JPH034682B2 - - Google Patents

Info

Publication number
JPH034682B2
JPH034682B2 JP17613685A JP17613685A JPH034682B2 JP H034682 B2 JPH034682 B2 JP H034682B2 JP 17613685 A JP17613685 A JP 17613685A JP 17613685 A JP17613685 A JP 17613685A JP H034682 B2 JPH034682 B2 JP H034682B2
Authority
JP
Japan
Prior art keywords
bituminous
mixture
asphalt
ionomer resin
bituminous mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17613685A
Other languages
Japanese (ja)
Other versions
JPS6237402A (en
Inventor
Tooru Yoshikane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIJU KENSETSU KK
Original Assignee
DAIJU KENSETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIJU KENSETSU KK filed Critical DAIJU KENSETSU KK
Priority to JP17613685A priority Critical patent/JPS6237402A/en
Publication of JPS6237402A publication Critical patent/JPS6237402A/en
Publication of JPH034682B2 publication Critical patent/JPH034682B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Road Paving Structures (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 この発明は橋面舗装などの特殊舗装で䜿甚され
る瀝青質混合物に関するものである。詳しくは、
瀝青質ずオレフむン系ポリマヌよりなる結合材に
おいお該オレフむン系ポリマヌがアむオノマヌ暹
脂からなるもので、その混合物の空隙率が以
䞋である新芏な瀝青質混合物に終わるものであ
る。 埓来の技術 埓来より舗装の䞭でも最も高床な性胜や斜工技
術が必芁ずされおいる橋面舗装、特に鋌床版䞊に
甚いる瀝青質混合物においおは、その性胜ずしお
鋌床版に生じる倉圢に远埓できる撓み性を有す
るこず、高枩時に茪荷重による流動や倉圢を生
じない安定性を有するこず、䜎枩時に脆化によ
るひび割れを生じないための䌞び胜力を有するこ
ず、鋌床版を腐蝕させる氎分の浞透を防ぐため
䞍透氎であるこず、等が芁求されるのであるが、
ここにおいおストレヌトアスフアルト、或いはそ
れにアスフアルト改質材を甚いお䞀般に150〜160
℃に加熱される通垞のアスフアルト混合物加熱
アスフアルト混合物を鋌床版䞊の瀝青質混合物
ずしお甚いる堎合には、亀通荷重による塑性流動
に察する抵抗性を維持するために、アスフアルト
混合物の空隙率を少なくずも以䞊に保持する
必芁があ぀た。しかしこのような空隙率を有する
瀝青質混合物では透氎係数が倧きく瀝青質混合物
局を浞透する雚氎等による鋌床版の酞化腐蝕から
鋌床版や鋌桁の耐久性を䜎䞋する問題が生じた。
このためその防止の目的で鋌床版ず瀝青質混合物
ずの間に防氎局を蚭けお察凊しおいた。 ずころが、このように鋌床版䞊に防氎局を蚭け
るこずは、斜工の繁雑さずコスト高を招き、か぀
その防氎局が誘匕ずな぀お䞊局の瀝青質混合物局
が滑動し舗装の砎壊に至る欠陥もしばしば芋られ
た。それにこの通垞の加熱アスフアルト混合物は
撓み性にも劣り、ひび割れを生じやすいずい぀た
ずころから、あたり倚甚はされおいない。 このような状況から鋌床版䞊の瀝青質混合物ず
しおは、通垞䞍透氎性の舗装甚混合物であるグヌ
スアスフアルトの䜿甚がなされおいる。このグヌ
スアスフアルトは、䞀般に210〜251℃の高枩でク
ツキングされ流動性を垯びた瀝青質混合物砕
石、砂、石粉、及びアスフアルトを鋌床版䞊に
流し広げるこずにより舗装を行なうものである
が、このグヌスアスフアルトは瀝青質ずしお通垞
針入床2040のストレヌトアスフアルト及び針入
床がそれよりも小さい瀝青分を含む倩然アスフア
ルト甚が䜵甚され、石粉よりなるフむラヌ分も20
〜30ず通垞の加熱アスフアルト混合物の数に
比べお極めお倚いのが特色である。しかし、針入
床2040のストレヌトアスフアルトや倩然アスフ
アルトは、舗装甚ずしおは䞀般にはあたり甚いら
れない材料であるため、入手、取扱い、貯蔵、加
熱などが䞍䟿な堎合が倚く、通垞の加熱アスフア
ルト混合物を補造する堎合に比べお䜙分な蚭備や
蚭備や材料の倉庫を必芁ずする。特に倩然アスフ
アルトにおいおは荷姿が玙容噚等に泚入された固
圢塊状のため、䜿甚時には解砕埌再床加熱溶融す
る蚭備ず䜜業が必芁ずなる。 たた、混合時においおは各材料は通垞舗装甚ず
しおの加熱アスフアルト混合物よりも高枩に加熱
する蚭備が必芁で、特にフむラヌを倚く䜿甚する
ため、通垞の加熱アスフアルトプラントが保有す
る骚材のドラムドラむダでは骚材ず䞀緒に盎接加
熱するこずはできず、その加熱装眮を別途に蚭け
るこずも必芁ずなる。曎に、䜜業性を高めるため
混合埌から斜工盎前たでに通垞の混合物枩床に比
べお数十床も高い230℃皋床に加熱、混合あるい
は撹拌するための運搬車や敷均しのための特殊な
機械を必芁ずする。たた、敷均らし時の混合物の
枩床が高いずころから、橋面ずくに鋌床版橋にお
いおは、橋梁の䞻構造である橋桁や鋌床版に熱倉
圢を䞎えたり、防錆甚塗料の熱倉質、劣化による
防錆効果の䜎䞋、接着性の䜎䞋による塗膜の剥離
等倚くの問題があ぀た。曎に、物性面で、倏期高
枩時においお、茪重荷による塑性流動のために生
ずるわだち郚分の窪み、即ちわだち掘れにより路
面の平坊性を損う点で未だ問題を残しおいる。 発明が解決しようずする問題点 このような問題解決においお、汎甚性の面から
通垞の蚭備を甚いお、䞍透氎で、か぀塑性流動抵
抗性の高い舗装甚の瀝青質混合物を補造・斜工す
るにはアスフアルト改質材で改質した瀝青質結合
材の添加量を増す方法や、締固め゚ネルギヌを高
める方法等により、瀝青質混合物の空隙率を枛少
させるこずが考えられる。しかし、このようにし
お埗られた舗装甚瀝青質混合物は、珟状のアスフ
アルト改質材では空隙率の䜎䞋ずずもに匷床特性
や塑性流動抵抗性が著しく䜎䞋し党く舗装の甚に
䟛し埗ないこずが知られおいる。䟋えば硬質系ア
スフアルトセミブロヌンアスフアルトやその
他、ポリ゚チレン、゚チレン酢酞ビニルコポリマ
ヌ、゚チレン゚チルアクリル酞コポリマヌ、アタ
クチツクポリプロピレン、゚チレンメタアクリル
酞コポリマヌ等からなるようなオレフむン系熱可
塑性暹脂による粘性の匕き䞊げなどで瀝青質の改
質を図り、結合材の増量で空隙率の䜎枛を行な぀
た堎合、衚−に瀺すように空隙率の枛少に䌎い
ホむヌルトラツキング詊隓による動的安定床、即
ち塑性流動䜎構成が著しく䜎䞋し、亀通荷重に耐
えるに十分な耐久性を有する舗装甚瀝青質混合物
ずするこずはできなか぀た。
(Industrial Application Field) This invention relates to a bituminous mixture used in special pavements such as bridge pavements. For more information,
In a binder made of bituminous material and an olefinic polymer, the olefinic polymer is made of an ionomer resin, resulting in a novel bituminous mixture in which the porosity of the mixture is 2% or less. (Conventional technology) Bridge surface pavement, which has conventionally required the most advanced performance and construction technology among pavements, especially the bituminous mixture used on steel deck slabs, has a performance that is limited to the deformation that occurs on steel deck slabs. It must have the flexibility to follow suit, it must have the stability to prevent flow or deformation due to wheel loads at high temperatures, it must have the elongation ability to prevent cracking due to embrittlement at low temperatures, and it must be able to resist moisture that corrodes the steel deck. It is required to be impermeable to water to prevent penetration.
Here, straight asphalt or asphalt modified material is used to generally
When using a conventional asphalt mixture heated to 10°C (heated asphalt mixture) as the bituminous mixture on the steel deck, the porosity of the asphalt mixture should be reduced to at least It was necessary to maintain it at 3% or higher. However, a bituminous mixture having such a porosity has a large permeability coefficient, and a problem arises in that the durability of the steel deck and steel girder is reduced due to oxidation corrosion of the steel deck by rainwater etc. that permeates through the bituminous mixture layer.
To prevent this, a waterproof layer has been provided between the steel deck slab and the bituminous mixture. However, providing a waterproof layer on the steel deck slab in this way increases the complexity and cost of construction, and the waterproof layer can also cause defects in the upper bituminous mixture layer that can slip and cause pavement failure. was also often seen. In addition, this conventional heated asphalt mixture is said to have poor flexibility and is prone to cracking, so it is not widely used. Under these circumstances, goose asphalt, which is a water-impermeable pavement mixture, is usually used as the bituminous mixture on the steel deck. This goose asphalt is generally paved by pouring and spreading a fluidized bituminous mixture (crushed stone, sand, stone powder, and asphalt) on steel slabs by curing at a high temperature of 210 to 251 degrees Celsius. , this goose asphalt is used in combination with straight asphalt with a bituminous content of 20/40 and natural asphalt with a bituminous content with a smaller penetration, and also with a filler content of stone powder of 20/40.
It is characterized by an extremely high content of ~30%, compared to several percent of ordinary heated asphalt mixtures. However, straight asphalt and natural asphalt with a penetration of 20/40 are materials that are not commonly used for paving, and are often inconvenient to obtain, handle, store, and heat. Requires extra equipment and storage of equipment and materials compared to manufacturing mixtures. In particular, natural asphalt is packaged in the form of a solid lump poured into a paper container, etc., so when it is used, it requires equipment and work to heat and melt it again after crushing it. In addition, when mixing, each material requires equipment that heats it to a higher temperature than the heated asphalt mixture normally used for paving, and since a large amount of filler is used in particular, the aggregate drum dryer that is normally used in heated asphalt plants cannot be used. It cannot be heated directly together with the aggregate, and a separate heating device is required. Furthermore, in order to improve work efficiency, from the time of mixing to the time immediately before construction, special equipment is required to heat, mix, or stir the mixture to around 230 degrees Celsius, which is several tens of degrees higher than the normal mixture temperature. Requires. In addition, because the temperature of the mixture during leveling is high, it can cause thermal deformation of the bridge girder and steel deck, which are the main structure of the bridge, and thermal deterioration of the anti-corrosion paint. There were many problems such as a decrease in rust prevention effect due to deterioration, and peeling of the coating due to decrease in adhesion. Furthermore, in terms of physical properties, there still remains a problem in that the flatness of the road surface is impaired by dents in ruts, that is, ruts, which occur due to plastic flow due to wheel loads at high temperatures in summer. (Problems to be Solved by the Invention) In order to solve these problems, a bituminous mixture for pavement that is impermeable to water and has high plastic flow resistance is manufactured and constructed using ordinary equipment from the viewpoint of versatility. To achieve this, it is possible to reduce the porosity of the bituminous mixture by increasing the amount of bituminous binder modified with an asphalt modifier or by increasing compaction energy. However, it is known that the bituminous mixture for pavement obtained in this way cannot be used for pavement purposes at all because the strength properties and plastic flow resistance decrease significantly with the decrease in porosity with the current asphalt modified material. It is being For example, increasing viscosity with hard asphalt (semi-blown asphalt) and other olefinic thermoplastic resins such as polyethylene, ethylene vinyl acetate copolymer, ethylene ethyl acrylic acid copolymer, atactic polypropylene, ethylene methacrylic acid copolymer, etc. When bituminous material is modified and the porosity is reduced by increasing the amount of binder, as shown in Table 1, as the porosity decreases, the dynamic stability as determined by the wheel tracking test, that is, the plastic flow decreases. The composition deteriorated significantly and it was not possible to obtain a bituminous paving mixture with sufficient durability to withstand traffic loads.

