JPH0347266B2 - - Google Patents

Info

Publication number
JPH0347266B2
JPH0347266B2 JP58037953A JP3795383A JPH0347266B2 JP H0347266 B2 JPH0347266 B2 JP H0347266B2 JP 58037953 A JP58037953 A JP 58037953A JP 3795383 A JP3795383 A JP 3795383A JP H0347266 B2 JPH0347266 B2 JP H0347266B2
Authority
JP
Japan
Prior art keywords
isocyanate
isocyanurate
reaction
catalyst
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58037953A
Other languages
Japanese (ja)
Other versions
JPS59163357A (en
Inventor
Takehisa Nakanishi
Yoshio Imai
Takao Hitai
Takao Inukai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoue MTP KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue MTP KK filed Critical Inoue MTP KK
Priority to JP58037953A priority Critical patent/JPS59163357A/en
Publication of JPS59163357A publication Critical patent/JPS59163357A/en
Publication of JPH0347266B2 publication Critical patent/JPH0347266B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はイソシアヌレートフオーム原料として
用いられるイソシアネートの製造方法に関し、特
には精製、粗製ジフエニルメタンジイソシアネー
トあるいはポリメチレンポリフエニルイソシアネ
ート(MDIと称す)の部分的なイソシアヌレー
ト変性に関するものである。 従来イソシアヌレートフオームは断熱性の優れ
た断熱材として利用されており、その原料イソシ
アネートとしては粗製MDI、ポリメチレンポリ
フエニルイソシアネート等が使用されている。 しかしながらこれ等のイソシアネートは芳香核
がメチレン基で結合しているものであり耐熱性を
具えたハードセグメレトとしては充分ではない。 本発明者等はこれ等の性質を具え、且つフオー
ム発泡時の増粘が起り易い原料イソシアネートを
研究した結果、精製または粗製MDIまたはポリ
メチレンポリフエニルイソシアネートのイソシア
ネート基を部分的にイソシアヌレート化したイソ
シアネート(イソシアヌレート変性イソシアネー
トまたは単に変性イソシアネートと称す)が、第
三級アルキルアミン構造を有する触媒の存在下に
原料イソシアネートを加熱することにより所望の
イソシアヌレート含有量を有しかつ保存時におい
ても残存イソシアネート含有量が変化しない安定
な形で得られる方法を見出し種々の検討を加えた
結果、本発明を完成させるに至つた。 なお、イソシアヌレートフオーム原料に溶剤を
含むと、フオームにならないため、その原料であ
るイソシアネートにも溶剤を含まないようにする
ことが必要である。そのため、本発明のイソシア
ヌレートフオーム原料用変性イソシアネートの製
造は、溶剤を用いることなく行われる。この点
は、塗料原料用のイソシアネートの製造が溶剤を
必要とするのと相違する。 イソシアネートの環状三量化触媒としてはオク
チル酸カリのようなカルボン酸塩類;t−BuoK
のようなアルコキシド;トリエチレンジアミン、
2.4.6−(ジメチルアミノメチル)フエノール、
N、N′、N″−トリス(ジメチルアミノプロピル)
ヘキサヒドロ−S−トリアジンのようなアミン
類;フオスフイン類;酸化リチウムのようなオキ
シド類;N、Pの四級塩のヒドロキシド類;有機
金属塩類;水素化ホウ素ナトリウムのような水素
化物類;塩酸、しゆう酸のような酸類;あるいは
アミン/エポキシ化合物のような複合触媒類;あ
るいは上記触媒の混合系等が知られている。 これ等の触媒を用いてイソシアヌレートフオー
ムを得る方法または有機溶媒中にフエニルイソシ
アネートを溶解しそのヌレート化率、速度を測定
することは従来から行なわれていたが、精製
MDI、粗製MDIまたはポリメチレンポリフエニ
ルイソシアネートをフオーム化に使用できる原料
としてその一部をイソシアヌレート化する技術に
ついては知られていない。従来の触媒あるいはそ
れを用いてフオーム化に応用したイソシアヌレー
ト化技術では、原料イソシアネートはイソシアヌ
レート化による網状化が進みすぎてしまい、原料
として必要な一定のイソシアネート含有率に保持
しておくことが不可能である。 本発明者等は前記三量化触媒のうち第三級アル
キルアミン構造を持つた触媒、たとえば2.4.6−
トリ(ジメチルアミノメチル)フエノール
(DMAMPと略称す)を用い、その使用量と加熱
条件を調節することにより、元のイソシアネート
含有率に対して3以上30%未満の範囲内で所望の
イソシアヌレート含有率を有し、且つその後の貯
蔵において時日を経過したり加温、冷却を経ても
残存イソシアネート含有率に変化を生じない変性
イソシアネートを得ることが出来た。前記
DMAMPをNCO含有率30.5%の粗MDIに対し1
重量%添加し、フオーム発泡条件の温度例えば15
℃に保ち撹拌し反応させた時にはイソシアヌレー
ト化が生ずるが、一方でゲル化を起し最早このよ
うな処理を行なつたイソシアネートはフオームの
原料イソシアネートとして使用することは出来な
い、しかしながらDMAMPを1重量%添加し100
℃において加熱撹拌したものは意外なことにゲル
化を生ぜず、元のイソシアネートに対しその20%
がイソシアヌレート構造を有していることが赤外
測定およびジブチルアミンとの反応を利用した滴
定分析で判明した。またこのように処理した変性
イソシアネートを15℃まで冷却し1日放置した後
にそのイソシアネート含有率を測定したが前記含
有率と同じであり、且つゲル化も生ぜずフオーム
用原料として用いることができた。同一触媒量で
は温度を上昇させることによりイソシアネート含
有率の変化は小さくなりまた早期に一定のイソシ
アネート含有率で反応は停止する。また触媒量を
増加すれば反応速度は上昇しNCO変化量も大き
くなる。したがつて所望するイソシアヌレート変
性率のイソシアネートを得るためには温度および
触媒量の両者からコントロールすることができ
る、例えば10%イソシアヌレート構造を持つた変
性イソシアネート原料を得るためには反応温度
100℃で触媒量を0.6%に減ずるかまたは反応温度
を125℃に上昇し10ないし1時間激しい撹拌下に
反応を行なえばよい。早期に一定のイソシアヌレ
ート化率で停止させるためには反応温度を高くす
ることを選択すれば良い。 この部分的イソシアヌレート変性は触媒として
