JPH0346564A - Immunoassay and immune sensor - Google Patents

Immunoassay and immune sensor

Info

Publication number
JPH0346564A
JPH0346564A JP18291889A JP18291889A JPH0346564A JP H0346564 A JPH0346564 A JP H0346564A JP 18291889 A JP18291889 A JP 18291889A JP 18291889 A JP18291889 A JP 18291889A JP H0346564 A JPH0346564 A JP H0346564A
Authority
JP
Japan
Prior art keywords
detected
reaction phase
substance
immunoassay method
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18291889A
Other languages
Japanese (ja)
Other versions
JPH07113638B2 (en
Inventor
Keiko Takahashi
高橋 系子
Yasushi Kamimachi
裕史 上町
Tadayasu Mitsumata
光亦 忠泰
Kimimasa Miyazaki
仁誠 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1182918A priority Critical patent/JPH07113638B2/en
Publication of JPH0346564A publication Critical patent/JPH0346564A/en
Publication of JPH07113638B2 publication Critical patent/JPH07113638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To rapidly and easily measure the trace amt. of the material in an aq. soln. by transmitting stimulating light and output light through an optical fiber in the case of immersing a reaction phase into a soln. to be detected and measuring a change in fluorescent characteristics. CONSTITUTION:The material to be detected is detected by putting the reaction phase 3 to the outside of a measuring instrument 1, connecting the instrument 1 and the reaction phase 3 by an optical fiber 2 and transmitting the stimulating light and the output light. This reaction phase 3 is held covered with a semipermeable membrane which allows the transmission of the material to be detected but does not allow the transmission of antibodies. The material to be detected in the soln. to be detected passes the semipermeable membrane and enters the reaction phase 3 when the reaction phase 3 is directly immersed into the soln. to be detected. The fluorescent intensity is changed by the conjugation of this material with the antibodies in the reaction phase 3 and the concn. of the material to be detected in the soln. to be detected is thus measured.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(よ 主として臨床検査における病原体あるいは
疾病マーカーなどの検蟲 さらには広〈産業上の極微量
の物質を簡便にかつ迅速に測定する免疫測定方法および
免疫センサーに関する。
[Detailed Description of the Invention] Industrial Fields of Application The present invention (mainly used in clinical tests to detect pathogens or disease markers, etc.) and also widely used in industrial applications (immunoassay method for simply and quickly measuring extremely small amounts of substances) and regarding immune sensors.

従来の技術 従来 極微量の物質の迅速かつ高感度な免疫的測定法に
(よ 被検出物質あるいは蛍光プローブで標識された被
検出物質(蛍光プローブ標識被検出物質)の結合による
抗体および蛍光プローブの蛍光強度の変化を蛍光測定装
置内で測定する方法が用いられて来た この方法は あ
らかじめ蛍光測定装置内のミクロセルに抗体溶液、また
は蛍光プローブを用いる場合は抗体溶液と蛍光プローブ
標識被検出物質を注入しておき、次に被検出物質を加え
て抗体に結合させ、一定時間経過後の蛍光強度を測定す
ることによって被検出物質の量を測定するものである。
Conventional technology Conventional Rapid and highly sensitive immunoassay methods for ultra-trace amounts of substances include the use of antibodies and fluorescent probes by binding to the analyte or the analyte labeled with a fluorescent probe (fluorescent probe-labeled analyte). A method has been used in which changes in fluorescence intensity are measured within a fluorometer. In this method, an antibody solution, or when using a fluorescent probe, an antibody solution and a fluorescent probe-labeled analyte is placed in a microcell in the fluorometer in advance. The amount of the detected substance is measured by adding the substance to be detected and binding it to the antibody, and measuring the fluorescence intensity after a certain period of time.

