JPH0346831Y2 - - Google Patents

Info

Publication number
JPH0346831Y2
JPH0346831Y2 JP1985201333U JP20133385U JPH0346831Y2 JP H0346831 Y2 JPH0346831 Y2 JP H0346831Y2 JP 1985201333 U JP1985201333 U JP 1985201333U JP 20133385 U JP20133385 U JP 20133385U JP H0346831 Y2 JPH0346831 Y2 JP H0346831Y2
Authority
JP
Japan
Prior art keywords
gas
alloy
moisture
oxygen
hollow container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985201333U
Other languages
Japanese (ja)
Other versions
JPS62106625U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985201333U priority Critical patent/JPH0346831Y2/ja
Publication of JPS62106625U publication Critical patent/JPS62106625U/ja
Application granted granted Critical
Publication of JPH0346831Y2 publication Critical patent/JPH0346831Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は半導体製造用材料ガス等の工業用ガス
に不純物として含まれる酸素、水分を除去するた
めのガス精製装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a gas purification device for removing oxygen and moisture contained as impurities in industrial gases such as material gases for semiconductor manufacturing.

〔従来の技術〕[Conventional technology]

近時、各種産業分野で高純度な工業ガスが必要
とされており、たとえば半導体工業の分野では、
より高集積度の半導体デバイスを製造するためア
ルシン、シラン、シボラン等の半導体製造用材料
ガス(以下半材ガスと称す)に対し、より高純度
を求めるようになつてきている。しかし、一般に
前記半材ガス中には微少の酸素及び水分などの不
純物が含有されているので、製品の品質向上の点
よりこれら不純物を除去する必要がある。
Recently, high purity industrial gases are required in various industrial fields.For example, in the semiconductor industry,
BACKGROUND ART In order to manufacture semiconductor devices with a higher degree of integration, higher purity is required for semiconductor manufacturing material gases (hereinafter referred to as semi-material gases) such as arsine, silane, and ciborane. However, since the semi-finished material gas generally contains small amounts of impurities such as oxygen and moisture, it is necessary to remove these impurities from the viewpoint of improving the quality of the product.

