normal and abnormal patterns, you can check whether the COD automatic measuring instrument is operating normally, and if it is abnormal, where the failure is. This judgment can be made immediately even by non-experts.

ORPの自動記録は、COD自動計測器のORP出
力を別個の記録計に接続することにより簡単に得
られるし、COD自動計測器に装備されている
COD記録計をORP用記録計として切り換え使用
することも可能である。
Automated recording of ORP is easily obtained by connecting the ORP output of the COD autometer to a separate recorder, which is included in the COD autometer.
It is also possible to switch and use the COD recorder as an ORP recorder.

(実施例) 次に実施例をあげて本発明をさらに説明する。(Example) Next, the present invention will be further explained with reference to Examples.

実施例 第1図に示したように、株式会社堀場製作所製
COD A−112型計測器のORP計のPt電極12お
よび比較電極13の位置を給排出パイプ14の先
端と同レベルXに調整した。この排出パイプ14
は液の仕込みにも共用されるものである。なお第
1図中、11は反応槽、Yは通常の電極先端のレ
ベルである。
Example As shown in Fig. 1, manufactured by Horiba, Ltd.
The positions of the Pt electrode 12 and the reference electrode 13 of the ORP meter of the COD A-112 type measuring instrument were adjusted to the same level X as the tip of the supply/discharge pipe 14. This discharge pipe 14
is also used for preparing liquid. In FIG. 1, 11 is a reaction tank, and Y is the level of a normal electrode tip.

このように電極12および比較電極13先端の
位置を調整したCOD A−112型計測器を用いて、
ある排水のCODの自動計測を行つた。第2図は
このCOD計測器による測定工程例を示した工程
図であり、図中の数字は次の操作を意味する。
Using the COD A-112 type measuring instrument with the positions of the tips of the electrode 12 and reference electrode 13 adjusted in this way,
We carried out automatic measurement of COD of certain wastewater. FIG. 2 is a process diagram showing an example of the measurement process using this COD measuring instrument, and the numbers in the figure mean the following operations.

1 試料100ml添加 2 NaOH(2%)10ml添加 3 KMnO4(1/40N)10ml添加 4 沸騰水浴30分 5 Na2C2O4(1/40N)+H2SO4(1+2)+
MnSO410ml添加 6 KMnO4(1/40N)による滴定、ORPによ
る滴定量の終点検知 7 反応液排出および洗浄 第3図は上記第2図の工程に対応するORP指
示の経時変化を示したグラフであり、計測器が正
常に作動している場合には、ORPの自動記録は
概ねこの第3図のようなパターンの繰り返しとな
る。図中の数字は上記工程図に用いた数字と対応
する。
1 Add 100ml of sample 2 Add 10ml of NaOH (2%) 3 Add 10ml of KMnO 4 (1/40N) 4 Boiling water bath for 30 minutes 5 Na 2 C 2 O 4 (1/40N) + H 2 SO 4 (1 + 2) +
Addition of 10 ml of MnSO 4 6 Titration with KMnO 4 (1/40N), detection of end point of titration by ORP 7 Discharge and washing of reaction solution Figure 3 is a graph showing changes over time in ORP instructions corresponding to the process in Figure 2 above If the measuring instrument is operating normally, the automatic recording of ORP will generally repeat the pattern shown in Figure 3. The numbers in the figure correspond to the numbers used in the process diagram above.

これに対し、工程のいずれかに異常が生じた場
合には、正常時(第3図)とは異なるパターンが
得られる。第4〜9図は異常時のパターンの例を
示したものであり、たとえば、試料が反応槽に入
らなかつた場合は第4図、PH調整用のNaOH試
薬が入らなかつた場合は第5図、COD成分を酸
化するために一定過剰量加えるべくKMnO4試薬
の供給がなされなかつた場合は第6図、反応槽内
に残存しているKMnO4を還元するために一定過
剰量加えるNa2C2O4試薬の供給がなされなかつ
た場合は第7図、反応槽内に残存している
Na2C2O4の過剰量のKMnO4試薬による滴定がな
されない場合は第8図、ドレン(洗浄残液)が半
分しか排出されない場合は第9図と、それぞれ特
徴のあるパターンが描かれる。
On the other hand, if an abnormality occurs in any of the steps, a pattern different from the normal state (FIG. 3) will be obtained. Figures 4 to 9 show examples of patterns in abnormal situations. For example, Figure 4 shows a case where the sample does not enter the reaction tank, and Figure 5 shows a case where the NaOH reagent for pH adjustment does not enter the reaction tank. , if the KMnO 4 reagent is not supplied in a constant excess amount to oxidize the COD component, then in Figure 6, a constant excess amount of Na 2 C is added to reduce the KMnO 4 remaining in the reaction tank. If the 2 O 4 reagent is not supplied, it will remain in the reaction tank as shown in Figure 7.
Figure 8 shows a case where an excessive amount of Na 2 C 2 O 4 is not titrated with the KMnO 4 reagent, and Figure 9 shows a case where only half of the drain (residual liquid from cleaning) is discharged, each with its own characteristic pattern. .