発明が解決しようとする課題 前項で記載したように従来の免疫的検出方法では被検出
溶液を蛍光測定装置内のミクロセルに注入し 一定時間
後に蛍光強度を測定しなければならず、被検出溶液の運
搬が困難なものや被検出溶液の数が多い時にはミクロセ
ルへの被検出溶液の注入に時間と手間がかかり、これを
改善する方法が望まれていた 本発明は このような従来技術の課題を解決することを
目的とすも 課題を解決するための手段 本発明は 従来蛍光測定装置内に備えられていた反応相
を蛍光測定装置外に出し 光ファイバーで蛍光測定装置
と反応相を結び励起光と出力光を伝達する方法によって
被検出物質の検出を行なう。
Problems to be Solved by the Invention As described in the previous section, in the conventional immunodetection method, the solution to be detected must be injected into a microcell in a fluorometer and the fluorescence intensity must be measured after a certain period of time. When transporting something difficult or when there are a large number of solutions to be detected, it takes time and effort to inject the solutions to be detected into the microcell, and a method to improve this has been desired.The present invention solves these problems of the conventional technology. The purpose of the present invention is to take the reaction phase, which was conventionally provided inside the fluorescence measurement device, out of the fluorescence measurement device, and to connect the fluorescence measurement device and the reaction phase with an optical fiber to connect the excitation light and the reaction phase. The substance to be detected is detected by a method of transmitting output light.

この反応相は検出物質は透過するが抗体は透過しない半
透膜に覆われており、反応相を検出溶液に直接浸すと、
被検出溶液中の被検出物質が半透膜を通過して反応相に
入り、これが反応相内の抗体と結合する事により蛍光強
度が変化して被検出溶液中の被検出物質の濃度が測定さ
れる。
This reaction phase is covered with a semipermeable membrane that allows the detection substance to pass through but not the antibody, and when the reaction phase is directly immersed in the detection solution,
The target substance in the target solution passes through the semi-permeable membrane and enters the reaction phase, and when this binds with the antibody in the reaction phase, the fluorescence intensity changes and the concentration of the target substance in the target solution is measured. be done.

作用 本発明t−1上記の手段により、被検出溶液の運搬が困
難なものや被検出溶液の数が多いものでも簡便に極微量
の物質の迅速かつ高感度な測定が可能となる。
Effects of the present invention t-1 By means of the above-mentioned means, it is possible to easily and quickly and highly sensitively measure an extremely small amount of a substance even when it is difficult to transport a detection solution or when there are a large number of detection solutions.

実施例 以下に 本発明の実施例について図面を参照しながら説
明する。
EXAMPLES Below, examples of the present invention will be described with reference to the drawings.

実施例1 トリニトロトルエンの免疫的測定方法;抗トリニトロト
ルエン抗体は280 nmの励起光による340nmの
蛍光がトリニトロトルエンと結合することにより減少す
る性質(蛍光消光性)を持1 この抗体を光ファイバー
の先端に備えられた反応相に加入 反応相を直接被検出
溶液に浸し 蛍光の伝達を光ファイバーで行うことによ
って被検出物質を検出した (A)バッファー(pH7のリン酸バッファーを0.4
5μmのフィルターでろ過したもの)で抗トリニトロト
ルエン抗体を溶解して2X10−’Mの濃度としfQ、
  この溶液380μlを反応相(20℃に設定)に加
え1.  この反応相に280nmの蛍光を光ファイバ
ーにより伝達し340 nmの蛍光を光ファイバーによ
り取り出して強度を測定すると蛍光強度は約45であっ
1゜ (B)上記(A)のセンサーの反応相を種々の濃度のト
リニトロトルエン溶液に浸し280nm励起の340 
nmの蛍光強度を測定するとトリニトロトルエンの濃度
に依存して340 nmの蛍光強度は減少しtも  減
少率■ (%)を、次式を用いて算出した ここで、Fはトリニトロトルエン溶液に反応相を浸す前
の蛍光強度 またF obsは反応相をトリニトロトル
エン溶液に浸したときの蛍光強度を示す。
Example 1 Immunoassay method for trinitrotoluene; anti-trinitrotoluene antibody has a property (fluorescence quenching property) that the fluorescence at 340 nm caused by excitation light at 280 nm decreases when combined with trinitrotoluene.1 This antibody was used at the tip of an optical fiber. The reaction phase was directly immersed in the target solution, and the target substance was detected by transmitting fluorescence through an optical fiber.
Dissolve the anti-trinitrotoluene antibody to a concentration of 2 x 10-'M with fQ,
Add 380 μl of this solution to the reaction phase (set at 20°C) 1. Fluorescence at 280 nm was transmitted to this reaction phase through an optical fiber, and fluorescence at 340 nm was extracted through an optical fiber and the intensity was measured.The fluorescence intensity was approximately 45 degrees. 340 nm excitation at 280 nm.
When measuring the fluorescence intensity at 340 nm, the fluorescence intensity at 340 nm decreased depending on the concentration of trinitrotoluene, and the decrease rate (%) was calculated using the following formula. Fluorescence intensity before immersing the phase F obs indicates the fluorescence intensity when the reaction phase is immersed in the trinitrotoluene solution.