このため、半材ガス中の不純物を吸着材により
除去する方法が提案されているが、この方法では
不純物のほか半材ガス自体も吸着されてしまうた
め、半材ガスの高価なことから経済的な方法とは
言えない。そこで、アルミニウム(Al)、ガリウ
ム(Ga)及びインジウム(In)からなる合金
(Al−Ga−In合金)を用いて化学反応により精製
する方法が行なわれている。即ち、Al−Ga−In
合金はAlをGa−Inとの合金とすることにより、
常温付近(約20℃)で液状態となつて、気体処理
において気体との接触効果を高め、そして該合金
中のAlが酸素に対して3/2O2+2Al→Al2O3の化 学反応をし、又水分に対して3H2O+Al→Al2O3
+3H2の化学反応を起こし、この結果、ガス中の
酸素、水分を除去するものである。なお、Ga、
Inも若干ではあるが酸素及び水分と化学反応を起
こしその除去を助けることとなる特徴がある。し
かるに上記Al−Ga−In合金を使用した気体中の
酸素・水分を除去する従来の精製装置は第3図に
示す如き装置が用いられている。即ち第3図は従
来の精製装置の断面正面図で、1は気密に形成さ
れた中空容器で、該中空容器1内には前記Al−
Ga−In合金液2が貯液されている。そして被処
理ガスとしてボンベ等の容器(図示せず)に充填
されたたとえば半材ガスが、一端部がAl−Ga−
In合金液2中に開口しているガス導入管3を介し
て該合金液2内に導入され、該合金液2中をバブ
リングして気泡6となつて上昇する。この過程で
半材ガス中の酸素及び水分はAl−Ga−In合金と
化学反応を起こして酸化物となつて除去される。
そして精製された半材ガスはガス導出管4を介し
て中空容器1外に導出され、次いでフイルタ5を
介して使用先である気相成長装置等の半導体製造
装置に導入される。
For this reason, a method has been proposed in which the impurities in the semi-finished gas are removed using an adsorbent, but this method not only adsorbs the impurities but also the semi-finished gas itself, making it uneconomical due to the high cost of the semi-finished gas. I can't say it's a good method. Therefore, a method of refining by chemical reaction using an alloy (Al--Ga--In alloy) consisting of aluminum (Al), gallium (Ga), and indium (In) has been used. That is, Al-Ga-In
By alloying Al with Ga-In,
It becomes a liquid state at around room temperature (approximately 20℃), enhances the contact effect with gas in gas treatment, and Al in the alloy undergoes a chemical reaction of 3/2O 2 + 2Al → Al 2 O 3 with oxygen. However, for moisture, 3H 2 O+Al→Al 2 O 3
It causes a chemical reaction of +3H 2 and as a result removes oxygen and moisture from the gas. In addition, Ga,
In also has the characteristic that it causes a chemical reaction with oxygen and moisture, albeit slightly, and helps in their removal. However, as a conventional purification apparatus for removing oxygen and moisture from a gas using the Al--Ga--In alloy, an apparatus as shown in FIG. 3 is used. That is, FIG. 3 is a cross-sectional front view of a conventional refining apparatus, in which numeral 1 is a hollow container formed airtight, and inside the hollow container 1 is the Al-
A Ga-In alloy liquid 2 is stored. Then, as the gas to be processed, for example, a semi-finished gas filled in a container such as a cylinder (not shown) is used, one end of which is Al-Ga.
In is introduced into the alloy liquid 2 through a gas introduction pipe 3 opening into the alloy liquid 2, and bubbles through the alloy liquid 2 to form bubbles 6 and rise. During this process, oxygen and moisture in the semi-finished material gas undergo a chemical reaction with the Al-Ga-In alloy to become oxides and are removed.
The purified semi-finished gas is led out of the hollow container 1 through the gas outlet pipe 4, and then introduced into the semiconductor manufacturing equipment such as the vapor phase growth equipment through the filter 5.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

上述の如き従来のAl−Ga−In合金液2を用い
た精製装置はバブリング式であるため、次のよう
な問題点がある。
Since the conventional purification apparatus using the Al--Ga--In alloy liquid 2 as described above is of a bubbling type, it has the following problems.

(1) Al−Ga−In合金は比重が約6と高いので、
バブリングさせるためにはこれに導入される被
処理ガスの圧力を高くする必要があるばかりで
なく、Al−Ga−In合金液中でバブリングしつ
つ上昇してきた気泡6は液面上で激しく破裂し
て膨出し、これに伴つて中空容器1内の液面上
の空間で圧力変動が生じる。この結果、ガス導
出管4を通過する半材ガスの流れは脈動し、こ
のため該装置の中空容器と連通している使用先
の気相成長装置など半導体製造装置では、供給
されてくるガスの流量が変動し不安定となり、
常に均一な流量が得られず均質な製品が得られ
ない。このようなことより、従来のこの種ガス
精製内では精密な流量制御を必要としていた。
(1) Al-Ga-In alloy has a high specific gravity of about 6, so
In order to cause bubbling, not only is it necessary to increase the pressure of the gas to be treated introduced into the Al-Ga-In alloy liquid, but also the bubbles 6 that rise while bubbling in the Al-Ga-In alloy liquid burst violently on the liquid surface. As a result, pressure fluctuations occur in the space above the liquid level inside the hollow container 1. As a result, the flow of the semi-finished gas passing through the gas outlet pipe 4 pulsates, and as a result, in the semiconductor manufacturing equipment such as the vapor phase growth equipment used, which is in communication with the hollow container of the equipment, the flow of the gas being supplied becomes pulsating. The flow rate fluctuates and becomes unstable,
A uniform flow rate cannot always be obtained and a homogeneous product cannot be obtained. For this reason, precise flow rate control has been required in conventional gas purification of this type.