従つて、このORPの自動記録のパターンを見
ることによつて、簡単かつ迅速にCOD自動計測
器のサイクルのどの部分に問題があるのかを見分
けることができる。
Therefore, by looking at the pattern of this ORP automatic recording, it is possible to easily and quickly identify which part of the COD automatic measuring instrument's cycle is having a problem.

なお、上記実施例では株式会社堀場製作所製
COD A−112型計測器を用いたが、滴定量の終
点検知センサーにORP計を使用しているCOD自
動計測器であればどの形式のものにも適用できる
ものである。
In addition, in the above example, the product manufactured by Horiba, Ltd.
Although a COD A-112 type measuring instrument was used, any type of COD automatic measuring instrument that uses an ORP meter as the titration end point detection sensor can be applied.

(発明の効果) 本発明においては、COD自動計測器の滴定量
終点検知センサーとして使用されているORP計
の電極および比較電極の先端の位置を、反応槽の
液排出パイプの先端とレベルを合わせるように調
整し、COD自動計測サイクルの全工程にわたつ
て反応槽内容物のORPを自動記録し、そのパタ
ーンを活用したことにより、次に列挙するような
すぐれた効果が奏される。
(Effect of the invention) In the present invention, the positions of the tips of the electrode and reference electrode of the ORP meter used as the titration end point detection sensor of the automatic COD measuring device are aligned with the tip of the liquid discharge pipe of the reaction tank. By making the following adjustments, automatically recording the ORP of the reaction tank contents throughout the entire process of the automatic COD measurement cycle, and utilizing that pattern, the excellent effects listed below can be achieved.

COD自動計測器の故障個所の究明が簡単か
つ迅速にできるようになる。
It becomes possible to easily and quickly identify the failure location of COD automatic measuring instruments.

日常の定期点検補修のための時間と労力を大
幅に軽減しうる。
The time and effort required for routine daily inspections and repairs can be significantly reduced.

COD自動計測器の稼動率が向上する。 The operating rate of COD automatic measuring instruments will improve.

従つて本発明は、従来市販されているCOD自
動計測器に簡単な改良を加えるだけのものであり
ながら、上記のようなすぐれた効果を奏するの
で、実用的価値が極めて大きい。
Therefore, the present invention has extremely great practical value because it produces the above-mentioned excellent effects even though it is a simple improvement to the conventional COD automatic measuring device on the market.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCOD計測器の反応槽の部分を示した
説明図である。第2図はCOD計測器による測定
工程例を示した工程図である。第3図は上記第2
図の工程に対応するORP指示の経時変化を示し
たグラフで、計測器が正常に作動している場合で
ある。第4〜9図は工程のいずれかに異常が生じ
た場合のORP指示の経時変化を示したグラフで
あり、第4図は試料が入らない場合、第5図は
NaOH試薬が入らない場合、第6図はKMnO4
薬が入らない場合、第7図はNa2C2O4試薬が入
らない場合、第8図は滴定しない場合、第9図は
ドレンが半分しか抜けない場合である。 11……反応槽、12……Pt電極、13……
比較電極、14……給排出パイプ、X……調整後
のレベル、Y……調整前のレベル。
FIG. 1 is an explanatory diagram showing the reaction tank portion of the COD measuring instrument. FIG. 2 is a process diagram showing an example of a measurement process using a COD measuring instrument. Figure 3 is the second figure above.
This is a graph showing the change over time in the ORP instruction corresponding to the process shown in the figure, when the measuring instrument is operating normally. Figures 4 to 9 are graphs showing the changes in ORP instructions over time when an abnormality occurs in any of the processes. Figure 4 is when the sample does not enter, Figure 5 is
When the NaOH reagent is not included, Figure 6 is when the KMnO 4 reagent is not included, Figure 7 is when the Na 2 C 2 O 4 reagent is not included, Figure 8 is when the titration is not performed, and Figure 9 is when the drain is half filled. This is a case where there is no way out. 11... Reaction tank, 12... Pt electrode, 13...
Reference electrode, 14... Supply/discharge pipe, X... Level after adjustment, Y... Level before adjustment.

