JPH0346826A - Communication equipment and agc circuit - Google Patents

Communication equipment and agc circuit

Info

Publication number
JPH0346826A
JPH0346826A JP1181659A JP18165989A JPH0346826A JP H0346826 A JPH0346826 A JP H0346826A JP 1181659 A JP1181659 A JP 1181659A JP 18165989 A JP18165989 A JP 18165989A JP H0346826 A JPH0346826 A JP H0346826A
Authority
JP
Japan
Prior art keywords
filter
circuit
agc
voltage
agc voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1181659A
Other languages
Japanese (ja)
Other versions
JPH0783281B2 (en
Inventor
Katsushi Sugawa
須川 勝史
Katsuhiro Endo
勝博 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marantz Japan Inc
Original Assignee
Marantz Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marantz Japan Inc filed Critical Marantz Japan Inc
Priority to JP1181659A priority Critical patent/JPH0783281B2/en
Priority to DE69020538T priority patent/DE69020538T2/en
Priority to US07/663,955 priority patent/US5263187A/en
Priority to PCT/JP1990/000915 priority patent/WO1991001592A1/en
Priority to EP90910926A priority patent/EP0451277B1/en
Publication of JPH0346826A publication Critical patent/JPH0346826A/en
Priority to KR1019910700281A priority patent/KR100190731B1/en
Publication of JPH0783281B2 publication Critical patent/JPH0783281B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To extend the strong input characteristic of an AGC circuit and to suppress the distortion degradation of a signal system by applying the change of the AGC voltage to a filter including a voltage/capacitance conversion element of a high frequency or intermediate frequency amplifier circuit and generating a band tracking error of the filter. CONSTITUTION:A weak signal of an antenna for a radio wave is inputted to a high frequency amplifier stage a through a filter 1 and amplified and inputted to an IF amplifier stage 5 from a filter and to a mixer 4 and amplified again and outputted from a detecting stage 6 to a speaker or the like. In this main circuit, the AGC voltage is taken out from the detecting stage 6 and fed back to filters 1 and 3. Filters 1 and 3 which receive the change of the AGC voltage through a feedback circuit shift the filter band pass characteristics to obtain required sufficient gain reduction. Bands of filters 1 and 3 are tuned to an objective frequency f0 except for a strong input; and when the change of the AGC voltage corresponding to the strong input is fed back, the bands of filters are shifted in accordance with the feedback AGC voltage to obtain greater gain reduction.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、アナログもしくはデジタル・アナログ混有受
信機ないし通信装置において、固有のダイナミックレン
ジをはるかに越える強大な人力信号があった場合でも、
素速く信号系に大きなゲインリダクションを発生させ、
また信号系の歪を抑制できるAGC回路に関するもので
、特に周囲の状況によって人力信号の強度が著しく変化
する移動無線の受信装置に好適なAGC回路に閏するも
のでる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an analog or mixed digital/analog receiver or communication device that can operate even when there is a strong human input signal that far exceeds the inherent dynamic range.
Quickly generates large gain reduction in the signal system,
The present invention also relates to an AGC circuit that can suppress distortion in a signal system, and is particularly applicable to an AGC circuit suitable for a mobile radio receiving device in which the strength of a human signal changes significantly depending on the surrounding situation.

[従来の技術] 第6図に示す従来の無線通信機における受信システムで
は、アンテナで受ける電波は「高周波増幅段10J−r
ミキサー11J−r中間周波増幅段12J−r検波段1
3」で処理され、検波段13に加わる信号を整流して得
るAGC電圧が前段の増幅部に加えられ、AGC電圧の
大きさに反比例する増幅度の低下処理を行なっていた。
[Prior Art] In the receiving system of a conventional wireless communication device shown in FIG. 6, the radio waves received by the antenna are
Mixer 11J-r intermediate frequency amplification stage 12J-r detection stage 1
The AGC voltage obtained by rectifying the signal processed in 3' and applied to the detection stage 13 is applied to the amplification section in the previous stage, and the amplification degree is reduced in inverse proportion to the magnitude of the AGC voltage.