N−ジメチルアニリンのような三級アミンでは生
じないしオクチル酸カリ単独では生じない。しか
し、N、N′、N″−トリス(ジメチルアミノプロ
ピル)ヘキサヒドロ−S−トリアジンのような触
媒にオクチル酸カリを加える時にはイソシアヌレ
ート変性化率は増加し、触媒の相剰的作用が見出
される。しかし同じく加熱によりイソシアヌレー
ト化率は一定のところで停止しオクトエートカリ
の残存下でも最早反応は進まない。 このイソシアヌレート変性は酸によつて触媒機
能が阻害され、反応が停止する訳ではない。 何故なら元の原料イソシアネート中の酸分は
HCl換算0.025%であり、上記の触媒使用量から
みて酸による中和のためではないことが判る。 またこの反応がある温度でのイソシアネートと
イソシアヌレート反応の平衡によつて生ずる訳で
はない。それは反応終了液を冷却し撹拌しても、
最早イソシアヌレート化率は変化しないし、さら
にそれを加熱してもイソシアネート含有率、イソ
シアヌレート化率は変化しないしゲル化も生じな
い。またこの反応が反応液からの触媒の揮散で生
ずるのではないことはその分子構造、分子量(例
えば2.4.6−トリジメチルアミノフエノールでは
M.W.265)より明らかである。したがつてイナ
ートガスの吹込みにより触媒を揮散させ反応を停
止する訳ではない。すなわち加熱による反応停止
が本質的な役割をしていることがわかつた。 この反応では触媒の添加量は触媒の種類によつ
ても多少異なるが、15%以上の濃度で加える時に
はイソシアネートを最大限に加熱したとしてもゲ
ル化を停止することは出来ず、自ずからその使用
量は制限されるが、通常経済的に有利な触媒量の
範囲で所望の変性を行なうことができる。 本発明の変性の範囲はまた粘度によつて制限さ
れる。イソシアネートの2/3以上がイソシアヌレ
ート化した状態では、反応液は撹拌ないし輸送が
困難であり、実際に産業上利用できて好ましい範
囲は以下の実施例で示すようにイソシアヌレート
化率30%未満に限定される。 実施例 1 原料の粗製ジフエニルメタンジイソシアネート
(MDI−Cr100三井日曹製イソシアネート含有率
31.5%、酸分0.025%)500グラムをガラス製反応
容器に入れ、チツ素ガスパージ下に100℃に加熱
した。原料イソシアネートを激しく撹拌しながら
触媒として2.4.6−トリ(ジメチルアミノメチル)
フエノールの5c.c.を2分間で滴下した。滴下開始
後約1分間で発熱が始まり6分後に113℃まで液
温が上昇した後、徐々に発熱がおさまり、30分後
に102℃で一定となつた。その間にサンプリング
を行ない残存Nco%とイソシアヌレート結合を分
析した。その関係を下表に示す。
The present invention relates to a method for producing isocyanates used as raw materials for isocyanurate foam, and in particular to partial isocyanurate modification of purified, crude diphenylmethane diisocyanate or polymethylene polyphenyl isocyanate (referred to as MDI). Conventionally, isocyanurate foam has been used as a heat insulating material with excellent heat insulating properties, and crude MDI, polymethylene polyphenyl isocyanate, etc. have been used as the raw material isocyanate. However, these isocyanates have aromatic nuclei bonded to each other through methylene groups, and are not sufficient as hard segmenters with heat resistance. As a result of research into raw material isocyanates that have these properties and are likely to thicken during foam foaming, the present inventors have partially converted the isocyanate groups of purified or crude MDI or polymethylene polyphenyl isocyanate into isocyanurates. Isocyanate (referred to as isocyanurate-modified isocyanate or simply modified isocyanate) has a desired isocyanurate content and remains during storage by heating the raw material isocyanate in the presence of a catalyst having a tertiary alkylamine structure. After discovering a method for obtaining a stable isocyanate content that does not change and making various studies, the present invention has been completed. Note that if the isocyanurate foam raw material contains a solvent, it will not form into a foam, so it is necessary that the isocyanate that is the raw material also does not contain a solvent. Therefore, the modified isocyanate for isocyanurate foam raw materials of the present invention is produced without using a solvent. This is different from the production of isocyanates for paint raw materials, which requires a solvent. As a cyclic trimerization catalyst for isocyanate, carboxylic acid salts such as potassium octylate; t-BuoK
Alkoxides such as; triethylenediamine,
2.4.6-(dimethylaminomethyl)phenol,
N, N′, N″-tris(dimethylaminopropyl)