Claims (1)

【特許請求の範囲】 1 試料の計量取り込み機構、必要試薬の計量取
り込み機構、反応槽、加熱機構、滴定量終点検知
センサーとしての酸化還元電位差計を組み込んだ
滴定機構、洗浄機構、液排出機構を備え、かつ、
前記反応槽内に前記酸化還元電位差計の電極と比
較電極および液排出パイプを配置した化学的酸素
要求量自動計測器を使用し、 前記酸化還元電位差計の電極および比較電極の
先端の位置を、前記反応槽の底部まで挿入されて
いる液排出パイプの先端と同レベルに設定して、
試料の計量取り込みから反応槽の洗浄水排出完了
に至る化学的酸素要求量自動計測サイクルの全工
程にわたつて酸化還元電位差を自動測定すると共
に、得られた記録のパターンを予め求めてある正
常時、異常時のパターンと対比して、前記自動計
測器の作動状態を把握することを特徴とする化学
的酸素要求量自動計測器の使用方法。
[Scope of Claims] 1. A mechanism for measuring and taking in a sample, a mechanism for measuring and taking in necessary reagents, a reaction tank, a heating mechanism, a titration mechanism incorporating an oxidation-reduction potentiometer as a sensor for detecting the end point of titration, a cleaning mechanism, and a liquid discharge mechanism. Be prepared, and
Using an automatic chemical oxygen demand meter in which the electrodes of the redox potentiometer, the reference electrode, and the liquid discharge pipe are arranged in the reaction tank, the positions of the tips of the electrodes of the redox potentiometer and the reference electrode are determined, Set it at the same level as the tip of the liquid discharge pipe inserted to the bottom of the reaction tank,
The oxidation-reduction potential difference is automatically measured throughout the entire process of the automatic chemical oxygen demand measurement cycle, from the measurement of the sample to the completion of discharging the washing water from the reaction tank. . A method of using an automatic chemical oxygen demand measuring instrument, characterized in that the operating state of the automatic measuring instrument is grasped by comparing it with an abnormal pattern.
JP1075984A 1984-01-23 1984-01-23 Automatic measuring device for chemical oxygen demand and method for using said device Granted JPS60154151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1075984A JPS60154151A (en) 1984-01-23 1984-01-23 Automatic measuring device for chemical oxygen demand and method for using said device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1075984A JPS60154151A (en) 1984-01-23 1984-01-23 Automatic measuring device for chemical oxygen demand and method for using said device

Publications (2)

Publication Number Publication Date
JPS60154151A JPS60154151A (en) 1985-08-13
JPH0347457B2 true JPH0347457B2 (en) 1991-07-19

Family

ID=11759252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1075984A Granted JPS60154151A (en) 1984-01-23 1984-01-23 Automatic measuring device for chemical oxygen demand and method for using said device

Country Status (1)

Country Link
JP (1) JPS60154151A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102565277A (en) * 2011-12-23 2012-07-11 上海仪电科学仪器股份有限公司 Device special for measuring solution chemical oxygen demand (COD) value and use method thereof
JP5622063B1 (en) * 2013-11-05 2014-11-12 東亜ディーケーケー株式会社 Chemical oxygen consumption (COD) automatic measuring device

Also Published As

Publication number Publication date
JPS60154151A (en) 1985-08-13

Similar Documents

Publication Publication Date Title
EP0739485B1 (en) A method and apparatus for controlling the feed of water treatment chemicals using a voltammetric sensor
US4049382A (en) Total residual chlorine
US3839162A (en) Method and apparatus for the determination of the concentration of relevant ions in aqueous solutions
US4911891A (en) Sample monitoring instrument for on-line application
JPH1082761A (en) Method and apparatus for measuring residual chlorine, and probe for detecting residual chlorine
EP0469772B1 (en) Analysis of ferrous ion in circulating water
US6129831A (en) Hydrogen peroxide sensor
JPH0347457B2 (en)
Iranpour et al. Real time BOD monitoring for wastewater process control
EP0833149A1 (en) Method for measuring ion concentration
Sekerka et al. Simultaneous determination of total, non-carbonate and carbonate water hardnesses by direct potentiometry
JP2812460B2 (en) Blood purification monitoring device
JP2721024B2 (en) Method and apparatus for analyzing metal cleaning liquid
Lakin Chemical catalyst interference in the winkler titration determination of dissolved oxygen—a method for correction
Bond et al. Ion-selective electrode with microprocessor-based instrumentation for on-line monitoring of copper in plant electrolyte
JPH04329358A (en) Automatic starter for automatic analyzer
AU730153B2 (en) A method and apparatus for controlling the feed of water treatment chemicals using a voltammetric sensor
JPH0635952B2 (en) Residual chlorine meter with combined chlorine monitor function
JPH09174035A (en) Water quality control method of water treatment facilities
Jones et al. Instrumentation for Continuous Analysis
Maciak et al. Computerized technique in organic microelemental analysis: Part II. Automatic determination of sulfur in organic compounds
JPS588744B2 (en) Ammonia nitrogen analysis method in water
JPS622144A (en) Temperature titration method and apparatus
JPH0413658B2 (en)
Molof Discussion: ORP Measurement in Anaerobic Systems Using Flow-Through Cell