トリニトロトルエンの濃度に対する蛍光強度の減少率を
第1図に示す。第1図の結果から、約10−76Mの濃
度のトリニトロトルエンが本発明により検出できたこと
が証明され丸 な抵 本実施例では被検出物質と結合時に蛍光強度が消
光する性質を持つ抗体として抗トリニトロトルエン抗体
を用いた力丈 一般にこのような蛍光消光についての性
質を持つ抗体を用いれば上記の方法での極微量の物質の
検出が可能である。
FIG. 1 shows the rate of decrease in fluorescence intensity with respect to the concentration of trinitrotoluene. The results shown in Figure 1 prove that trinitrotoluene at a concentration of about 10-76M can be detected by the present invention. Powerfulness using anti-trinitrotoluene antibody Generally, it is possible to detect trace amounts of substances using the above method by using antibodies that have such fluorescence quenching properties.

実施例2 メタンフェタミンの免疫的測定方法; 抗メタンフエタミン抗体は蛍光消光性は持っていない力
丈 ダンシル基で標識したメタンフェタミン(ダンシル
標識メタンフェタミン)と結合した時、 280nmの
波長で励起すると530 nmの波長の蛍光強度が増強
する性質を持1 この抗体とダンシル標識メタンフェタ
ミンを光ファイバーの先端に備えられた反応相に角丸 
反応相を直接被検出溶液に浸し 蛍光の伝達を光ファイ
バーで行うことによって被検出物質を検出し1゜(A)
バッファー(pH7のリン酸バッファーを0.45μm
のフィルターでろ過したもの)で抗メタンフエタミン抗
体を溶解して2X10−’Mの濃度とした この溶液3
60μmを反応相(20℃に設定)に入れ さらに10
”’Mのダンシル標識メタンフェタミンを20μl加え
1.  この反応相に280 nmの蛍光を光ファイバ
ーにより伝達し530nmの蛍光を光ファイバーにより
取り出してその強度を測定すると蛍光強度は約60であ
った (B)上記(A)のセンサーの反応相を種々の濃度のメ
タンフェタミン溶液に浸し280 nm励起の530n
mの蛍光強度を測定するとメタンフェタミンの濃度に依
存して530nmの蛍光強度は減少した 減少率■ (
%)を、次式を用いて算出しtも ここで、Fは反応相をメタンフェタミン溶液に浸す前の
蛍光強度、またF obsは反応相をメタンフェタミン
溶液に浸したときの蛍光強度を示す。メタンフェタミン
の濃度に対する蛍光強度の減少率を第2図に示す。第2
図の結果から約10−LSMの濃度のメタンフェタミン
が本発明により検出できたことが証明された また ダンシル基で標識したメタンフェタミンの代わり
にダンシル基で標識したアンフェタミンを用いても同様
の結果を得ることができた以上 主としてメタンフェタ
ミンの検出を例にQ− とって本発明の説明を行なった力交 もちろんその他の
化学物質すべてに応用可能な一般的方法である。
Example 2 Immunoassay method for methamphetamine; Anti-methamphetamine antibodies do not have fluorescence quenching properties. When combined with methamphetamine labeled with a dansyl group (dansyl-labeled methamphetamine), when excited at a wavelength of 280 nm, it emits a light of 530 nm. This antibody and dansyl-labeled methamphetamine have the property of increasing the fluorescence intensity at different wavelengths.
The reaction phase is directly immersed in the target solution, and the target substance is detected by transmitting fluorescence using an optical fiber.
Buffer (0.45 μm pH 7 phosphate buffer)
The anti-methamphetamine antibody was dissolved in this solution 3 to a concentration of 2 x 10-'M (filtered through a filter).
60 μm into the reaction phase (set at 20 °C) and an additional 10
1. Add 20 μl of dansyl-labeled methamphetamine of M. 1. Transmit 280 nm fluorescence to this reaction phase using an optical fiber, extract 530 nm fluorescence using an optical fiber, and measure its intensity. The fluorescence intensity was approximately 60 (B) above. The reaction phase of the sensor in (A) was immersed in methamphetamine solutions of various concentrations and 530n of 280nm excitation was applied.
When measuring the fluorescence intensity of m, the fluorescence intensity of 530 nm decreased depending on the concentration of methamphetamine. Decrease rate ■ (
%) is calculated using the following formula, where t is also the fluorescence intensity before the reaction phase is immersed in the methamphetamine solution, and F obs is the fluorescence intensity when the reaction phase is immersed in the methamphetamine solution. FIG. 2 shows the rate of decrease in fluorescence intensity with respect to the concentration of methamphetamine. Second
The results shown in the figure prove that methamphetamine at a concentration of about 10-LSM can be detected by the present invention.Also, similar results can be obtained by using amphetamine labeled with a dansyl group instead of methamphetamine labeled with a dansyl group. Now that the present invention has been explained, mainly taking the detection of methamphetamine as an example, it is of course a general method that can be applied to all other chemical substances.