Amines such as hexahydro-S-triazine; phosphines; oxides such as lithium oxide; hydroxides of quaternary salts of N and P; organometallic salts; hydrides such as sodium borohydride; hydrochloric acid , acids such as oxalic acid; composite catalysts such as amine/epoxy compounds; and mixed systems of the above catalysts. Conventionally, methods for obtaining isocyanurate foam using these catalysts or dissolving phenyl isocyanate in an organic solvent and measuring the rate of nurate formation have been carried out.
There is no known technology for converting MDI, crude MDI, or polymethylene polyphenyl isocyanate into isocyanurate in part as a raw material that can be used for forming foams. With conventional catalysts or isocyanurate technology applied to foam formation using conventional catalysts, the raw material isocyanate becomes too reticulated due to isocyanurate formation, and it is difficult to maintain the isocyanate content at a constant level required as a raw material. It's impossible. Among the trimerization catalysts, the present inventors have discovered catalysts having a tertiary alkylamine structure, such as 2.4.6-
By using tri(dimethylaminomethyl)phenol (abbreviated as DMAMP) and adjusting its usage amount and heating conditions, the desired isocyanurate content can be achieved within the range of 3 to 30% of the original isocyanate content. It was possible to obtain a modified isocyanate which has a high residual isocyanate content and whose residual isocyanate content does not change over time or after heating and cooling during subsequent storage. Said
DMAMP to crude MDI with 30.5% NCO content
Add weight% and foam foaming condition temperature e.g. 15
Isocyanurate formation occurs when the mixture is stirred and reacted while being kept at a temperature of wt% added 100
Surprisingly, gelation did not occur when heated and stirred at ℃, and 20% of the original isocyanate
It was found by infrared measurement and titration analysis using reaction with dibutylamine that it has an isocyanurate structure. Furthermore, the isocyanate content of the modified isocyanate treated in this way was measured after being cooled to 15°C and allowed to stand for one day, and the content was the same as above, and no gelation occurred, so it could be used as a raw material for foam. . When the amount of catalyst is the same, the change in isocyanate content becomes smaller by increasing the temperature, and the reaction stops at an early stage at a constant isocyanate content. Furthermore, if the amount of catalyst is increased, the reaction rate will increase and the amount of change in NCO will also increase. Therefore, in order to obtain an isocyanate with a desired isocyanurate modification rate, both the temperature and the amount of catalyst can be controlled. For example, in order to obtain a modified isocyanate raw material with a 10% isocyanurate structure, the reaction temperature can be controlled.