(2) 上記のほか、種々実験した結果、次のような
問題点があることも判明した。即ち半材ガス中
の酸素、水分等が化学反応した結果生じた酸化
物はAl−Ga−In合金より比重が小さいので気
泡6中に含まれて上昇し、該気泡6が前記の如
く中空容器1内の液面上で破裂して膨出すると
きに飛散し、精製された半材ガスに同伴して導
出される。このためガス導出管4の下流側に設
けたフイルタ5での集積が激しく目詰りを惹起
し流量の不安定をもたらす不都合を生ずる。
(2) In addition to the above, as a result of various experiments, the following problems were found. In other words, the oxide produced as a result of the chemical reaction of oxygen, moisture, etc. in the semi-finished gas has a lower specific gravity than the Al-Ga-In alloy, so it is contained in the air bubbles 6 and rises, and the air bubbles 6 rise into the hollow container as described above. When it ruptures and swells on the liquid level in the tank 1, it scatters and is led out along with the purified half-metal gas. For this reason, the filter 5 provided on the downstream side of the gas outlet pipe 4 is seriously accumulated and clogged, causing an inconvenience that the flow rate becomes unstable.

本考案に係るガス精製装置は、上記の不都合に
鑑みなされたもので、脈流を起こさず、かつ精製
した酸化物粒子が導出しないようにして常に安定
した流量で純度のよいガスを供給し得るようにし
たことを目的とするものである。
The gas purification device according to the present invention was developed in view of the above-mentioned disadvantages, and is capable of constantly supplying high-purity gas at a stable flow rate without causing pulsation and preventing refined oxide particles from being drawn out. The purpose is to do so.

〔問題点を解決するための手段〕[Means for solving problems]

そして本考案の特徴とするところは、ガス導入
口及びガス導出口を有する中空筒体内に細片状や
球状等適宜形状の小片よりなる固型担体にアルミ
ニウム、ガリウム及びインジウムからなる合金を
付着させてなる処理剤を充填し、被精製ガスを前
記ガス導入口から中空筒体内に導入することによ
り、被精製ガス中の酸素、水分等の不純物を前記
処理剤で除去するよう構成したことにある。
The feature of the present invention is that an alloy made of aluminum, gallium, and indium is attached to a solid carrier consisting of small pieces of appropriate shapes such as strips and spheres inside a hollow cylinder having a gas inlet and a gas outlet. The processing agent is filled with a processing agent, and the gas to be purified is introduced into the hollow cylinder through the gas inlet, thereby removing impurities such as oxygen and moisture from the gas to be purified by the processing agent. .

〔実施例〕〔Example〕

第1図は本考案に係るガス精製装置の断面正面
図で、前記第3図と同一構成部分には同一符号を
付してある。
FIG. 1 is a cross-sectional front view of a gas purification apparatus according to the present invention, in which the same components as in FIG. 3 are given the same reference numerals.

図において、10はたとえばガラスビーズ等の
小片の固型担体にAl−Ga−In合金を付着してな
る処理剤である。ガラスビーズの大きさは任意で
良いが、大き過ぎると被処理気体との接触面積が
減少し、また小さ過ぎると通気抵抗が増加するの
で設計条件に応じて適宜に定める。さらに、処理
剤の製法としては、不活性ガス雰囲気中でAl−
Ga−In合金内にガラスビーズを浸漬するか、ま
たはAl−Ga−In合金液上にガラスビーズを浮遊
させた状態で該合金液中に不活性ガスを注入して
バブリングすることによりガラスビーズ表面に該
Al−Ga−In合金を付着させる。
In the figure, numeral 10 is a processing agent formed by adhering an Al--Ga--In alloy to a small solid support such as glass beads. The size of the glass beads may be arbitrary, but if it is too large, the contact area with the gas to be treated will be reduced, and if it is too small, the ventilation resistance will increase, so it should be determined appropriately depending on the design conditions. Furthermore, as a method for producing the treatment agent, Al-
By immersing glass beads in Ga-In alloy, or by injecting and bubbling an inert gas into Al-Ga-In alloy liquid while floating glass beads on Al-Ga-In alloy liquid, the surface of glass beads is falls under
Deposit Al-Ga-In alloy.