実施例3 免疫センサー; 実施例1および2で説明した反応相を光ファイバーを介
して蛍光測定装置に結合させ、免疫センサーを作製した
 第3図(a)に示すように 測定機構(よ 蛍光測定
装置lで調整した波長の光を光ファイバー2によって反
応相3に伝達し 反応相3内の抗体を励起し 反応相3
より出力された蛍光を光ファイバー2によって蛍光測定
装置lに伝達しここで蛍光強度を測定するものである。
Example 3 Immunosensor: An immunosensor was fabricated by coupling the reaction phase described in Examples 1 and 2 to a fluorescence measuring device via an optical fiber.As shown in FIG. The light with the wavelength adjusted by l is transmitted to the reaction phase 3 through the optical fiber 2 to excite the antibodies in the reaction phase 3.
The fluorescence output from the fluorescent light source is transmitted to a fluorescence measuring device 1 through an optical fiber 2, and the fluorescence intensity is measured there.

第3図(b)4i  その反応相3を中心とする暗示断
面図である。半透膜5がOリング4を介して、光ファイ
バー2の先端に取り付けられている。
FIG. 3(b) 4i is a implied cross-sectional view centered on the reaction phase 3. A semipermeable membrane 5 is attached to the tip of the optical fiber 2 via an O-ring 4.

な抵 実施例1および実施例2は本免疫センサーを用い
て行なったものである。
Examples 1 and 2 were conducted using the present immunosensor.

また 光ファイバー2の末端に備えられた反応相3が光
ファイバー2と脱着が可能であってもよIO− 発明の効果 本発明により、水溶液中の極微量物質を迅速にかつ簡便
に測定することが可能になった
Furthermore, the reaction phase 3 provided at the end of the optical fiber 2 may be detachable from the optical fiber 2. Effects of the Invention According to the present invention, it is possible to quickly and easily measure trace amounts of substances in an aqueous solution. Became

【図面の簡単な説明】[Brief explanation of drawings]

第1図(ま本発明の実施例1の免疫的測定方法によって
測定した各トリニトロトルエン濃度における蛍光減少率
を示したグラフ、第2図は本発明の実施例2の免疫的測
定方法によって測定した各メタンフェタミン濃度におけ
る蛍光減少率を示したグラフ、第3図は本発明における
免疫センサーの暗示断面図であり、 (a)は免疫セン
サーの全体暗示は (b)は反応相付近の拡大図を示す
ものである。 1・・・蛍光測定装置 2・・・光ファイバー、3・・
・反応祖 4・・・Oリング、 5・・・半透風
Figure 1 (a graph showing the fluorescence reduction rate at each trinitrotoluene concentration measured by the immunoassay method of Example 1 of the present invention), and Figure 2 is a graph showing the fluorescence reduction rate at each trinitrotoluene concentration measured by the immunoassay method of Example 2 of the present invention. A graph showing the fluorescence reduction rate at each methamphetamine concentration, and FIG. 3 is a cross-sectional view of the immunosensor according to the present invention. 1... Fluorescence measurement device 2... Optical fiber, 3...
・Reaction starter 4...O-ring, 5...semi-permeable wind

Claims (13)