The amount of catalyst may be reduced to 0.6% at 100°C, or the reaction temperature may be increased to 125°C and the reaction may be carried out with vigorous stirring for 10 to 1 hour. In order to stop the reaction at a constant isocyanurate conversion rate at an early stage, the reaction temperature may be increased. This partial isocyanurate modification does not occur with a tertiary amine such as N-dimethylaniline as a catalyst, nor with potassium octylate alone. However, when potassium octylate is added to a catalyst such as N,N',N''-tris(dimethylaminopropyl)hexahydro-S-triazine, the isocyanurate modification rate increases and a additive effect of the catalyst is found. However, due to heating, the isocyanurate conversion rate stops at a certain point, and the reaction no longer progresses even when potassium octoate remains.This isocyanurate modification does not stop because the catalytic function is inhibited by the acid. This is because the acid content in the original raw material isocyanate is
The amount was 0.025% in terms of HCl, and judging from the amount of catalyst used above, it can be seen that this was not due to neutralization by acid. Furthermore, this reaction does not necessarily occur due to an equilibrium between isocyanate and isocyanurate reactions at a certain temperature. Even if the reaction finished liquid is cooled and stirred,
The isocyanurate conversion rate no longer changes, and even if it is further heated, the isocyanate content and isocyanurate conversion rate do not change, and gelation does not occur. Furthermore, the fact that this reaction does not occur due to the volatilization of the catalyst from the reaction solution is due to its molecular structure and molecular weight (for example, 2.4.6-tridimethylaminophenol
MW265) is more obvious. Therefore, blowing inert gas does not volatilize the catalyst and stop the reaction. In other words, it was found that stopping the reaction by heating plays an essential role. In this reaction, the amount of catalyst added varies somewhat depending on the type of catalyst, but when it is added at a concentration of 15% or more, gelation cannot be stopped even if the isocyanate is heated to the maximum, so the amount used naturally increases. The desired modification can usually be effected within an economically advantageous range of catalyst amounts, although there are limitations. The scope of modification of the present invention is also limited by viscosity. When 2/3 or more of the isocyanate is converted into isocyanurate, it is difficult to stir or transport the reaction solution, and the preferred range for practical industrial use is an isocyanurate conversion rate of less than 30%, as shown in the following examples. limited to. Example 1 Raw material crude diphenylmethane diisocyanate (MDI-Cr100 manufactured by Mitsui Nisso) Isocyanate content
31.5%, acid content 0.025%) was placed in a glass reaction vessel and heated to 100°C under nitrogen gas purge. 2.4.6-tri(dimethylaminomethyl) is added as a catalyst while stirring the raw material isocyanate vigorously.
5 c.c. of phenol was added dropwise over 2 minutes. Heat generation started approximately 1 minute after the start of dropping, and after 6 minutes, the liquid temperature rose to 113°C, and then the heat generation gradually subsided and became constant at 102°C after 30 minutes. During that time, sampling was performed to analyze residual Nco% and isocyanurate binding. The relationship is shown in the table below.