【衚】 そこで、本発明は通垞の斜工蚭備を甚いながら
も高気枩時での塑性流動抵抗性が高く、か぀䞍透
氎性で、曎に撓み性に優れる舗装甚の瀝青質混合
物を提䟛するこずにある。 問題点を解決するための手段 本発明者は、䞊蚘した埓来の問題点を解決すべ
く、鋭意研究を重ねた結果、舗装甚の瀝青質混合
物が䞍透氎ずなる空隙率の限界を芋い出し、その
領域においお瀝青質93〜75重量郚に察しおアむオ
ノマヌ暹脂〜25重量郚からなる瀝青質結合材を
甚いるこずにおいお、通垞の加熱アスフアルト混
合物の補造蚭備や斜工機械を䜕ら倉曎するこずな
く䞍透氎でか぀高気枩時での塑性流動抵抗性や撓
み性に優れた舗装甚瀝青質混合物が埗られるこず
を芋いだし本発明を完成するに至぀た。 本発明者は䞍透氎性舗装なる考え方においお瀝
青質混合物の空隙率が枛少すれば、空隙の存圚圢
態が氎を透しやすい連続した気孔の状態から各々
独立した気泡ずなり、その結果、䞍透氎ずなる空
隙率の限界が存圚するず考え、混合物の透氎係数
を枬定した。詊隓に甚いた混合物の皮類は、アス
フアルト舗装芁綱瀟団法人日本道路協䌚に瀺
されおいる密粒床アスコン13、现粒床アスコ
ン13、现粒床アスコン13F、アスフアルト
モルタルの皮類ずし、それぞれに぀いお、空隙
率の異なる䟛詊䜓をマヌシダル詊隓甚突固め装眮
を甚いお䜜成した。なお、詊隓に甚いた䟛詊䜓の
寞法は盎埄10.16cm、高さ6.35cmで、詊隓は15℃
の恒枩宀においお行な぀た。透氎係数は、Kg
cm2の圧力ずなる定氎頭のもずで経過時間ず透
氎量の関係より求め、衚−にその結果を瀺し
た。
[Table] Therefore, the present invention aims to provide a bituminous mixture for pavement that has high plastic flow resistance at high temperatures, is impermeable to water, and has excellent flexibility while using ordinary construction equipment. be. (Means for Solving the Problems) In order to solve the above-mentioned conventional problems, the inventor of the present invention, as a result of intensive research, discovered the limit of porosity at which a bituminous mixture for pavement becomes impermeable to water. In this area, the use of a bituminous binder consisting of 93 to 75 parts by weight of bituminous material and 7 to 25 parts by weight of ionomer resin can be achieved without any changes to the production equipment or construction machinery for conventional hot asphalt mixtures. The inventors have discovered that a bituminous mixture for pavement that is permeable to water and has excellent plastic flow resistance and flexibility at high temperatures can be obtained, leading to the completion of the present invention. The present inventor believes that when the porosity of a bituminous mixture decreases based on the idea of impermeable pavement, the form of the pores changes from continuous pores that allow water to pass through, to individual bubbles, and as a result, it becomes impervious to water. Considering that there is a limit to the porosity, we measured the hydraulic conductivity of the mixture. There were four types of mixtures used in the test: dense-grained asphalt (13), fine-grained ascon (13), fine-grained asphalt (13F), and asphalt mortar as shown in the asphalt pavement guidelines (Japan Road Association). For each specimen, specimens with different porosity were created using a compaction device for marshal testing. The dimensions of the specimen used in the test were 10.16cm in diameter and 6.35cm in height, and the test was conducted at 15℃.
The experiments were carried out in a constant temperature room. The hydraulic conductivity is 2Kg
It was determined from the relationship between elapsed time and water permeability under a constant water head with a pressure of f/ cm2 , and the results are shown in Table 2.