電波の受信強度は、トンネル通過、平野から受信条件の
良い丘への移動、ビルの合間、放送局への接近等の受信
条件の変化により強入力時を伴うから、この時に増幅器
のバイアスを上記AGC電圧でコントロールしてゲイン
リダクションを大きくしようとする。しかし、このゲイ
ンコントロールはゲインを下げても人力波形が歪む事実
がある(第5図[11]参照)。ゲインリダクションの
程度も増幅段−段当り30dBが通常であって、十分と
は云えない。
The reception strength of radio waves is affected by strong input times due to changes in reception conditions such as passing through a tunnel, moving from a plain to a hill with good reception conditions, between buildings, and approaching a broadcasting station. Trying to increase the gain reduction by controlling it with the AGC voltage. However, with this gain control, there is a fact that even if the gain is lowered, the manual waveform is distorted (see Fig. 5 [11]). The degree of gain reduction is usually 30 dB per amplification stage, which cannot be said to be sufficient.

また、この処理がフォワードAGC制御の場合、AGC
コントロールのために増幅段へのバイアスN、流を多く
流すから、消費電流の増加を招く条件悪化が起こり、特
に携帯用受信機、無線機ではこの条件悪化は無視し難い
Also, if this process is forward AGC control, the AGC
Since a large amount of bias N and current is applied to the amplification stage for control purposes, conditions deteriorate, leading to an increase in current consumption, and this deterioration of conditions is difficult to ignore, especially in portable receivers and radio equipment.

あるいは、リバースAGC制御の場合、AGC電圧をマ
イナス電圧まで落とさなければ必要なゲインリダクショ
ンが得られない時があるから、この時に備えてマイナス
電源回路を用意するコスト高のシステムとなる。
Alternatively, in the case of reverse AGC control, there are times when the necessary gain reduction cannot be obtained unless the AGC voltage is reduced to a negative voltage, resulting in an expensive system that requires a negative power supply circuit in preparation for such situations.

[発明が解決しようとする問題点] 本発明は、移動篇線の受信装置において、信号系の固有
のダイナミックレンジをはるかに越える強力な入力信号
があった場合でも、増幅素子のバイアス電流増加にとも
なって生じる消費電力の増加抑制並びに、必要なゲイン
リダクションを得るために使われてきたマイナス電源回
路の不要構成とともに、大きなゲインリダクションが得
られるAGC回路を得ることにある。
[Problems to be Solved by the Invention] The present invention solves the problem of increasing the bias current of the amplifying element even when there is a strong input signal that far exceeds the inherent dynamic range of the signal system in a receiving device for a mobile line. The object of the present invention is to suppress the accompanying increase in power consumption, eliminate the need for a negative power supply circuit that has been used to obtain the necessary gain reduction, and provide an AGC circuit that can obtain a large gain reduction.

[1ff!題を解決するための手段] 移動無線等の受信装置において、従来のように高周波増
幅素子(中間周波増幅素子を含む)の入力回路のバイア
スを変化すると云う手段に代えて、へGC電圧の変化を
高周波増幅回路あるいは中間周波増幅回路の、電圧−静
電容覆変換素子を含むフィルターに加え、フィルターの
帯域トラッキングエラーを発生させ、それによって大き
なゲインリダクションを得るようにしたものである。
[1ff! [Means for Solving the Problem] In a receiving device such as a mobile radio, instead of changing the bias of the input circuit of a high frequency amplification element (including an intermediate frequency amplification element) as in the past, changing the GC voltage to is added to a filter that includes a voltage-to-electrostatic capacitance conversion element in a high-frequency amplifier circuit or an intermediate-frequency amplifier circuit, and generates a band tracking error in the filter, thereby obtaining a large gain reduction.

[作用及び実施1’711 ] 第1図(A)および(B)の実施例に示す通信機は、電
波を捕えたアンテナの微弱信号をフィルター1から高周
波増幅段2に人力して増幅し、フィルター3、ミキサー
4からI l”増幅段5に人力して再び増幅処理し、検
波段6からスピーカ等に出力する。この主回路に君いて
、検波段6からAGC電圧を取り出し、該A G Cf
ff圧をフィルタl、;3にフィードバックする。
[Operation and implementation 1'711] The communication device shown in the embodiment of FIGS. 1(A) and 1(B) manually amplifies a weak signal from an antenna that captures radio waves from a filter 1 to a high frequency amplification stage 2, From the filter 3 and mixer 4, it is manually amplified and processed again by the Il'' amplification stage 5, and then output from the detection stage 6 to a speaker, etc. The main circuit takes out the AGC voltage from the detection stage 6, and the AGC voltage is output from the detection stage 6. Cf
The ff pressure is fed back to filters 1 and 3.