【表】 反応マスは赤外吸収スペクトルにより1400〜
1430cm-1の吸収を追跡しイソシアネートの減少が
イソシアヌレートの生成に対応していることが判
つた。(第1図)ただしイソシアネートの二量化
に基づくウレチジンジオンの吸収と推定されるも
のが極く微量見出された他は不純物は見出され
ず、イソシアネートの15%がイソシアヌレート化
された変性イソシアネートが得られたことが判つ
た。反応マスを40℃に急冷し一日放置したが、ゲ
ル化は生ぜず残存Nco%は26.2%であつた。反応
前、反応30分後、40℃冷却後1日放置したサンプ
ルをゲルバーミエーシヨンクロマトグラフにより
分子量分布を測定した結果、主としてMDI2核体
(4、4′メチレンビスフエニルイソシアネート)
が減少し6核体以上が増加していることから
MDIの三量化が進行したことが判る。 (第2図)また、一日放置後のGPCクロマト
グラムは反応30分後のそれと変化がなかつた。な
お、イソシアヌレート化率は、反応時間0分の時
の残存NCO%と反応終了後(この実施例の場合
は反応時間30分経過後)の残存NCO%との差を、
反応時間0分の時の残存NCO%で除し、その値
を%に直すことにより容易に計算できる。 実施例 2〜5 加熱温度を変化させた以外は実施例1と同様で
ある。 結果を次頁に示す。
[Table] The reaction mass is 1400~ by infrared absorption spectrum.
By tracking the absorption at 1430 cm -1 , it was found that the decrease in isocyanate corresponded to the production of isocyanurate. (Figure 1) However, no impurities were found except for a very small amount of what was presumed to be absorption of uretidinedione due to dimerization of isocyanate, and a modified isocyanate in which 15% of the isocyanate was converted to isocyanurate was obtained. It turns out that The reaction mass was rapidly cooled to 40°C and left for one day, but gelation did not occur and the residual Nco% was 26.2%. As a result of measuring the molecular weight distribution of the sample before the reaction, 30 minutes after the reaction, and 1 day after cooling to 40℃ using gel vermi-ation chromatography, it was found that the molecular weight distribution was mainly MDI dinuclear body (4,4' methylene bisphenyl isocyanate).
Because of the decrease in the number of hexanuclear bodies and the increase in the number of hexanuclear bodies or more,
It can be seen that trimerization of MDI has progressed. (Figure 2) Furthermore, the GPC chromatogram after standing for one day was unchanged from that after 30 minutes of reaction. In addition, the isocyanurate conversion rate is the difference between the remaining NCO% at the time of 0 minutes of reaction time and the remaining NCO% after the completion of the reaction (in the case of this example, after 30 minutes of reaction time has passed).
It can be easily calculated by dividing by the remaining NCO% when the reaction time is 0 minutes and converting the value to %. Examples 2 to 5 The same as Example 1 except that the heating temperature was changed. The results are shown on the next page.