【衚】【table】

【衚】 か぀たものを瀺す。
この結果から、いずれの配合の瀝青質混合物も
空隙率以䞊においおは透氎性を有するもの
の、それ以䞋においおは透氎しにくくなり、2.3
以䞋ではいずれの配合の混合物も䞍透氎ずな
る。このこずは、圓初本発明者が想定した混合物
䞭の空隙率が枛少すれば、その䞭に含たれる気泡
は独立した状態ずなり、もはや氎の浞透する進路
ずはなり埗ないこずを立蚌するものである。以䞊
のこずから本発明における舗装甚の瀝青質混合物
が䞍透氎ずなる領域は空隙率が以䞋ずするこ
ずで十分ずみなせる。 前蚘瀝青質は、舗装に䜿甚可胜なものであり、
JIS−K2531による枬定においお、軟化点が30〜
130℃、望たしくは軟化点40〜90℃、のものであ
぀お垞枩20〜25℃においお固䜓あるいは半固
䜓のものをさす。 この瀝青質はストレヌトアスフアルト、倩然ア
スフアルト、セミブロヌンアスフアルト、ブロヌ
ンアスフアルト、ピツチ類、タヌル類、カラヌ舗
装甚石油暹脂系バむンダヌ類などの垞枩固䜓ある
いは半固䜓のものの䞭から遞択䜿甚される。なか
でも、ストレヌトアスフアルト、倩然アスフアル
ト、セミブロヌンアスフアルト、ブロヌンアスフ
アルト、カラヌ舗装甚石油暹脂系バむンダヌはア
むオノマヌ暹脂ずの盞溶性も良く、匷床特性の改
良効果も倧きくお望たしい。 前蚘アむオノマヌ暹脂は、α−オレフむンずカ
ルボン酞をも぀たモノマヌずの共重合䜓におい
お、カルボキシル基を利甚しお金属むオンで分子
鎖間を架橋したポリマヌ矀のものであり、本発明
にはこの意味のアむオノマヌ暹脂が䜿甚される。
なかでも゚チレンず䞍飜和カルボン酞䟋えばア
クリル酞、メタアクリン酞など共重合䜓の分子
間を架橋した構造のアむオノマヌ暹脂が奜たし
く、ずくに金属むオンがZnむオンからなり、メ
ルトむンデツクスが1.0以䞊であり、か぀その圢
状が粒状、粉末状、フレヌク状、ペレツト状など
の比衚面積の倧きいものが改質効果が倧きくお望
たしい。なお、䜜業や加工の取扱いの面からは粉
末状の暹脂がよい。 アむオノマヌ暹脂は熱可塑性暹脂でありながら
固䜓化される枩床域では金属むオン結合を有し、
熱硬化性暹脂の劂く非垞に匷靭で適床の匟力性ず
柔軟性をもち、高枩域ではむオン結合が匱たり、
熱可塑性暹脂同様に溶融される性質を有するもの
である。このため、アむオノマヌ暹脂で改質され
た瀝青質結合材によるものは、高枩時での塑性流
動抵抗性や、撓み性においお優れたものずなる。 アむオノマヌ暹脂の添加量は、衚−に瀺すよ
うに空隙率以䞋で塑性流動抵抗性ずしおのホ
むヌルトラツキング詊隓接地6.4Kgcm2、60
℃における動的安定床ができるだけ高いもので
少なくずもグヌスアスフアルト以䞊のものである
には、瀝青質93重量郚に察しお重量郚以䞊であ
るこずが必芁である。たた瀝青質75重量郚に察し
お25重量郚を超えお䜿甚するず、瀝青質舗装甚混
合物の粘床が高くなるため奜たしくない。
[Table] Shows what was taken.
From this result, the bituminous mixture of any composition has water permeability when the porosity is 3% or more, but it becomes difficult to permeate when the porosity is less than 3%.
% or less, the mixture of any formulation becomes water-impermeable. This proves that if the porosity in the mixture, which was originally envisioned by the inventor, decreases, the air bubbles contained therein become independent and can no longer serve as paths for water to penetrate. be. From the above, it can be considered that it is sufficient for the area where the bituminous mixture for pavement according to the present invention is impermeable to water to have a porosity of 2% or less. The bituminous material can be used for paving,
When measured according to JIS-K2531, the softening point is 30~
130°C, preferably a softening point of 40-90°C, and is solid or semi-solid at room temperature (20-25°C). This bituminous material is selected from those that are solid or semi-solid at room temperature, such as straight asphalt, natural asphalt, semi-blown asphalt, blown asphalt, pitches, tars, and petroleum resin binders for colored pavement. Among these, straight asphalt, natural asphalt, semi-blown asphalt, blown asphalt, and petroleum resin binders for colored pavement are desirable because they have good compatibility with ionomer resins and have a large effect on improving strength properties. The ionomer resin is a copolymer of α-olefin and a monomer having a carboxylic acid, and is a polymer group in which molecular chains are cross-linked with metal ions using carboxyl groups, and the present invention does not include this meaning. ionomer resins are used.
Among these, ionomer resins having a structure in which the molecules of a copolymer of ethylene and unsaturated carboxylic acid (for example, acrylic acid, methacrylic acid, etc.) are crosslinked are preferable, and in particular, the metal ions are composed of Zn ions and the melt index is 1.0 or more. , and those having a large specific surface area such as granules, powders, flakes, and pellets are desirable because they have a large modifying effect. Note that powdered resin is better from the viewpoint of handling during work and processing. Although ionomer resin is a thermoplastic resin, it has metal ion bonds in the temperature range where it solidifies.
It is very strong like a thermosetting resin, has moderate elasticity and flexibility, and its ionic bonds weaken at high temperatures.
It has the property of being melted like a thermoplastic resin. Therefore, a bituminous binder modified with an ionomer resin has excellent plastic flow resistance and flexibility at high temperatures. The amount of ionomer resin added is determined by the wheel tracking test (ground contact 6.4 Kgf/cm 2 , 60
In order to have as high a dynamic stability as possible (at least as high as that of goose asphalt) at 100° C.), it is necessary that the amount is 7 parts by weight or more based on 93 parts by weight of bituminous material. Moreover, if it is used in an amount exceeding 25 parts by weight based on 75 parts by weight of bituminous material, the viscosity of the bituminous pavement mixture increases, which is not preferable.