本考案は、上記した如く、Al−Ga−In合金を
小片の固型担体に付着せしめて処理剤10とし、
これをガス導入管3及び導出管4を有する中空容
器1に充填した精製装置であり、次の通り作用す
る。即ち、ボンベからのたとえば半材ガス等の被
処理ガスをガス導入管3を介して中空容器1内に
導入すると、該半材ガスは処理剤10間の狭い間
隙を通つて流通し、この間に処理剤10表面に気
液接触しつつゆるやかに上昇し、この過程で該半
材ガス中の酸素、水分はAl−Ga−In合金と反応
して酸化物となり、処理剤10表面に付着する。
そして酸素、水分が除去された半材ガスはガス導
出管4から導出し、フイルタ5を介して使用先で
ある半導体製造装置へと供給される。このように
半材ガスは処理剤10表面に気液接触しつつスム
ーズに上昇するので従来のバブリング式の如き脈
動が発生せず、また、半材ガス中の酸素、水分が
化学反応を起こして生じた酸化物もそれぞれの小
片処理剤10表面に生じてAl−Ga−In合金の比
重の影響を受けることがないので処理剤表面に付
着し中空容器1外に導入されることはない。
As described above, in the present invention, an Al-Ga-In alloy is attached to a small piece of solid carrier to form the treatment agent 10,
This is a purification device in which a hollow container 1 having a gas inlet pipe 3 and an outlet pipe 4 is filled with the gas, and functions as follows. That is, when a gas to be treated, such as a half-finish gas, is introduced from a cylinder into the hollow container 1 through the gas introduction pipe 3, the half-finish gas flows through the narrow gap between the processing agents 10, and during this time, The gas slowly rises while coming into gas-liquid contact with the surface of the treatment agent 10, and in this process, oxygen and moisture in the semi-finished gas react with the Al--Ga--In alloy to become oxides, which adhere to the surface of the treatment agent 10.
Then, the semi-finished gas from which oxygen and moisture have been removed is led out from the gas outlet pipe 4, and is supplied via the filter 5 to the semiconductor manufacturing equipment where it will be used. In this way, the semi-finished material gas rises smoothly while coming into gas-liquid contact with the surface of the processing agent 10, so pulsation unlike the conventional bubbling method does not occur, and the oxygen and moisture in the semi-finished material gas do not cause chemical reactions. The generated oxides are also generated on the surface of each small piece processing agent 10 and are not affected by the specific gravity of the Al--Ga--In alloy, so they do not adhere to the surface of the processing agent and are not introduced outside the hollow container 1.

なお、本実施例ではガス導入管3を中空容器1
の頭部から底部に向けて挿通した例で説明した
が、中空容器1の底部にガス導入管を設けて半材
ガスを下から上に向けて流通させてもよく、更に
は逆に上から下に流通させても同等の効果を得る
ことができる。
In this embodiment, the gas introduction pipe 3 is connected to the hollow container 1.
The explanation has been given using an example in which the gas is inserted from the head to the bottom of the hollow container 1, but a gas introduction pipe may be provided at the bottom of the hollow container 1 to allow the half-metal gas to flow from the bottom to the top, or conversely, from the top. The same effect can be obtained even if it is distributed below.

また、本実施例において、ガス導入管3の下端
開口部より若干上方位置までAl−Ga−In合金を
貯液し、ガス導入管3から導入される半材ガスに
よつて問題を生じない程度にわずかにバブリング
させるようにしても良く、このようにすると該バ
ブリングによつてAl−Ga−In合金が跳ね上り処
理剤表面に付着するので酸素、水分に対する処理
容量が増加する利点がある。
In addition, in this embodiment, the Al-Ga-In alloy is stored to a position slightly above the lower end opening of the gas introduction pipe 3, to the extent that no problem is caused by the half-metal gas introduced from the gas introduction pipe 3. Slight bubbling may be applied to the treatment agent, and in this case, the Al--Ga--In alloy splashes up and adheres to the surface of the treatment agent due to the bubbling, which has the advantage of increasing the treatment capacity for oxygen and moisture.