【表】 反応マスは赤外分析の結果イソシアヌレート変
性されていることが確認された。 実施例 6〜7 MDI−cr100 500グラムに対しDMAMP1.5c.c.
を加えて激しく撹拌しながら2時間反応させた。
結果を下表に示す。
[Table] As a result of infrared analysis, it was confirmed that the reaction mass was modified with isocyanurate. Examples 6-7 DMAMP1.5c.c. for 500 grams of MDI-cr100.
was added and reacted for 2 hours with vigorous stirring.
The results are shown in the table below.

【表】 実施例 8〜11 イソシアネートとして4、4′−ジフエニルメタ
ンジイソシアネート(MDI−PH三井日曹製イソ
シアネート含有率33.3%、酸分0.01%以下)1Kg
を2ガラス製4つ口反応器に加えチツ素ガスパ
ージ下に所定の温度に加熱した。激しく撹拌しな
がら触媒としてN、N′、N″−トリス(ジメチル
アミノプロピル)ヘキサヒドロ−S−トリアジン
を滴下ロートより約3分間で滴下した。 滴下開始時を反応開始時点としてイソシアネー
トの温度変化を熱電対により記録した。イソシア
ネートの減量は一定時間毎にサンプリングしてジ
ブチルアミンを加え加熱反応後1/2Nの塩酸によ
り滴定し求めた。また反応マスは一部をとり2枚
のKBr板間に一定厚みの薄膜を作りイソシアネ
ートがイソシアヌレートに変性される過程を追跡
し反応マス変性がイソシアヌレート化であり、二
量化等の副反応が極めて僅かであることを確認し
た。またサンプルの一部はテトラヒドロフランに
溶解しGPCにより分子量分布の変化を追跡し、
精製MDIが減少し芳香核6核体以上が生成して
いることを確認した。 結果を次表に示す。
[Table] Examples 8 to 11 4,4'-diphenylmethane diisocyanate (MDI-PH manufactured by Mitsui Nisso, isocyanate content 33.3%, acid content 0.01% or less) 1Kg
was added to a two-glass, four-necked reactor and heated to a predetermined temperature under nitrogen gas purge. While stirring vigorously, N,N',N''-tris(dimethylaminopropyl)hexahydro-S-triazine was added dropwise as a catalyst from the dropping funnel over a period of about 3 minutes.The temperature change of the isocyanate was monitored by thermoelectric measurement, with the start of the dropwise addition as the reaction start point. The weight loss of isocyanate was determined by sampling at regular intervals, adding dibutylamine, and titrating with 1/2N hydrochloric acid after heating reaction.Also, a portion of the reaction mass was taken and fixed between two KBr plates. By making a thin film and tracking the process by which isocyanate is modified to isocyanurate, we confirmed that the reaction mass modification was isocyanurate formation and that side reactions such as dimerization were extremely small.Also, some of the samples were made using tetrahydrofuran. Dissolved in and tracked changes in molecular weight distribution by GPC.
It was confirmed that purified MDI decreased and more than six aromatic nuclei were produced. The results are shown in the table below.

【表】【table】

【表】 実施例 12〜15 触媒として、N、N′、N″−トリス(ジメチル
アミノプロピル)ヘキサヒドロ−S−トリアジン
とオクチル酸カリの等量混合物を用い、イソシア
ネートとしてMDI−cr200(三井日曹製、イソシ
アネート30.5%、粘度200cps(40℃))を用いた他
は実施例−1と同様である。
[Table] Examples 12 to 15 A mixture of equal amounts of N,N',N''-tris(dimethylaminopropyl)hexahydro-S-triazine and potassium octylate was used as a catalyst, and MDI-cr200 (Mitsui Nisso) was used as an isocyanate. The procedure was the same as in Example 1, except that 30.5% isocyanate and 200 cps (40°C) viscosity were used.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の実施例1における反応生成物
の生成を確認するための分析チヤートである。第
1図は、赤外吸収スペクトル、A:イソシアヌレ
ート吸収、横軸:波数(1/cm)、縦軸:透過率。
第2図は、グルバーミエーシヨンクロマトグラ
フ、…:原料、―:反応生成物、グラフ上の数
字:分子量、横軸:溶出時間(分)、縦軸:溶出
量。
The drawing is an analysis chart for confirming the production of reaction products in Example 1 of the present invention. FIG. 1 is an infrared absorption spectrum, A: isocyanurate absorption, horizontal axis: wave number (1/cm), vertical axis: transmittance.
Figure 2 shows a gluvermeation chromatograph, ...: raw material, -: reaction product, numbers on the graph: molecular weight, horizontal axis: elution time (minutes), vertical axis: elution amount.