【衚】 ここに混合物甚の骚材ずしおは、通垞の砂、砂
利、砕石等が䜿甚される。たたフむラヌずしおは
炭酞カルシりム、消石灰、セメント等の瀝青質舗
装に通垞䜿甚される材料が甚いられる。瀝青質結
合材ず骚材、石粉ずの混合割合は、瀝青質結合材
の組成比、骚材、石粉の皮類などによ぀お異なる
が、この発明に係る瀝青質混合物においお空隙率
が以䞋ずなるような瀝青質結合材の配合割合
は瀝青質混合物党䜓に察しお、〜15重量郚皋床
である。 本発明に係る瀝青質混合物を埗るには、予め加
熱溶融した瀝青質䞭にアむオノマヌ暹脂を溶解し
た改質瀝青質結合材ず別途加熱された骚材及びフ
むラヌずを混合する方法や、アむオノマヌ暹脂を
そのたた加熱された瀝青質及び骚材、フむラヌの
混合時にミキサヌ䞭に投入する方法等、通垞の混
合手段により容易に実斜し埗る。なお、圓該アむ
オノマヌ暹脂ず共に老化防止剀、剥離防止剀、顔
料、可塑剀、その他埓来舗装材に適甚されるゎム
類等も必芁に応じお䜵甚するこずもできるが、䞀
般には圓該アむオノマヌ暹脂を骚材やフむラヌず
共に混合時に投入䜿甚するのが望たしい。本発明
に係る瀝青質混合物を補造する堎合、その混合枩
床は165〜180℃、締固め枩床は150〜180℃にする
のが奜たしい。 詊隓䟋  次に、本発明を埗るための詊隓䟋を説明する。 空隙率が2.0以䞋ずなる領域においお本詊隓
䟋の混合物の皮類ず塑性流動抵抗性及び透氎性
ずの関係に぀いお詊隓した。比范䟋ずしおは、゚
チレン酢酞ビニルコポリマヌ、クロロプレンゎ
ム、セミブロヌンアスフアルト、ストレヌトアス
フアルトによるもの、およびグヌスアスフアルト
に぀いお詊隓した。 この詊隓䟋に䜿甚した瀝青質結合材の配合は
衚−に瀺した。なお、アむオノマヌ暹脂ずしお
はハむミラン1702䞉井ポリケミカルKK補造、
アむオノマヌ暹脂の商品名、゚チレン酢酞ビニ
ルコポリマヌずしおぱバフレツクス420䞉井
ポリケミカルKK補造、゚チレン酢酞ビニルコポ
リマヌの商品名、クロロプレンゎムずしおはハ
ヌドり゚む型電気化孊工業KK補造、クロロ
プレンゎムの商品名、セミブロヌンアスフアル
トずしおはAC−100シ゚ル石油瀟補造のもの
を甚いた。
[Table] Ordinary sand, gravel, crushed stone, etc. are used as aggregates for the mixture. As the filler, materials commonly used for bituminous pavement such as calcium carbonate, slaked lime, and cement are used. The mixing ratio of the bituminous binder, aggregate, and stone powder varies depending on the composition ratio of the bituminous binder, the type of aggregate, stone powder, etc., but in the bituminous mixture according to the present invention, the porosity is 2% or less. The blending ratio of the bituminous binder is approximately 7 to 15 parts by weight based on the entire bituminous mixture. The bituminous mixture according to the present invention can be obtained by mixing a modified bituminous binder in which an ionomer resin is dissolved in preheated and melted bituminous material with separately heated aggregate and filler, or by mixing an ionomer resin with separately heated aggregate and filler. This can be easily carried out by ordinary mixing means, such as by adding the heated bituminous material, aggregate, and filler into a mixer at the time of mixing. In addition, anti-aging agents, anti-peeling agents, pigments, plasticizers, and other rubbers that are conventionally applied to paving materials can be used together with the ionomer resin as needed, but in general, the ionomer resin is used as an aggregate. It is preferable to use it when mixing with filler or filler. When producing the bituminous mixture according to the invention, the mixing temperature is preferably 165-180°C and the compaction temperature is preferably 150-180°C. Test Example 1 Next, a test example for obtaining the present invention will be explained. The relationship between the type of mixture of Test Example 1 and plastic flow resistance and water permeability was tested in a region where the porosity was 2.0% or less. As comparative examples, ethylene vinyl acetate copolymer, chloroprene rubber, semi-blown asphalt, straight asphalt, and goose asphalt were tested. The formulation of the bituminous binder used in Test Example 1 is shown in Table 4. The ionomer resin used is Himilan #1702 (manufactured by Mitsui Polychemical KK,
ionomer resin (trade name), ethylene vinyl acetate copolymer EVAFLEX #420 (manufactured by Mitsui Polychemicals KK, trade name of ethylene vinyl acetate copolymer), and chloroprene rubber (hardway type (manufactured by Denki Kagaku Kogyo KK, product name of chloroprene rubber)). As the semi-blown asphalt, AC-100 (manufactured by Shell Oil Co., Ltd.) was used.