なお、本ガス精製装置ではAl−Ga−In合金を
液状で使用するため、中空容器1外周に適宜ヒー
タを巻くなどの処理を講じて昇温し、液状を保持
することが好ましい。
In addition, since the Al-Ga-In alloy is used in a liquid state in this gas purification apparatus, it is preferable to take a process such as appropriately wrapping a heater around the outer periphery of the hollow container 1 to raise the temperature and maintain the liquid state.

更に本実施例ではAl−Ga−In合金を付着させ
る担体としてガラスビーズを用いた場合で説明し
たが、他の固型担体としてAl−Ga−In合金と反
応しない金属及び一部のセラミツクスを使用する
ことも可能である。但、付着のし易さ、入手の容
易性、経済性等の点からガラスビーズが最適であ
る。
Furthermore, in this example, a case was explained in which glass beads were used as a carrier to which the Al-Ga-In alloy is attached, but metals and some ceramics that do not react with the Al-Ga-In alloy may be used as other solid carriers. It is also possible to do so. However, glass beads are most suitable from the viewpoint of ease of attachment, availability, economy, etc.

実験例 第1図に例示した本考案に係るガス精製装置を
用いてサンプルガスを流した実験例を以下に説明
する。
Experimental Example An experimental example in which a sample gas was flowed using the gas purification apparatus according to the present invention illustrated in FIG. 1 will be described below.

内径70mm、高さ150mmの中空容器1内に直径5
mmのガラスビーズにAl−Ga−In合金を付着して
なる処理剤10を該中空容器1内の中間部分迄の
高さまで均一に詰めた後、ガス導入管3を介して
窒素ガスベースで酸素0.5〜50ppm、水分0.5〜
50ppmのサンプルガスを200c.c./minの割合で中
空容器1内に導入した。そしてガス導出管4の下
流側に微量酸素濃度計(限界測定値0.01ppm)、
水分計(限界測定値−80℃)を取り付けて測定を
行なつた結果、測定限界以下だつた。
Inside the hollow container 1 with an inner diameter of 70 mm and a height of 150 mm, a diameter of 5
After filling the hollow container 1 with a processing agent 10 consisting of Al-Ga-In alloy adhered to glass beads of mm in size evenly to a height up to the middle part of the hollow container 1, oxygen is supplied via the gas introduction pipe 3 using a nitrogen gas base. 0.5~50ppm, moisture 0.5~
A sample gas of 50 ppm was introduced into the hollow container 1 at a rate of 200 c.c./min. And a trace oxygen concentration meter (limit measurement value 0.01ppm) on the downstream side of the gas outlet pipe 4.
A moisture meter (measuring limit -80°C) was installed and the result was below the measurement limit.

また、前記ガス精製装置におけるガス導入管及
びガス導出管内のパーテイクルを計測した結果、
パーテイクルの増加が極めて微少であり、サンプ
ルガス中の酸素及び水分により生ずる酸化物はほ
とんどガス精製装置内で補足されていることが判
明した。
In addition, as a result of measuring particles in the gas introduction pipe and gas outlet pipe in the gas purification device,
It was found that the increase in particles was extremely small, and that most of the oxides generated by oxygen and moisture in the sample gas were captured within the gas purification device.

次に第2図に他の実施例を示し説明する。 Next, another embodiment is shown and explained in FIG. 2.

尚、図中第1図と同一構成部分には同一記号を
付してある。
In the figure, the same components as in FIG. 1 are given the same symbols.

第2図において、11は気密に形成した中空容
器で、該中空容器11の底部にはガス導入管12
が、上部にはガス導出管13が設けられている。
14は小孔を多数開口してなる多孔板で、該多孔
板14により中空容器1内は底部近傍で上下に区
画され、多孔板14の上にはAl−Ga−In合金液
15と前記した処理剤10とが詰められている。
なお、Al−Ga−In合金液の液高を低くし、また
多孔板14の開口をある程度小さくするので、
Al−Ga−In合金は滴下することはない。
In FIG. 2, reference numeral 11 denotes a hollow container formed airtight, and a gas introduction pipe 12 is provided at the bottom of the hollow container 11.
However, a gas outlet pipe 13 is provided at the top.
Reference numeral 14 denotes a perforated plate having a large number of small holes.The perforated plate 14 divides the inside of the hollow container 1 into upper and lower parts near the bottom. It is filled with a processing agent 10.
Note that since the liquid height of the Al-Ga-In alloy liquid is lowered and the opening of the perforated plate 14 is made smaller to some extent,
Al-Ga-In alloy does not drip.

上述の如き構成において、ガス導入管12から
中空容器11内に導入された半材ガスは多孔板1
4の開口部を通つて上昇し、まずAl−Ga−In合
金中をバブリングしつつ上昇し、次いで処理剤1
0中を上昇する過程で酸素、水分が除去されて精
製されガス導出管13から中空容器11外に導出
される。
In the above-described configuration, the semi-finished gas introduced into the hollow container 11 from the gas introduction pipe 12 passes through the perforated plate 1.
The treatment agent 1 rises through the opening of No. 4, first rises while bubbling through the Al-Ga-In alloy, and then the treatment agent No. 1
In the process of rising through the air, oxygen and moisture are removed and purified, and the gas is led out of the hollow container 11 through the gas delivery pipe 13.

上述の構成によると、半材ガスはAl−Ga−In
合金中を通過するので該合金液は循環し、有効に
利用され半材ガス中の酸素及び水分吸収量が増加
する利点がある。
According to the above configuration, the semi-metal gas is Al-Ga-In
Since the alloy liquid passes through the alloy, it is circulated and used effectively, which has the advantage of increasing the amount of oxygen and moisture absorbed in the semi-finished gas.

なお上記実施例では半導体製造用のガスについ
ての精製の場合を例示して説明したが、酸素、水
分を除去する精製ガスとしては上記半導体製造用
のガスに限定されるものではなく、いかなる工業
用ガスの酸素、水分を除去するための精製装置と
して使用し得ることは勿論である。
In the above embodiments, the purification of gas for semiconductor manufacturing was explained as an example, but the purified gas for removing oxygen and moisture is not limited to the gas for semiconductor manufacturing mentioned above, and may be used for any industrial purpose. Of course, it can be used as a purification device for removing oxygen and moisture from gas.

〔考案の効果〕[Effect of idea]

以上説明した如く、本考案に係るガス精製装置
によれば、 (1) 半材ガスを脈流を生ずることなく精製できる
ので、常に流量の変動が少なく安定して供給し
得て、特に微量のガス流量制御を行なう半導体
製造装置用として用いて実施効果が大きい。
As explained above, according to the gas purification apparatus according to the present invention, (1) half-metal gas can be purified without causing pulsation, so it can always be stably supplied with little variation in flow rate, and especially in trace amounts. It is highly effective when used in semiconductor manufacturing equipment that controls gas flow rate.

(2) 半材ガス中の酸素及び水分がAl−Ga−In合
金と化学反応を起こしたときに生ずる酸化物粒
子がガス製造装置外に排出されることが極めて
少ないので該装置後段に設けたフイルタを長期
にわたつて使用し得る効果がある。
(2) Oxide particles generated when oxygen and moisture in the semi-finished gas undergo a chemical reaction with the Al-Ga-In alloy are extremely unlikely to be discharged outside the gas production equipment, so it is installed at the latter stage of the equipment. This has the effect of allowing the filter to be used for a long period of time.

(3) 本考案に係るガス精製装置は簡単な構成によ
り、上記の効果を得ることができるので実用性
が高い。
(3) The gas purification device according to the present invention has a simple configuration and can obtain the above effects, so it is highly practical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案のガス精製装置の一実施例を示
す断面正面図、第2図は同じく他の実施例を示す
断面正面図、第3図は従来のガス精製装置の断面
正面図である。 1,11……中空容器、3,12……ガス導入
管、4,13……ガス導出管、5……フイルタ、
10……処理剤、14……多孔板。
FIG. 1 is a cross-sectional front view showing one embodiment of the gas purification device of the present invention, FIG. 2 is a cross-sectional front view showing another embodiment, and FIG. 3 is a cross-sectional front view of a conventional gas purification device. . 1, 11...Hollow container, 3, 12...Gas inlet pipe, 4,13...Gas outlet pipe, 5...Filter,
10...Treatment agent, 14...Porous plate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ガス導入口及びガス導出口を有する中空筒体内
に、適宜形状の固型担体にアルミニウム、ガリウ
ム及びインジウムからなる合金を付着させてなる
処理剤を充填し、被精製ガスを前記ガス導入口か
ら中空筒体内に導入することにより、被精製ガス
中の酸素、水分等の不純物を前記処理剤で除去す
るよう構成したことを特徴とするガス精製装置。
A processing agent made by adhering an alloy of aluminum, gallium, and indium to a suitably shaped solid carrier is filled into a hollow cylinder having a gas inlet and a gas outlet, and the gas to be purified is introduced into the hollow cylinder from the gas inlet. A gas purification apparatus characterized in that the treatment agent is configured to remove impurities such as oxygen and moisture in the gas to be purified by introducing the treatment agent into a cylinder.
JP1985201333U 1985-12-26 1985-12-26 Expired JPH0346831Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985201333U JPH0346831Y2 (en) 1985-12-26 1985-12-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985201333U JPH0346831Y2 (en) 1985-12-26 1985-12-26

Publications (2)

Publication Number Publication Date
JPS62106625U JPS62106625U (en) 1987-07-08
JPH0346831Y2 true JPH0346831Y2 (en) 1991-10-03

Family

ID=31164685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985201333U Expired JPH0346831Y2 (en) 1985-12-26 1985-12-26

Country Status (1)

Country Link
JP (1) JPH0346831Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911065B2 (en) * 2002-12-26 2005-06-28 Matheson Tri-Gas, Inc. Method and system for supplying high purity fluid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197221A (en) * 1983-06-30 1985-10-05 ジエ−ムズ ア−ル.シエリ− Device and method for improved gettering of reactive gas
JPS60222127A (en) * 1984-04-20 1985-11-06 Sony Corp Purifying apparatus of gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197221A (en) * 1983-06-30 1985-10-05 ジエ−ムズ ア−ル.シエリ− Device and method for improved gettering of reactive gas
JPS60222127A (en) * 1984-04-20 1985-11-06 Sony Corp Purifying apparatus of gas

Also Published As

Publication number Publication date
JPS62106625U (en) 1987-07-08

Similar Documents

Publication Publication Date Title
US3503184A (en) Treatment of gases evolved in the production of aluminum
US4007118A (en) Ozone oxidation of waste water
US4067731A (en) Method of treating molten metal
JPH04190803A (en) Vacuum degassing method
US3904180A (en) Apparatus for fluxing and filtering of molten metal
JPH0346831Y2 (en)
US4177066A (en) Method and apparatus for the removal of impurities from molten metal
US5302361A (en) Multi-bed mass transfer column with mobile packing
US5296205A (en) Multi-bed mass transfer column with mobile packing
JP2012521957A (en) Method and apparatus for reducing tin oxide during float glass manufacture
US4078040A (en) Method of employing elemental zinc for the purification of aqueous solutions of metallic salts
US2053518A (en) Process for the production of nitrates
JP2653319B2 (en) Deoxidizer
US2533245A (en) Method of producing copper sulfate
JPS5820889B2 (en) Method for producing metal halide particles
JP3260786B2 (en) Steam purification method
US587408A (en) Henry livingstone sulman
EP0514175B1 (en) Treatment of longitudinally extending members passing through a bath of molten metal
JPS6358601B2 (en)
US4177065A (en) Method for the degassing and filtration of molten metal
US5024696A (en) Apparatus and method for degassing molten metal
JP3620072B2 (en) Method for forming an activated carbon-supported catalyst bed
JP4169820B2 (en) Method for removing impurities in oxygen gas
JP2000256006A (en) Method for refining activated carbon and device therefor
US2125190A (en) Gas and liquid contact apparatus and method