通信機の従来主要回路、高周波増幅段2、ミキサー4、
IF増幅段5はそのまま変更を要さない。
Conventional main circuits of communication equipment, high frequency amplification stage 2, mixer 4,
The IF amplification stage 5 does not require any modification.

第1図[B]の実施例はI l”増幅段5を用いない場
合を示し、フィードバック回路にはダイオード8.8を
用いてフィルターl、3に対するフィードバック・AG
C電圧の逆流防止の強化手段か併せて示される。
The embodiment shown in FIG. 1 [B] shows a case where the I l'' amplification stage 5 is not used, and a diode 8.8 is used in the feedback circuit to provide feedback/AG to the filters l and 3.
A means for strengthening the prevention of backflow of the C voltage is also shown.

第4図のように、フィードバック信号のA G C電圧
は並列コンデンサC1を有するダイオードD1−抵抗r
1て反転され、オペアンプ7に人力する。8Vに接続さ
れたオペアンプ7の基準電圧を、抵抗r 2− r 3
の分圧で、1.IVに設定する。オペアンプ7は上記フ
ィードバック入力が1.IV以下の時OFFで、該オペ
アンプ7の電源電圧を出力してトランジスタ9をのOF
Fに保持する。
As shown in FIG. 4, the feedback signal A
1 is inverted and input to operational amplifier 7. The reference voltage of the operational amplifier 7 connected to 8V is connected to the resistor r 2 - r 3
With a partial pressure of 1. Set to IV. The operational amplifier 7 has the feedback input 1. When it is OFF when it is below IV, the power supply voltage of the operational amplifier 7 is output and the transistor 9 is turned OFF.
Hold at F.

−h記フィードバック人力り月、IVを越えると、オペ
アンプ7の出力は下がり、これにTIEしてトランジス
タ9が利得制御信号Sを出力し、フィルター1、:3に
人力する。利得制御信号Sの実質は」−記のフィードバ
ック入力ないしAGC電圧に対応しており、上記フ、フ
ルターl、;3に対してフィードバックされるAGC電
圧変化そのものである。
-H Note Feedback When the input voltage exceeds IV, the output of the operational amplifier 7 decreases, TIE is applied to this, and the transistor 9 outputs a gain control signal S, which is input to the filters 1 and 3. The substance of the gain control signal S corresponds to the feedback input or AGC voltage indicated by ``-'', and is the AGC voltage change itself that is fed back to the filters 1 and 3.

ダイオ−F’ D 3は逆流防止用、ツェナーダイオー
ドZD2は逆流防止とともに電R電圧8Vを約2■低下
し、オペアンプ7の実際の出力6Vとバランスを取りト
ランジスタ9の動作安定を図る。
The diode F'D3 is for backflow prevention, and the Zener diode ZD2 is for backflow prevention and lowers the current R voltage of 8V by about 2cm to balance the actual output of the operational amplifier 7 of 6V and stabilize the operation of the transistor 9.

フィードバック回路からAGC電圧の変化を受けたフィ
ルター1.3のコンデサー電位はこの分度化してフィル
ター通過帯域をシフトし、所要の十分なゲインリダクシ
ョンを得る。強入力時以外、フィルター1.3の帯域は
目的周波数「0に同調しており、強入力に対応するAG
C電圧の変化がフィードバックされると、第2図[Aコ
から第2図[B]に変化し、フィードバックAGC電圧
に応じたフィルター帯域のずれが起こる。
The capacitor potential of the filter 1.3, which has received a change in the AGC voltage from the feedback circuit, is converted to this degree to shift the filter pass band and obtain the required sufficient gain reduction. Except for strong input, the band of filter 1.3 is tuned to the target frequency "0", and the AG corresponding to strong input
When the change in the C voltage is fed back, it changes from FIG. 2 [A] to FIG. 2 [B], and a shift in the filter band occurs according to the feedback AGC voltage.

第3図に示すフロントエンド帯域とゲインの関係はよく
知られるものであって、フィルターとして使用されるリ
ダクションレベルaは、フィルターの性能と段数で決り
、本例の通信機の場合60〜80dB程度ある。注目す
べき最大リダクションaを得るために必要な通過帯域シ
フト電圧すは、フィルターの性能と段数で決めることが
でき、本例の通信機の場合約3■である。従って、この
例ではθ〜3Vの範囲でフロントエンドをシフトするこ
とにより、0〜60dBのゲインリダクションを連続し
て得ることが出来る。図中の変数Cは増幅素子のゲイン
(dB)からフィルター・ロス(dB)を引いた値であ
る。
The relationship between the front end band and gain shown in Figure 3 is well known, and the reduction level a used as a filter is determined by the performance and number of stages of the filter, and in the case of the communication device in this example, it is approximately 60 to 80 dB. be. The passband shift voltage S required to obtain the noteworthy maximum reduction a can be determined by the performance and number of stages of the filter, and is approximately 3<1> in the case of the communication device of this example. Therefore, in this example, by shifting the front end in the range of θ to 3V, gain reduction of 0 to 60 dB can be obtained continuously. The variable C in the figure is the value obtained by subtracting the filter loss (dB) from the gain (dB) of the amplification element.

第5図[l]に本例のRF人力に対応するAGC電圧電
圧歪dの関係を示し、AGC電圧Vは0〜60dBで十
分に制御されるとともに、歪dの変動も抑制されている
。同図[11]は従来のAGC回路の実効図であり、R
F人力の大きさに従ってAGC電圧Vも変化するため制
御が十分とは云えず、歪dも抑制されずに大きく変化す
る。同図[+11]はフィードバック回路のない場合の
RF人力に対するAGCm圧Vと歪dの関係を参考に示
す。
FIG. 5 [l] shows the relationship between the AGC voltage and the voltage distortion d corresponding to the RF manual power of this example, and the AGC voltage V is sufficiently controlled at 0 to 60 dB, and the variation in the distortion d is also suppressed. Figure [11] is an effective diagram of the conventional AGC circuit, and R
Since the AGC voltage V also changes according to the magnitude of the human power F, the control cannot be said to be sufficient, and the distortion d is not suppressed and changes greatly. [+11] in the same figure shows for reference the relationship between AGCm pressure V and strain d for RF human power in the case without a feedback circuit.

[発明の効果] AGC電圧変化を高周波フィルターの帯域トラッキング
エラーを与えるフィードバック回路に与えて行なう信号
系の利得制御は、従来より一層大きな強入力領域に対し
てまで十分な効果を上げ、当該AGC回路の強入力特性
を拡大する。
[Effects of the Invention] Gain control of the signal system, which applies AGC voltage changes to a feedback circuit that provides a band tracking error of a high-frequency filter, is sufficiently effective even in a stronger input region than before, and the AGC circuit concerned Expand the strong input characteristics of

さらに、当該AGC回路を具備する本発明の通信機は、
強入力特性に優れるとともに、高感度受信′機における
信号歪を最小のレベルに保つことが出来、信号系の歪悪
化を抑制した高質の信号出力を得ることが出来る。消費
電流の増加もほとんどなく、しかも、従来のバリキャッ
プチューン方式の受信機に対する取り付けも容易であり
、その上、高周波増幅素子に制御を加えない設計で実用
されるから増幅素子の動作安定は抜群である。
Furthermore, the communication device of the present invention including the AGC circuit has the following features:
In addition to having excellent strong input characteristics, it is possible to keep signal distortion in a high-sensitivity receiver at a minimum level, and it is possible to obtain high-quality signal output with suppressed deterioration of distortion in the signal system. There is almost no increase in current consumption, and it is easy to install in conventional varicap tune receivers.Furthermore, the design does not require any control of the high-frequency amplification element, so the operation of the amplification element is extremely stable. It is.

また、バリキャップチューン方式受信機に本発明を応用
する時、オペアンプ1個で構成するフィードバック回路
を付加するだけで実施できるローコスト・メリットも大
きい。
Further, when the present invention is applied to a varicap tune receiver, there is a great advantage of low cost since it can be implemented simply by adding a feedback circuit consisting of one operational amplifier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図[A]、CB]は本発明の実施例を示す電気ブロ
ック回路図であり、第2図[A]、[B]は帯域シフト
を示すグラフ、第3図はフィルター機能を示すグラフ、
第4図はフィードバック回路の一例を示す回路説明図、
第5図[1]、[11]および[11目は、本発明フィ
ードバックによる特性、従来のフィードバックの特性、
フィードバック無しの場合をそれぞれ示すグラフで、第
6図は従来の通信機の電気回路ブロック図である。 1.3:フィルター
Fig. 1 [A], CB] is an electrical block circuit diagram showing an embodiment of the present invention, Fig. 2 [A], [B] is a graph showing band shift, and Fig. 3 is a graph showing filter function. ,
FIG. 4 is a circuit explanatory diagram showing an example of a feedback circuit,
FIG. 5 [1], [11] and [11] show the characteristics by the feedback of the present invention, the characteristics of the conventional feedback,
The graphs show the cases without feedback, and FIG. 6 is an electric circuit block diagram of a conventional communication device. 1.3: Filter