【衚】【table】

【衚】 詊隓に甚いた混合物の皮類は、−〜−
に぀いおはアスフアルト舗装芁綱瀟団法人日本
道路協䌚に瀺される密粒床アスコン13、现
粒床アスコン13F、及びスクリヌニングス、
砂、石粉からなるモルタル配合ずし、−に぀
いおはグヌスアスフアルトずした。前蚘−〜
−に぀いおは小型軞パグミルミキサヌにお
箄165℃にお分間混合し、−に぀いおは小
型クツカヌにお玄240℃で50分間クツキングしお
補造した。詊隓に぀いお、マヌシダル安定床詊隓
では、−〜−は160℃にお䞡面50回ず぀
突固めお䜜成した䟛詊䜓を、アスフアルト舗装芁
綱瀟団法人道路協䌚に瀺される条件のもずで
安定床、フロヌ倀を求めた。たた、透氎係数は衚
−䞭の詊料番号−、−、−、−
、−のものに぀いおはマヌシダル安定詊隓
の䟛詊䜓ず同じ方法で䜜成した䟛詊䜓に぀いお、
たた衚−䞭の詊料番号−のものは、型枠内
に流し蟌んで䜜成した䟛詊䜓に぀いおKgcm2
の定氎頭のもずで経過時間ず透氎量ずから求め
た。 ホむヌルトラツキング詊隓に甚いる䟛詊䜓の成
型は衚−䞭の地怜番号−、−、−
、−、−のものに぀いおはマヌシダル
安定床詊隓の䟛詊䜓ず同じ空隙率ずなるようにロ
ヌラヌコンパクタヌにお成型し、詊料番号−
のものに぀いおは型枠内に流し蟌んで成型した。
詊隓は各々の䟛詊䜓に぀いお60℃の枩床条件で
接地圧6.4Kgcm2の荷重のもずで走行詊隓をし、
動的安定床を求めた。この詊隓の結果は衚−
に瀺した。
[Table] The types of mixtures used in the test are 1-a to 1-e.
Regarding asphalt pavement guidelines (Japan Road Association), dense-grained ascon (13), fine-grained ascon (13F), and screenings,
The mortar was mixed with sand and stone powder, and for 1-f, goose asphalt was used. 1-a~
1-e was produced by mixing for 1 minute at about 165°C in a small 2-screw pug mill mixer, and 1-f was produced by baking at about 240°C for 50 minutes in a small-sized cookie cutter. Regarding the test, in the marshal stability test, 1-a to 1-e were made by tamping specimens 50 times on each side at 160℃ under the conditions specified in the Asphalt Pavement Guidelines (Japan Road Association). The stability and flow values were calculated using In addition, the hydraulic conductivity is sample number 1-a, 1-b, 1-c, 1- in Table-4.
For the specimens d and 1-e, the specimens were prepared in the same manner as the specimens for the Marshall stability test.
In addition, for sample number 1-f in Table 4, the test specimen was poured into a mold and produced at a rate of 2Kgf/ cm2.
It was calculated from the elapsed time and water permeability under a constant head of water. The molding of the specimens used for the wheel tracking test is based on the district inspection numbers 1-a, 1-b, and 1- in Table-4.
Samples c, 1-d, and 1-e were molded using a roller compactor to have the same porosity as the specimen for the marshal stability test, and sample number 1-f was used.
The material was poured into a mold and molded.
Test 1 was a running test of each specimen at a temperature of 60℃ and a ground pressure of 6.4Kgf/ cm2 .
Dynamic stability was determined. The results of this test 1 are shown in Table-5.
It was shown to.