【特許請求の範囲】[Claims] (1)光ファイバーの末端に半透膜で覆われた反応相を
備え、この反応相の中に被検出物質と結合する前後で蛍
光特性が変化する特徴を持つ抗体を含有させ、この反応
相を被検出溶液中に浸して蛍光特性の変化を測定する場
合に、光ファイバーを通して励起光および出力光の伝達
を行なうことを特徴とする免疫的測定方法。
(1) The end of the optical fiber is equipped with a reaction phase covered with a semi-permeable membrane, and this reaction phase contains an antibody whose fluorescence characteristics change before and after binding to the target substance. 1. An immunoassay method characterized by transmitting excitation light and output light through an optical fiber when measuring changes in fluorescence characteristics by immersion in a detection target solution.
(2)光ファイバーの末端に半透膜で覆われた反応相を
備え、この反応相の中に、被検出物質と結合する抗体お
よび蛍光プローブで標識した被検出物質を含有させ、こ
の反応相を被検出溶液中に浸した際、半透膜を通過して
反応相内に入った被検出物質と蛍光プローブで標識した
被検出物質との抗体結合の競合反応に伴う蛍光特性の変
化を測定する場合に光ファイバーを通して励起光および
出力光の伝達を行なうことを特徴とする免疫的測定方法
(2) A reaction phase covered with a semi-permeable membrane is provided at the end of the optical fiber, and the reaction phase contains an antibody that binds to the analyte and a analyte labeled with a fluorescent probe. When immersed in a detection solution, changes in fluorescence characteristics are measured due to the competitive reaction of antibody binding between the detection substance that has passed through the semipermeable membrane and entered the reaction phase and the detection substance labeled with a fluorescent probe. An immunoassay method characterized by transmitting excitation light and output light through an optical fiber.
(3)光ファイバーの末端の半透膜で覆われた反応相が
pH6〜9の緩衝溶液で満たされていることを特徴とす
る請求項1又は2記載の免役的測定方法。
(3) The immunoassay method according to claim 1 or 2, wherein the reaction phase covered with a semipermeable membrane at the end of the optical fiber is filled with a buffer solution having a pH of 6 to 9.
(4)蛍光強度が被検出物質との結合により減少する抗
体を用いることを特徴とする請求項1記載の免疫的測定
方法。
(4) The immunoassay method according to claim 1, characterized in that an antibody whose fluorescence intensity decreases upon binding to a substance to be detected is used.
(5)蛍光プローブで標識した被検出物質の蛍光強度が
抗体と結合することによって増強することを特徴とする
請求項2記載の免疫的測定方法。
(5) The immunoassay method according to claim 2, wherein the fluorescence intensity of the target substance labeled with a fluorescent probe is enhanced by binding to an antibody.
(6)被検出物質に標識する蛍光プローブがダンシル基
であることを特徴とする請求項2記載の免疫的測定方法
(6) The immunoassay method according to claim 2, wherein the fluorescent probe that labels the substance to be detected is a dansyl group.
(7)被検出物質および蛍光プローブで標識した被検出
物質と結合する抗体がポリクローナル抗体であることを
特徴とする請求項1又は2記載の免疫的測定方法。
(7) The immunoassay method according to claim 1 or 2, wherein the antibody that binds to the substance to be detected and the substance to be detected labeled with a fluorescent probe is a polyclonal antibody.
(8)被検出物質および蛍光プローブで標識した被検出
物質と結合する抗体がモノクローナル抗体であることを
特徴とする請求項1又は2記載の免疫的測定方法。
(8) The immunoassay method according to claim 1 or 2, wherein the antibody that binds to the substance to be detected and the substance to be detected labeled with a fluorescent probe is a monoclonal antibody.
(9)被検出物質がトリニトロトルエンであることを特
徴とする請求項1記載の免疫的測定方法。
(9) The immunoassay method according to claim 1, wherein the substance to be detected is trinitrotoluene.
(10)被検出物質がメタンフェタミン、アンフェタミ
ン又はエフェドリンであることを特徴とする請求項2記
載の免疫的測定方法。
(10) The immunoassay method according to claim 2, wherein the substance to be detected is methamphetamine, amphetamine, or ephedrine.
(11)請求項1記載の免疫的測定方法を用いることを
特徴とする免疫センサー。
(11) An immunosensor characterized by using the immunoassay method according to claim 1.
(12)請求項2記載の免疫的測定方法を用いることを
特徴とする免疫センサー。
(12) An immunosensor characterized by using the immunoassay method according to claim 2.
(13)光ファイバーの末端に備えられた反応相が光フ
ァイバー部と脱着が可能であることを特徴とする請求項
11又は12項記載の免疫センサ。
(13) The immunosensor according to claim 11 or 12, wherein the reaction phase provided at the end of the optical fiber is removable from the optical fiber portion.
JP1182918A 1989-07-14 1989-07-14 Immunoassay method and immunosensor Expired - Fee Related JPH07113638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1182918A JPH07113638B2 (en) 1989-07-14 1989-07-14 Immunoassay method and immunosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1182918A JPH07113638B2 (en) 1989-07-14 1989-07-14 Immunoassay method and immunosensor