Claims (1)

【特許請求の範囲】[Claims] 1 精製ジフエニルメタンジイソシアネート、粗
製ジフエニルメタンジイソシアネートまたはポリ
メチレンポリフエニルイソシアネートを、第3級
アルキルアミン構造を有する触媒の存在下に30℃
ないし200℃に加熱することにより全イソシアネ
ート基の3以上30%未満をイソシアヌレート化す
ることを特徴とするイソシアヌレートフオーム原
料用変性イソシアネートの製造方法。
1. Purified diphenylmethane diisocyanate, crude diphenylmethane diisocyanate or polymethylene polyphenyl isocyanate is heated at 30°C in the presence of a catalyst having a tertiary alkylamine structure.
A method for producing a modified isocyanate for use as a raw material for isocyanurate foam, the method comprising converting 3 or more and less than 30% of all isocyanate groups into isocyanurates by heating to 200°C to 200°C.
JP58037953A 1983-03-08 1983-03-08 Production of modified isocyanate Granted JPS59163357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58037953A JPS59163357A (en) 1983-03-08 1983-03-08 Production of modified isocyanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58037953A JPS59163357A (en) 1983-03-08 1983-03-08 Production of modified isocyanate

Publications (2)

Publication Number Publication Date
JPS59163357A JPS59163357A (en) 1984-09-14
JPH0347266B2 true JPH0347266B2 (en) 1991-07-18

Family

ID=12511908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58037953A Granted JPS59163357A (en) 1983-03-08 1983-03-08 Production of modified isocyanate

Country Status (1)

Country Link
JP (1) JPS59163357A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4386028A1 (en) 2022-12-13 2024-06-19 Covestro Deutschland AG Composition containing isocyanate and isocyanurate groups and pur/pir rigid foams produced therefrom

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136813A (en) * 1980-03-31 1981-10-26 Hitachi Chem Co Ltd Preparation of polyamide-imide resin soluble in cresol type solvent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136813A (en) * 1980-03-31 1981-10-26 Hitachi Chem Co Ltd Preparation of polyamide-imide resin soluble in cresol type solvent

Also Published As

Publication number Publication date
JPS59163357A (en) 1984-09-14

Similar Documents

Publication Publication Date Title
JP2601530B2 (en) Production of aliphatic uretdione
JPH02341B2 (en)
JP5162083B2 (en) Production of diisocyanate diisocyanates and polyisocyanates with specified acidity
EP0374932B1 (en) Rigid foams prepared from treated toluene diisocyanate residue
MX2007014890A (en) Process for the preparation of polyisocyanates of the diphenylmethane series.
JPS6117815B2 (en)
JPS6351171B2 (en)
JP2004529115A (en) Preparation of MDI, especially 2,4'-MDI
JP5597352B2 (en) Production of uretdione polyisocyanate
JPH0238583B2 (en)
JP2009518473A (en) Method for producing carbodiimide group and / or uretonimine group-containing polyisocyanate
US3373182A (en) Purification of isocyanates by reduction of the hydrolyzable chlorine and acid content
JP7337803B2 (en) Process for producing isocyanate mixtures containing isocyanurate groups
US3925437A (en) Reduction of acidity of organic polymeric isocyanates
CN1064074A (en) Reduce the method for hydrolyzable chloride in the tolylene diisocyanate
JPH0347266B2 (en)
KR20030022316A (en) Diphenylmethane Diisocyanate Compositions
KR20040008132A (en) Liquid Partially Trimerized Polyisocyanates Based on Toluene Diisocyanate and Diphenylmethane Diisocyanate
US3359295A (en) Polyisocyanate compositions and processes for the production thereof
CN113856751A (en) Catalyst, preparation method thereof and polymerization method of isocyanate
US4344892A (en) Self-granulating reaction product of 4,4'-diphenylmethane diisocyanate and resorcinol
US3366661A (en) Process for improving the storage stability of 4, 4'-diisocyanatodiphenylmethane
US4250106A (en) Process for the preparation of substantially pure cyclo aliphatic diisocyanate stereoisomers
US3551469A (en) 1,3,5-cyclohexane triisocyanate
EP0054294B1 (en) Process for converting isocyanato groups into carbodiimido and/or urethonimino groups