Claims (1)

【特許請求の範囲】 1)AGC電圧の変化を高周波フィルターの帯域トラッ
キングエラーを与えるフィードバック回路に与え、信号
系の利得を制御するAGC回路。 2)AGC回路の変化を高周波フィルターの帯域トラッ
キングエラーを与えるフィードバック回路に与え、信号
系の歪悪化を抑制した強入力特性を有するAGC回路を
具備することを特徴とする通信機。
[Claims] 1) An AGC circuit that controls the gain of a signal system by applying changes in AGC voltage to a feedback circuit that provides a band tracking error of a high frequency filter. 2) A communication device characterized by comprising an AGC circuit having strong input characteristics that suppresses deterioration of distortion in a signal system by applying changes in the AGC circuit to a feedback circuit that gives a band tracking error of a high frequency filter.
JP1181659A 1989-07-15 1989-07-15 AGC circuit Expired - Lifetime JPH0783281B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1181659A JPH0783281B2 (en) 1989-07-15 1989-07-15 AGC circuit
DE69020538T DE69020538T2 (en) 1989-07-15 1990-07-16 AUTOMATIC LEVEL CONTROL.
US07/663,955 US5263187A (en) 1989-07-15 1990-07-16 Automatic gain control circuit
PCT/JP1990/000915 WO1991001592A1 (en) 1989-07-15 1990-07-16 Automatic gain control circuit
EP90910926A EP0451277B1 (en) 1989-07-15 1990-07-16 Automatic gain control circuit
KR1019910700281A KR100190731B1 (en) 1989-07-15 1991-03-14 Automatic gain control circuit and communicating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1181659A JPH0783281B2 (en) 1989-07-15 1989-07-15 AGC circuit

Publications (2)

Publication Number Publication Date
JPH0346826A true JPH0346826A (en) 1991-02-28
JPH0783281B2 JPH0783281B2 (en) 1995-09-06

Family

ID=16104620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1181659A Expired - Lifetime JPH0783281B2 (en) 1989-07-15 1989-07-15 AGC circuit

Country Status (1)

Country Link
JP (1) JPH0783281B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009194614A (en) * 2008-02-14 2009-08-27 Panasonic Corp Receiver, and electronic equipment using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564921A (en) * 1979-06-27 1981-01-19 Hitachi Ltd Frequency selecting circuit
JPS61140645U (en) * 1985-02-20 1986-08-30

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564921A (en) * 1979-06-27 1981-01-19 Hitachi Ltd Frequency selecting circuit
JPS61140645U (en) * 1985-02-20 1986-08-30

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009194614A (en) * 2008-02-14 2009-08-27 Panasonic Corp Receiver, and electronic equipment using the same

Also Published As

Publication number Publication date
JPH0783281B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
US4553105A (en) Multistage linear amplifier for a wide range of input signal levels
JP2577490B2 (en) AGC circuit of FM front end
JPWO2005053171A1 (en) Automatic gain controller
US6265942B1 (en) Low power gain controlled amplifier with high dynamic range
JPH0346826A (en) Communication equipment and agc circuit
KR100573348B1 (en) Signal processing stage and radio frequency tuner
JPH10190509A (en) Microwave broadcasting reception circuit
US7146149B1 (en) High isolation switch buffer for frequency hopping radios
JP4133599B2 (en) Receiving system
JP2001111369A (en) Gain control amplifier circuit and mixer circuit, and receiver and transmitter using these circuits
JPH0746988Y2 (en) AGC control circuit of FM receiver
JP3292956B2 (en) Radio receiver
JP3745949B2 (en) Television tuner
US4509207A (en) UHF RF Amplifier and AGC system
JPS58194414A (en) Agc circuit
US7386293B2 (en) Receiving circuit
JPH0292173A (en) Antenna diversity type television receiver
KR100357531B1 (en) Method of gain controlling in a moblie terminal
US2611860A (en) Single side band radio signaling
JP2599884Y2 (en) AGC circuit of high frequency amplifier
KR100340434B1 (en) Tuner for receiving satellite broadcasting
KR0137032Y1 (en) Tuner High Frequency Amplifier
JPS6316923B2 (en)
JPH04192891A (en) Reception circuit
JPS6211824B2 (en)