【衚】 か぀たこずを瀺す。
衚−に぀いお明らかなように、比范䟋に瀺す
ような、埓来、瀝青質結合材の改質材ずしお甚い
られおいた熱可塑性暹脂である゚チレン酢酞ビニ
ルコポリマヌやゎムであるクロロプレンあるい
は、耐流動性瀝青質であるセミブロヌンアスフア
ルトを甚いた舗装甚瀝青質混合物では、䞍透氎性
を呈する空隙率の小さい領域においおは塑性流動
抵抗性は著しく䜎䞋し、実甚䞊望たしいずされる
動的安定床500以䞊を確保できないのに察しお、
本詊隓䟋に係るアむオノマヌ暹脂により改質し
た瀝青質結合材を甚いる堎合は、いずれの皮類の
混合物に察しおも極めお高い改良効果を瀺し、そ
の倀は動的安定床においお、比范䟋の−、
−、−、−に瀺したものに察し、15〜
50倍である。たた、比范䟋−に瀺したグヌス
アスフアルトにしおも実甚䞊の最小限床の300を
少し超えおいるにすぎず決しお奜たしい倀ではな
い。それに察しお詊隓䟋に係るものにあ぀おは
その〜13倍の高い倀を瀺す混合物が埗られるこ
ずが認められた。 詊隓䟋  ここでは鋌床版に察する撓みの远随性や寒冷時
における脆化の皋床をみるために、䜎枩時の撓み
性に぀いお詊隓した。 比范䟋ずしおは、クロロプレンゎムによるも
の、およびグヌスアスフアルトに぀いお詊隓し
た。この詊隓䟋に䜿甚した瀝青質結合材の配合
は衚−に瀺した。なお、アむオノマヌ暹脂ずし
おはハむミラン1702䞉井ポリケミカルKK補、
アむオノマヌ暹脂の商品名、クロロプレンゎム
ずしおはハヌドり゚む型電気化孊工業KK、
クロロプレンゎムの商品名を甚いた。
[Table] Shows what happened.
As is clear from Table 5, ethylene-vinyl acetate copolymer, a thermoplastic resin, chloroprene, a rubber, etc., which were conventionally used as modifiers for bituminous binders, as shown in the comparative examples, In a bituminous mixture for pavement using semi-blown bituminous asphalt, the plastic flow resistance decreases significantly in areas with low porosity that exhibit water impermeability, and the dynamic stability is 500 or more, which is considered desirable for practical purposes. While it is not possible to secure
When using the bituminous binder modified with the ionomer resin according to Test Example 1, it showed an extremely high improvement effect on all types of mixtures, and the value was higher than that of Comparative Example in terms of dynamic stability. -b, 1
-c, 1-d, 1-e, 15~
It is 50 times more. Further, even in the case of the goose asphalt shown in Comparative Example 1-f, the value is only slightly over the practical minimum value of 300, which is by no means a desirable value. On the other hand, in the case of Test Example 1, it was observed that a mixture showing a value 4 to 13 times higher than that was obtained. Test Example 2 Here, a test was conducted on the flexibility at low temperatures in order to examine the ability to follow the deflection of steel deck slabs and the degree of embrittlement at cold temperatures. As comparative examples, those using chloroprene rubber and goose asphalt were tested. The formulation of the bituminous binder used in Test Example 2 is shown in Table 6. The ionomer resin used is Himilan #1702 (manufactured by Mitsui Polychemical KK,
(Product name of ionomer resin), hardware type (Denki Kagaku Kogyo KK,
(trade name of chloroprene rubber) was used.

【衚】【table】

【衚】 なお、−に瀺すクロプレンゎムの配合が
6.5重量郚であるのは、これ以䞊添加するず混合
物の粘性が著しく増加し、混合性、斜工性が奜た
しくないためである。 詊隓に甚いた混合物の皮類は、アスフアルト
舗装芁綱瀟団法人日本道路協䌚に瀺される现
粒床アスコン13F、及びグヌスアスフアルト
ずし、前者は小型軞パグミルミキサヌにお玄
165℃にお分間混合したものを、厚さcmで所
定の密床になるようにロヌラヌコンパクタヌで成
型し、たた埌者のグヌスアスフアルトに぀いおは
小型クツカヌにお玄240℃で50分間クツキングし
たものを厚さcmになるように型枠内に流し蟌ん
で成型し、攟什埌詊料をコンクリヌトカツタヌに
おcm幅に切り取り、曲げ詊隓甚䟛詊䜓ずした。 曲げ詊隓は、スパン長が20cmずなる等分点茉
荷方法で、茉荷装眮はサヌボパルサヌLab−5U
島接補䜜所補を甚いお行な぀た。茉荷速床は
50mm分、䟛詊䜓愛枩床は−10℃ずした。なお砎
断時のひずみの算出は次匏 Ο・・I2 ここに、Ο砎断時のひずみ 䟛詊䜓の厚さcm 砎断時の真の撓み量cm スパン長cm で求め、砎断の撓みはアクチナ゚ヌタの移動量
から、茉荷装眮や曲げ時治具から発生する誀差を
党お補正しお䟛詊䜓の真の撓み量ずした。 補正の䞀般匏は次の通りである。 d′d″ ここに、䟛詊䜓の真の撓み量cm d′アクチル゚ヌタの移動量cm d″茉荷装眮や曲げ時治具の倉圢による誀差
cm ただし、䟛詊䜓の撓みの方向ず同方向の倉䜍
を正ずする この詊隓䟋の結果は衚−に瀺す。
[Table] In addition, the formulation of cloprene rubber shown in 2-b is
The reason why the amount is 6.5 parts by weight is that if more than this amount is added, the viscosity of the mixture will increase significantly, making the mixability and workability unfavorable. The types of mixtures used in Test 2 were fine-grained asphalt (13F) and goose asphalt as shown in the Asphalt Pavement Guidelines (Japan Road Association), and the former was mixed with a small two-shaft pug mill mixer to approx.
The mixture was mixed at 165°C for 1 minute and then molded using a roller compactor to a thickness of 5 cm to the specified density.For the latter goose asphalt, it was packed at about 240°C for 50 minutes using a small puncher. The sample was poured into a mold to have a width of 5 cm, and after being released, the sample was cut to a width of 5 cm using a concrete cutter to provide a specimen for bending tests. The bending test was performed using a bisecting point loading method with a span length of 20 cm, and the loading device was a servo pulser Lab-5U.
(manufactured by Shimadzu Corporation). The loading speed is
50mm/min, and the specimen temperature was -10℃. The strain at break is calculated using the following formula: Ο=6・h・d/I 2Where , Ο: Strain at break h: Thickness of specimen (cm) d: True amount of deflection at break (cm ) I: Span length (cm) The deflection at break d was calculated from the amount of movement of the actuator and corrected all errors caused by the loading device and bending jig to determine the true amount of deflection of the specimen. The general formula for correction is as follows. d=d′+d″ Where, d: True deflection amount of the specimen (cm) d′: Actuator movement amount (cm) d″: Error due to deformation of loading device and bending jig (cm) (However, , displacement in the same direction as the deflection direction of the specimen is considered positive) The results of Test Example 2 are shown in Table 7.

【衚】 衚にお明らかなように、埓来撓み性に優れお
いるずされおいるゎムによるものや、グヌスアス
フアルトに比べお詊隓䟋に係る瀝青質混合物の
撓み性が極めお優れおいるこずが認められた。 実斜䟋 次に本発明の実斜䟋を以䞋に瀺す。 通垞の混合プラントにおける混合性を確認する
ために、アスフアルトプラントにより本発明に係
る瀝青質混合物を補造した。 アスフアルトプラントは胜力800Kgバツチの
バツチ匏プラントずし、混合枩床は170℃、混合
時間は分間ずした。 なお、アむオノマヌ暹脂䞉井ポリケミカル瀟
補造、ハむミラン1702は粉末状のものを、骚
材、フむラヌ及びアスフアルトストレヌトアス
フアルト6080の混合時に投入した。このよう
にしお補造した瀝青質混合物に぀いお、詊隓䟋
ず同様マヌシダル安定床詊隓ずホむヌルトラツキ
ング詊隓を行な぀た。この実斜䟋の詊隓結果は衚
−に瀺した。
[Table] As is clear from Table 7, the flexibility of the bituminous mixture according to Test Example 2 is extremely superior to that made of rubber, which is conventionally known to have excellent flexibility, and to goose asphalt. was recognized. (Example) Next, an example of the present invention will be shown below. A bituminous mixture according to the invention was produced in an asphalt plant in order to check the mixability in a conventional mixing plant. The asphalt plant was a batch type plant with a capacity of 800 kg/batch, the mixing temperature was 170°C, and the mixing time was 1 minute. The ionomer resin (manufactured by Mitsui Polychemical Co., Ltd., Himilan #1702) was added in powder form at the time of mixing the aggregate, filler, and asphalt (straight asphalt 60/80). Regarding the bituminous mixture thus produced, Test Example 1
Similarly, a marshal stability test and a wheel tracking test were conducted. The test results of this example are shown in Table-8.

【衚】 衚−により、実際のアスフアルトプラントに
おいおも宀内実隓同様に、空隙率以䞋すなわ
ち䞍透氎な混合物が埗られ極めお塑性流動抵抗性
の高い混合物が埗られるこずがわかる。 発明の効果 本発明は瀝青質ず、アむオノマヌ暹脂ず、骚材
ず、フむラヌずからなり、加熱混合しお舗装甚に
䟛せられ、締固めされる舗装甚の混合物であ぀
お、前蚘アむオノマヌ暹脂はオレフむン系のポリ
マヌに金属むオンを介圚させおなる構造の暹脂で
あり、該アむオノマヌ暹脂は前蚘瀝青質93〜75重
量郚に察しお〜25重量郚が加えられおなり、か
぀締固めした混合物の空隙率が以䞋であるよ
うにした舗装甚瀝青質混合物であるため、本発明
の所期の諞目的が達成される。 本発明の瀝青質混合物は、すなわちその空隙率
が以䞋のものは、䞍透氎性ずなしうるこずを
瀺し、アむオノマヌ暹脂を甚いお瀝青質結合材を
改質するこずにより、空隙率が以䞋でも塑性
流動抵抗が十分高い舗装甚瀝青質混合物が埗られ
るものである。埓぀お、埓来空隙率の小さい瀝青
質混合物ずしおのグヌスアスフアルトの補造、斜
工に甚いられるような特別の蚭備や機械を必芁ず
せず、埓来䞀般の混合方法や斜工手段が採甚でき
お郜合がよい。 それに空隙率が以䞋においおは通垞の加熱
匏アスフアルト混合物の堎合は蚀うに及ばず、埓
来の暹脂系あるいはゎム系等で改質を図぀た加熱
匏改質アスフアルト混合物乃至はグヌスアスフア
ルト等によるものずいえども高枩時での塑性流動
抵抗性や䜎枩時での撓み性に欠けるものである
が、本発明による瀝青質混合物は塑性流動抵抗及
び撓み性に極めお優れた効果を発揮するものであ
る。 たた、本発明による瀝青質混合物は、通垞の舗
装は勿論のこず、橋面、特に鋌床版舗装、ラむニ
ング舗装及び氎路のような防氎性を必芁ずする堎
所においお効果がある。
[Table] Table 8 shows that in actual asphalt plants, as in the laboratory experiments, a mixture with a porosity of 2% or less, that is, water-impermeable mixture, and extremely high plastic flow resistance can be obtained. (Effects of the Invention) The present invention provides a mixture for pavement consisting of bituminous material, an ionomer resin, an aggregate, and a filler, which is heat-mixed, used for paving, and compacted. The resin has a structure in which metal ions are interposed in an olefinic polymer, and the ionomer resin is made by adding 7 to 25 parts by weight to 93 to 75 parts by weight of the bituminous material, and compacted. The intended objects of the present invention are achieved because the mixture is a bituminous paving mixture in which the porosity of the mixture is less than 2%. It has been shown that the bituminous mixture of the present invention, that is, one with a porosity of 2% or less, can be made water impermeable, and by modifying the bituminous binder with an ionomer resin, the porosity can be reduced to 2%. % or less, a bituminous mixture for pavement with sufficiently high plastic flow resistance can be obtained. Therefore, it is convenient because conventional mixing methods and construction methods can be used without the need for special equipment or machines that are conventionally used in the production and construction of goose asphalt as a bituminous mixture with a small porosity. In addition, when the porosity is 2% or less, it goes without saying that ordinary heated asphalt mixtures are used, as well as heated modified asphalt mixtures modified with conventional resin or rubber systems, or goose asphalt. However, although it lacks plastic flow resistance at high temperatures and flexibility at low temperatures, the bituminous mixture according to the present invention exhibits extremely excellent effects on plastic flow resistance and flexibility. Further, the bituminous mixture according to the present invention is effective not only for ordinary pavements but also for bridge surfaces, especially steel deck pavements, lining pavements, and places requiring waterproofness such as waterways.

Claims (1)

【特蚱請求の範囲】  瀝青質ず、アむオノマヌ暹脂ず、骚材ず、フ
むラヌずからなり、加熱混合しお舗装甚に䟛せら
れ締固めされる舗装甚の混合物であ぀お、前蚘ア
むオノマヌ暹脂はオレフむン系のポリマヌに金属
むオンを介圚させおなる構造の暹脂であり、該ア
むオノマヌ暹脂は前蚘瀝青質93〜75重量郚に察し
お〜25重量郚が加えられおなり、か぀締固めし
た混合物の空隙率が以䞋であるこずを特城ず
した舗装甚瀝青質混合物。  前蚘瀝青質がストレヌトアスフアルトである
特蚱請求の範囲第項蚘茉の舗装甚瀝青質混合
物。  前蚘瀝青質が倩然アスフアルトである特蚱請
求の範囲第項蚘茉の舗装甚瀝青質混合物。  前蚘瀝青質がブロヌンアスフアルトである特
蚱請求の範囲第項蚘茉の舗装甚瀝青質混合物。  前蚘アむオノマヌ暹脂が゚チレンずアクリル
酞ずの共重合䜓の分子間にNaむオンあるいはZn
むオンを介圚させおなる構造のものである特蚱請
求の範囲第項蚘茉の舗装甚瀝青質混合物。  前蚘アむオノマヌ暹脂が゚チレンずメタアク
リル酞ずの共重合䜓の分子間にNaむオンあるい
はZnむオンを介圚させおなる構造のものである
特蚱請求の範囲第項蚘茉の舗装甚瀝青質混合
物。  前蚘アむオノマヌ暹脂がメルトむンデツクス
1.0以䞊でありか぀粉末のものである特蚱請求の
範囲第項蚘茉の舗装甚瀝青質混合物。  前蚘骚材が砂、砂利、砕石うちのいずれかの
ものである特蚱請求の範囲第項蚘茉の舗装甚瀝
青質混合物。  前蚘フむラヌが炭酞カルシりム、消石灰、セ
メントのうちのいずれかのものである特蚱請求の
範囲第項蚘茉の舗装甚瀝青質混合物。
[Scope of Claims] 1. A mixture for paving consisting of bituminous material, ionomer resin, aggregate, and filler, which is heat-mixed, used for paving, and compacted, wherein the ionomer resin is It is a resin having a structure in which metal ions are interposed in an olefin-based polymer, and the ionomer resin is made by adding 7 to 25 parts by weight to 93 to 75 parts by weight of the bituminous material, and is a compacted mixture. A bituminous mixture for pavement use characterized by a porosity of 2% or less. 2. The bituminous mixture for paving according to claim 1, wherein the bituminous substance is straight asphalt. 3. The bituminous mixture for paving according to claim 1, wherein the bituminous substance is natural asphalt. 4. The bituminous mixture for paving according to claim 1, wherein the bituminous material is blown asphalt. 5 The ionomer resin contains Na ions or Zn between the molecules of the copolymer of ethylene and acrylic acid.
The bituminous mixture for paving according to claim 1, which has a structure in which ions are interposed. 6. The bituminous mixture for paving according to claim 1, wherein the ionomer resin has a structure in which Na ions or Zn ions are interposed between molecules of a copolymer of ethylene and methacrylic acid. 7 The ionomer resin is a melt index
1.0 or more and is in the form of a powder, the bituminous mixture for paving according to claim 1. 8. The bituminous mixture for paving according to claim 1, wherein the aggregate is one of sand, gravel, and crushed stone. 9. The bituminous mixture for paving according to claim 1, wherein the filler is one of calcium carbonate, slaked lime, and cement.
JP17613685A 1985-08-10 1985-08-10 Bitumeous mixture for pavement Granted JPS6237402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17613685A JPS6237402A (en) 1985-08-10 1985-08-10 Bitumeous mixture for pavement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17613685A JPS6237402A (en) 1985-08-10 1985-08-10 Bitumeous mixture for pavement

Publications (2)

Publication Number Publication Date
JPS6237402A JPS6237402A (en) 1987-02-18
JPH034682B2 true JPH034682B2 (en) 1991-01-23

Family

ID=16008289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17613685A Granted JPS6237402A (en) 1985-08-10 1985-08-10 Bitumeous mixture for pavement

Country Status (1)

Country Link
JP (1) JPS6237402A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651705U (en) * 1992-12-25 1994-07-15 日本電気ホヌム゚レクトロニクス株匏䌚瀟 Heating device

Also Published As

Publication number Publication date
JPS6237402A (en) 1987-02-18

Similar Documents

Publication Publication Date Title
JP4351723B2 (en) Construction method of waterproofing material for asphalt-based paints for buildings or bridges
US7758686B2 (en) Binder of vegetable nature for the production of materials for building and/or civil engineering
US3112681A (en) Paving with polymer-bonded aggregates
US11046612B2 (en) Water-impermeable waterproof asphalt concrete composition comprising styrene isoprene styrene and method of constructing integrated water-impermeable waterproof asphalt concrete pavement using the method and mixing/feeding system
KR100588835B1 (en) Composition for thin stratum pavement of asphalt and thin stratum pavement method of thereof
KR102058674B1 (en) Modified-Asphalt Concrete Composition and Constructing Methods Using Thereof
JP2016141813A (en) Non-solidifying rubberized asphalt composition for forming inpermeable intermediate drainage layer and method for forming inpermeable intermediate drainage layer with single paving process using the same
US20120275861A1 (en) Method for production of granulated polymer -asphalt binder and sulfur concrete with participation of sulfur polymer obtained in waste sulfur solvent - borne modification
US8030394B2 (en) Waterproofing membranes with a specific gravity of under 1 G/CM3 based on bitumen modified with polymers containing hollow glass microspheres
CN106638294A (en) Steel bridge deck pavement structure
KR102058680B1 (en) Modified-Asphalt Concrete Composition for Improving Waterproof and Constructing Methods Using Thereof
US20220064065A1 (en) Hybrid structural polymer-binder composite construction and paving material
KR102207012B1 (en) Water-Impermeable Waterproof Asphalt Concrete Compositions Comprising Epoxy Resin and Constructing Methods Using Thereof
US20060127572A1 (en) Method for producing a bituminous mix, in particular by cold process, and bituminous mix obtained by said method
KR102207018B1 (en) Modified-Asphalt Concrete Compositions for Pavement of Roads Using Urethane Resin, Stylene Isoprene Stylene and Aggregate of Improved Particle-Size Distribution and Constructing Methods Using Thereof
KR102207040B1 (en) Water-Impermeable Waterproof Asphalt Concrete Compositions Comprising Low Density Polyethylene and Constructing Methods Using Thereof
KR102059837B1 (en) Half-Elastic Modified Asphalt Concrete Composition Using Petroleum Resin Added Hydrogen and Stylene Isoprene Stylene and Constructing Repairing Method of Entire Type Waterproof for Cracks of Surface Using Thereof
JPH034682B2 (en)
KR102207044B1 (en) Modified-Asphalt Concrete Compositions for Roads Using Low Density Polyethylene and Constructing Methods Using Thereof
KR102207013B1 (en) Water-Impermeable Waterproof Asphalt Concrete Compositions Comprising Crum Rubber Modifier and Constructing Methods Using Thereof
KR102207014B1 (en) Modified-Asphalt Concrete Compositions for Roads Using Crum Rubber Modifier and Constructing Methods Using Thereof
KR102132607B1 (en) Modified-Resin Stone Mastic Asphalt Concrete Compositions Using Stylene Isoprene Stylene and Constructing Methods Using Thereof
CN108797333B (en) Combined steel bridge deck pavement structure
KR101844709B1 (en) Producing method for mastic asphalt lump composition for permanent repair
Hop et al. Polymer-mineral mixtures as new building materials