Publications (2)

Publication Number Publication Date
JPH0346564A true JPH0346564A (en) 1991-02-27
JPH07113638B2 JPH07113638B2 (en) 1995-12-06

Family

ID=16126660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1182918A Expired - Fee Related JPH07113638B2 (en) 1989-07-14 1989-07-14 Immunoassay method and immunosensor

Country Status (1)

Country Link
JP (1) JPH07113638B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993013418A1 (en) * 1991-12-20 1993-07-08 Ibiden Co., Ltd. Fluorescent immunity measuring instrument
US5523845A (en) * 1994-02-04 1996-06-04 Biosensor Laboratories Co., Ltd. A fiber optic device for measuring liquids which are drawn into an end of the device to a predetermined distance from the end of the optical fibers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993013418A1 (en) * 1991-12-20 1993-07-08 Ibiden Co., Ltd. Fluorescent immunity measuring instrument
US5449625A (en) * 1991-12-20 1995-09-12 Ibiden Co., Ltd. Optical fiber based fluorescent immunoassay apparatus
US5523845A (en) * 1994-02-04 1996-06-04 Biosensor Laboratories Co., Ltd. A fiber optic device for measuring liquids which are drawn into an end of the device to a predetermined distance from the end of the optical fibers

Also Published As

Publication number Publication date
JPH07113638B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
US7096053B2 (en) Internal biochemical sensing device
Masson et al. Sensitive and real-time fiber-optic-based surface plasmon resonance sensors for myoglobin and cardiac troponin I
US5672515A (en) Simultaneous dual excitation/single emission fluorescent sensing method for PH and pCO2
CN103954776B (en) NGAL optical excitation chemiluminescence detection kit, its method of preparation and use
Feng et al. A nanosensor based on quantum-dot haptens for rapid, on-site immunoassay of cyanotoxin in environmental water
Sun et al. Label-free detection of breast cancer biomarker using silica microfiber interferometry
US7871573B2 (en) Enhancement of sensitivity of fluorophore mediated biosensing and bioimaging
Guo et al. An up conversion optical system based on mesoporous silica encapsulated up-converting nanoparticles labeled lateral flow immunoassay for procalcitonin quantification in plasma
Stringer et al. Quantum dot-based biosensor for detection of human cardiac troponin I using a liquid-core waveguide
CN104198740B (en) A kind of to glucose and the synchronous nano biological sensor detecting of cholesterol
CN106831634A (en) A kind of Ratiometric fluorescent probe for detecting AAP and preparation method and application
Wadkins et al. Calibration of biosensor response using simultaneous evanescent wave excitation of cyanine-labeled capture antibodies and antigens
JPH0346564A (en) Immunoassay and immune sensor
Wiriyachaiporn et al. A simple fluorescence-based lateral flow test platform for rapid influenza B virus screening
US20060216773A1 (en) Method for determining the glucose concentration by fluorescence polarization
Papkovsky et al. Fibre-optic lifetime-based enzyme biosensor
CN103376250B (en) Kit and detection method for specific fast cAMP detection
CN105974129A (en) One-step homogeneous-phase H-FABP detection kit and preparation and use method thereof
CN107102146A (en) A kind of method of glial fibrillary acidic albumen in quantitatively detection serum
Bluestein et al. Rapid response fiber optic evanescent wave immunosensors
Tlomatsane et al. The use of gold nanoparticles as a signal enhancer in LSPR for the detection of SARS-CoV-2
Zhao et al. Optical Biosensors: Fluorescent-Based Imaging
Mueller et al. Multicomponent fiber optical biosensor for use in hemodialysis monitoring
CN107102132A (en) Quantum dot fluorescence probe and preparation method thereof, immune chromatography test paper
Ligler et al. Effect of wavelength and dye selection on biosensor response

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees