JPH0346399A - Manufacture of material provided with sound absorbing and wave absorbing properties - Google Patents

Manufacture of material provided with sound absorbing and wave absorbing properties

Info

Publication number
JPH0346399A
JPH0346399A JP18192389A JP18192389A JPH0346399A JP H0346399 A JPH0346399 A JP H0346399A JP 18192389 A JP18192389 A JP 18192389A JP 18192389 A JP18192389 A JP 18192389A JP H0346399 A JPH0346399 A JP H0346399A
Authority
JP
Japan
Prior art keywords
ferrite
ferrite particles
resin
particles
radio wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18192389A
Other languages
Japanese (ja)
Inventor
Takao Nakajima
中島 敬夫
Hiroo Wakiyama
裕夫 脇山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Original Assignee
NDC Co Ltd
Nippon Dia Clevite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd, Nippon Dia Clevite Co Ltd filed Critical NDC Co Ltd
Priority to JP18192389A priority Critical patent/JPH0346399A/en
Publication of JPH0346399A publication Critical patent/JPH0346399A/en
Pending legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To provide both porous sound absorbing properties and wave absorbing properties at the same time by coating a surface of ferrite particle of grain diameter of 20 to 500mum with a mixture of thermosetting resin uncured material and curing agent, etc., to prevent ferrite particles from adhering each other and by heating and curing them inside a die. CONSTITUTION:Ferrite of grain diameter of 20 to 500mum is used as a material. Surfaces of the ferrite particles are coated uniformly with a resin composition which is a mixture of an uncured thermosetting resin equivalent to 1 to 10wt.% of the ferrite particles and a curing agent. Such a resin coated material is heated to a curing temperature of the resin or above to form porous ferrite. For example, a die 1 is used and ferrite particle 3 which is coated uniformly with uncured resin composition is poured and filled therein. A scraping board 2 is used to scrap off excess ferrite particles 3. The material, which is still in the die, is inserted into a furnace to be burnt and cured. Thereby, it is possible to provide both sound absorbing function and effective wave absorbing ability.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は吸音性ならびに電波吸収性を具えた材料の製造
法に係り、詳しくは、電波吸収性と音波吸収性の両者が
要求される建築用素材として用いられる多孔質で吸音性
ならびに電波吸収性を具えた材料の製造法に係る。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for producing a material having sound absorbing properties and radio wave absorbing properties, and specifically relates to a construction material that requires both radio wave absorbing properties and sound wave absorbing properties. This invention relates to a method for manufacturing porous materials with sound-absorbing and radio wave-absorbing properties that are used as

従  来  の  技  術 従来から、電波吸収材は電波暗室、テレビ電波障害とし
てのゴースト対策、また、橋梁におけるレーダ偽像対策
として、フェライト系のレンガ、シート、カーボン系素
材等が多用されてきた。一方、吸音材としては多孔質材
が用いられ、セラミックス、金属、樹脂等がその材料と
して使用されてきた。この両者は建築用素材としては兼
ね備えていることが望ましいのであるが、両特性を示す
素材は現在まで殆んど知られておらず、両特性の必要な
場合には両者の特性をそれぞれ含有する素材を使用して
いた。その例として実開昭63−128795号公報で
は金aiと発泡プラスチックを使用する方法が示されて
いるにすぎない。
Conventional technology Traditionally, ferrite-based bricks, sheets, carbon-based materials, etc. have been widely used as radio wave absorbing materials in anechoic chambers, as countermeasures against ghosts that interfere with TV radio waves, and as countermeasures against radar false images on bridges. On the other hand, porous materials have been used as sound absorbing materials, and ceramics, metals, resins, etc. have been used as the materials. It is desirable for a building material to have both of these properties, but until now there are almost no known materials that exhibit both properties, and when both properties are required, it is necessary to have both properties material was used. As an example, Japanese Utility Model Application Publication No. 63-128795 merely discloses a method using gold AI and foamed plastic.

発明が解決しようとする課題 本発明は上記問題の解決を目的とし、具体的には、電波
吸収に関してはテレビ等のゴースト対策として建物での
電波吸収を5〜50dB、音波の吸収に関しては500
〜1500口2の周波数帯で0.7以上の吸音率を達成
することができる多孔質吸音性と電波吸収性と両特性を
同時に兼ね備えた多孔質吸音、電波吸収材の製造法を提
案することを目的とする。
Problems to be Solved by the Invention The present invention aims to solve the above-mentioned problems.Specifically, in terms of radio wave absorption, the radio wave absorption in buildings is 5 to 50 dB as a countermeasure against ghosts such as TVs, and in the case of sound wave absorption, it is 500 dB.
To propose a manufacturing method for a porous sound absorbing and radio wave absorbing material that can achieve a sound absorption coefficient of 0.7 or more in the frequency band of ~1500 mouths2 and has both porous sound absorbing properties and radio wave absorbing properties at the same time. With the goal.

課題を解決するための 手段ならびにその作用 すなわち、本発明は粒子径20〜500μmのフェライ
ト粒子の表面に、このフェライト粒子に対し1〜10重
量%の熱硬化性樹脂未硬化物と、この未硬化物の硬化に
必要な最の硬化剤等の混合物を被覆し、フェライト粒子
が粘着しない状態とした後、金型内で加熱硬化させるこ
とを特徴とする。
Means for Solving the Problems and Their Effects Namely, the present invention provides an uncured thermosetting resin on the surface of ferrite particles having a particle size of 20 to 500 μm, and an uncured thermosetting resin of 1 to 10% by weight based on the ferrite particles. The method is characterized in that the ferrite particles are coated with a mixture of hardening agents and the like necessary for hardening the product to make the ferrite particles non-adhesive, and then heated and hardened in a mold.

以下、更に本発明の手段たる構成ならびにその作用につ
いて説明すると、次の通りである。
Hereinafter, the configuration of the means of the present invention and its operation will be further explained as follows.

本発明は7Iライト(M]IO,Fe2o3、でMlは
Mn、Fe、Co、Ni、CU%Zn。
The present invention is 7I light (M]IO, Fe2o3, and Ml is Mn, Fe, Co, Ni, CU%Zn.

Mo、cd%etc、)粒子を用いて多孔質材を作り、
フェライト粒子の持っている特性である強磁性体による
電波吸収特性にフェライトを多孔質化することにより、
音波吸収作用を兼ね備えさせようとするものである。フ
ェライトは通常電波吸収材としてテレビのゴースト対策
、N波障害、レーダ偽像防止対策として一般的に実用化
されているものであるが、このフェライトは電波吸収材
として用いる場合、通常10a前後の板状のフェライト
レンガがテレビ等の電波ゴースト対策として建物の外壁
に貼付されている。しかし、近年騒音に対する厳しい要
求が出てきており、このフェライトレンガのみでは音波
を反射するために対応できなくなってきている。また、
フェライトレンガ自身は電波吸収材として使用されるに
あたって、自由空間からフェライトに入る境界面での特
殊な臨界結合を持たせるような設計法をとらないと、例
えば、フェライトの後面に金属板を貼付させる等、電波
吸収効果を上げる対策が必要である。
Make a porous material using Mo, cd% etc.) particles,
By making ferrite porous, the radio wave absorption properties of ferrite particles due to ferromagnetic material are achieved.
This is intended to combine the effect of absorbing sound waves. Ferrite is generally put into practical use as a radio wave absorbing material to prevent TV ghosts, N wave interference, and radar false images. ferrite bricks are pasted on the exterior walls of buildings as a countermeasure against radio wave ghosts from televisions and other devices. However, in recent years there have been stricter requirements regarding noise, and ferrite bricks alone cannot meet these demands because they reflect sound waves. Also,
When ferrite brick itself is used as a radio wave absorbing material, it is necessary to take a design method that creates a special critical bond at the interface where the ferrite enters from free space. Measures to increase the radio wave absorption effect are necessary.

このような問題点を改善し、吸音作用を有し更に効果的
な電波吸収能力を兼ね備えた素材を開発したものが本発
明である。
The present invention improves these problems and develops a material that has a sound absorbing effect and also has an effective radio wave absorbing ability.

本発明は通常の方法でフェライト粒子を製造し、その粒
子径が20〜500μmのものを原料として、そのフェ
ライト粒子の表面を対粒子1〜10重徴%の常温固体の
熱硬化性樹脂未硬化物に硬化剤等を配合してなる樹脂組
成物で均一に被覆処理したMA脂脂環覆物その樹脂の硬
化温度以上に加熱することによって多孔質フェラ・イト
を形成する方法である。ここで使用される常温で固体の
熱硬化性樹脂としては(1)フェノール樹脂、(2)ジ
アリルフタレート樹脂、(3)エポキシ樹脂、(4)不
飽和ポリエステル樹脂等があげられ、これらのいずれの
樹脂を使用しても良い。
In the present invention, ferrite particles are produced by a conventional method, and the particles having a particle size of 20 to 500 μm are used as a raw material. In this method, porous ferrite is formed by heating an MA alicyclic coating uniformly coated with a resin composition containing a curing agent and the like to a temperature higher than the curing temperature of the resin. Thermosetting resins that are solid at room temperature used here include (1) phenol resins, (2) diallyl phthalate resins, (3) epoxy resins, and (4) unsaturated polyester resins. Resin may also be used.

フェライト多孔質材の特性としては耐熱性を要求される
ような場合にはフェノール樹脂を用いればよい。その目
的に応じた樹脂を選択する事によって出来上がった製品
の特性、特に、強度、耐食性、耐熱性等が確保できる。
When heat resistance is required as a characteristic of the ferrite porous material, a phenol resin may be used. By selecting a resin appropriate for the purpose, the properties of the finished product, especially strength, corrosion resistance, heat resistance, etc., can be ensured.

樹脂選択にあたって重要な点は常温で固体であり、その
融点が60〜120℃のもので、更に融点以上で急激に
粘性が低下して、フェライト粒子表面に均一に?g!、
覆され易いものを選択する必要がある。このような樹脂
としては、ノボラック型フェノール樹脂、また、エポキ
シ樹脂としてはビスフェノールへ型エポキシ樹脂、脂環
式エポキシ樹脂が適当である。
The important point when selecting a resin is that it is solid at room temperature and has a melting point of 60 to 120°C, and that the viscosity decreases rapidly above the melting point so that it is uniformly spread over the surface of the ferrite particles. g! ,
You need to choose something that is easy to overturn. As such a resin, a novolac type phenol resin is suitable, and as an epoxy resin, a bisphenol type epoxy resin or an alicyclic epoxy resin is suitable.

次に、本発明に用いられるフェライト粒子の樹脂被覆物
の製造法について説明する。
Next, a method for manufacturing the resin coating of ferrite particles used in the present invention will be explained.

まず、フェライト粒子を予め使用する熱硬化性樹脂硬化
物の融点より20〜200 ’C高い温度に予熱し、次
に、このフェライト粒子を回転ミキサー中に投入する。
First, ferrite particles are preheated to a temperature 20 to 200'C higher than the melting point of the cured thermosetting resin to be used, and then the ferrite particles are placed in a rotating mixer.

このミキサーは、スクリュータイプ、羽タイプ何れでも
使用可能である。次に、固体の熱硬化性樹脂未硬化物を
i拌中のミキサーに投入し、予熱されたフェライト粒子
の熱によって熔融させる。これら粒子を冷却する前に通
常使用されている硬化剤、触媒及びシランカップリング
剤を必要に応じて添加することができるが、このシラン
カップリング剤はフェライトと樹脂の結合力を高めるた
めのものである。
This mixer can be of either a screw type or a blade type. Next, the uncured solid thermosetting resin is put into a mixing mixer and melted by the heat of the preheated ferrite particles. Before cooling these particles, commonly used curing agents, catalysts, and silane coupling agents can be added as necessary, but this silane coupling agent is used to increase the bonding strength between ferrite and resin. It is.

次に、冷却するが必要に応じて冷却のために水を添加し
てもよい。ミキサーの攪拌はフェライトの粒子がサラサ
ラになるまで続行することが必要である。この場合、滑
剤を添加してもよい。冷却後粒子を取り出すと、この粒
子表面には未硬化樹脂組成物が均一に被覆されている。
Next, it is cooled, and water may be added for cooling if necessary. It is necessary to continue stirring with the mixer until the ferrite particles become smooth. In this case, a lubricant may be added. When the particles are taken out after cooling, the surfaces of the particles are uniformly coated with the uncured resin composition.

フェライト粒子に対する樹脂の量は1〜10重量%、更
に好ましくは2〜5重量%である。この理由は1重量%
未満では焼成加熱後、多孔質板となった時点での強度不
足となるため好ましくなく、また、10重量%超では強
度向上がこれ以上期待できないがらである。
The amount of resin relative to the ferrite particles is 1 to 10% by weight, more preferably 2 to 5% by weight. The reason for this is 1% by weight
If it is less than 10% by weight, it is not preferable because the porous plate will have insufficient strength after firing and heating, and if it exceeds 10% by weight, no further improvement in strength can be expected.

次に、多孔質吸音、電波吸収材の製造法について図面に
より詳しく説明する。
Next, a method for manufacturing the porous sound absorbing and radio wave absorbing material will be explained in detail with reference to the drawings.

第1図は本発明を実施する際に用いられる金型の斜視図
であり、第2図は第1図の側面図であり、第3図は本発
明の実施例の中心周波数と残響室法吸M率との関係を示
すグラフであり、第4図は電波吸収機器の電波吸収測定
用サンプルの配置図であり、第5図は電波吸収性特性の
測定方法のブロック図である。
FIG. 1 is a perspective view of a mold used in carrying out the present invention, FIG. 2 is a side view of FIG. 1, and FIG. This is a graph showing the relationship with M absorption rate, FIG. 4 is a layout diagram of a sample for measuring radio wave absorption of a radio wave absorption device, and FIG. 5 is a block diagram of a method for measuring radio wave absorption characteristics.

符号1は金型、2はかき板、3はフェライト粒子を示す
Reference numeral 1 indicates a mold, 2 indicates a scraper plate, and 3 indicates ferrite particles.

まず、第1図に示すように4角形状の金型1を用い、こ
の中へ前記のようにして未硬化樹脂組成物が均一に被覆
されたフェライト粒子3を流し込み充填する。次いで、
第2図に示すようにがき板2を用いて余分のフェライト
粒子3をかき落とす。これを金型に入れたまま炉に挿入
して200〜300℃で1〜30分焼成硬化する。この
場合、型内に予め一定量の原料粒子を入れて、振動によ
り、粒子を動かして一定厚さとする方法を採用してもよ
い。
First, as shown in FIG. 1, a rectangular mold 1 is used, into which the ferrite particles 3 uniformly coated with the uncured resin composition as described above are poured and filled. Then,
As shown in FIG. 2, excess ferrite particles 3 are scraped off using a scraping board 2. The mold is inserted into a furnace and fired and hardened at 200 to 300°C for 1 to 30 minutes. In this case, a method may be adopted in which a certain amount of raw material particles are placed in advance in a mold and the particles are moved by vibration to obtain a certain thickness.

また、多孔質材の空孔率を上げるためには前記の方法が
良いが、フェライトの粒子密度をあげるためには加圧に
よって粒子間の間隙を小さくする方法を取っても良い。
Further, the above-mentioned method is good for increasing the porosity of the porous material, but in order to increase the particle density of ferrite, it is also possible to use a method of reducing the gaps between particles by applying pressure.

加圧力によって空孔率が下がり、吸音特性が低下するの
であまり加圧は好ましくない。
It is not preferable to pressurize too much because the porosity decreases and the sound absorption properties deteriorate due to the pressurizing force.

このようにして作成した多孔質フェライト材の特性調査
を行なったところ、吸音特性は第3図に示すように良好
な吸音率を示した。吸音率の測定法は多孔質フェライト
iQmmの板を用い、背面に空気層を背面壁面に対して
50叩取って測定した。電波吸収については第4図に示
すように測定用サンプル4を測定系ユニットに取付け、
第5図に示すブロック図に従って測定を行なった。スイ
バ−から発信された電波が試料ホルダーに入って試料部
分に入射した時の反射係数を反射ユニット、周波数コン
パレータ、ネットワークアナライザー極座標表示器から
なるネットワークアナライザーシステムによって測定し
、X−Yレコーダーによって記録したのら、反射係数を
反射損失に換算して周波数に対応した反射損失のデータ
を測定する。このような方法で測定した10Mと5 m
m厚みのフェライト多孔質材の電波吸収率を第1表に示
す。
When the characteristics of the porous ferrite material thus prepared were investigated, it was found that the sound absorption property showed a good sound absorption coefficient as shown in FIG. The sound absorption coefficient was measured by using a porous ferrite iQmm plate and making an air layer on the back surface by knocking 50 times against the back wall surface. Regarding radio wave absorption, attach measurement sample 4 to the measurement system unit as shown in Figure 4.
Measurements were carried out according to the block diagram shown in FIG. When the radio waves emitted from the swirler entered the sample holder and entered the sample part, the reflection coefficient was measured by a network analyzer system consisting of a reflection unit, a frequency comparator, and a network analyzer polar coordinate display, and was recorded by an X-Y recorder. Then, the reflection coefficient is converted to return loss and the return loss data corresponding to the frequency is measured. 10M and 5m measured in this way
Table 1 shows the radio wave absorption rate of m-thick ferrite porous material.

なお、この際のF準は0.5IIIl11の銅板の反射
率を100%とした。
In this case, the F standard was 0.5IIIl11, and the reflectance of the copper plate was 100%.

実施例 以下、実施例をあげてざらに説明する。Example Hereinafter, a rough explanation will be given by giving examples.

実施例1゜ 平均粒径Q、2mmのFe−Mn系フェライト粒子4k
gを230 ”Cに予熱して回転しているミキサー中に
投入し、続いてタブレット状ノボラックタイプフェノー
ルレジン(群栄化学株式会社製、商品名PSM2240
)200Gをミキサー中に投入、樹脂が溶けて均一にフ
ェライト粒子に被覆された時点で硬化剤としてヘキサメ
チレンテトラミンの20%水溶液を1500C(対樹脂
15重徴%)を添加し、樹脂組成物被覆粒子がブロッキ
ング〈熔融した樹脂が冷却して固体に変化するためIl
lll中途中まる現象)を起こし始めた時点で粒子間の
滑剤として、ステアリン酸カルシウムを対樹脂で3重量
%添加し、粒子が完全に個々に分離した後、ミキサより
取り出した。
Example 1゜Fe-Mn ferrite particles with an average particle size Q of 2 mm 4k
g was preheated to 230"C and put into a rotating mixer, and then a tablet of novolak type phenol resin (manufactured by Gunei Chemical Co., Ltd., trade name PSM2240) was added.
)200G was put into a mixer, and when the resin was melted and uniformly coated on the ferrite particles, 1500C of a 20% aqueous solution of hexamethylenetetramine was added as a hardening agent (15% based on the resin), and the resin composition was coated. Particles are blocking (because the molten resin cools and turns into a solid)
At the point when 3% by weight of calcium stearate based on the resin started to occur as a lubricant between the particles, the particles were completely separated into individual particles and then taken out from the mixer.

次に、この樹脂組成物被覆粒子を70一イング式戒形機
に投入し、エア圧5klJの圧力で金型内に吹き込み、
金型内で230℃で9秒保持し、冷部後金型から取り出
して300mmx300mm×10101l1のフェラ
イトの多孔質材を取り出し、その電波吸収特性を測定し
た。その結果を第3図ならびに第1表に示した。このよ
うに10Illalの厚みのものはテレビ等の周波数範
囲では20tllB以上の電波吸収特性を示した。
Next, the resin composition-coated particles were put into a 70-inch molding machine and blown into the mold with an air pressure of 5 klJ.
The mold was held at 230° C. for 9 seconds, and after the cooling part was removed from the mold, a porous ferrite material measuring 300 mm x 300 mm x 10101 l1 was taken out and its radio wave absorption characteristics were measured. The results are shown in FIG. 3 and Table 1. As described above, a material with a thickness of 10 Illal exhibited a radio wave absorption characteristic of 20 tllB or more in the frequency range of television and the like.

実施例2゜ 実施例1の製造法と材料組成に従ってフェノールレジン
1〜15%(対粒子)の樹脂量を使用して樹脂組成物被
覆粒子を作成し各々300MX300nwx5mmのフ
ェライト多孔質材を作成し、その電波吸収特性を測定し
た。そ4の結果を第1表に示した。
Example 2 According to the manufacturing method and material composition of Example 1, resin composition-coated particles were prepared using a resin composition of 1 to 15% (to particles) of phenol resin, and ferrite porous materials of 300 MX 300 nw x 5 mm were each prepared, We measured its radio wave absorption characteristics. The results of Part 4 are shown in Table 1.

第1表によれば、5 mm材であっても80〜1001
00O0の領域で優れた電波吸1f!2¥1性(発明の
効果〉 以上詳しく説明した通り、本発明は、粒子径20〜50
0μmのフェライト粒子の表面に、このフェライト粒子
に対し1〜10重量%の熱硬化性樹脂未硬化物と、この
未硬化物の硬化に0聾な伍の硬化剤等の混合物を被覆し
、フェライト粒子が粘着しない状態とした後、金型内で
加熱硬化させることを特徴とする。
According to Table 1, even for 5 mm material, it is 80 to 1001
Excellent radio wave absorption 1f in the 00O0 area! 2¥1 properties (effects of the invention) As explained in detail above, the present invention provides particle diameters of 20 to 50
The surface of 0 μm ferrite particles is coated with a mixture of 1 to 10% by weight of an uncured thermosetting resin based on the ferrite particles, and a curing agent that is 0% deaf to curing this uncured material. It is characterized in that the particles are made into a non-adhesive state and then heated and hardened in a mold.

従って、粒子径20〜500μmのフェライト粒子の表
面に熱硬化性樹脂未硬化物とこの未硬化物の硬化に必要
な量の硬化剤等の混合物を被覆し、金型内で加熱硬化さ
せるようにしたため、得られたものは5〜50dBの電
波吸収性と500〜1500日2の周波帯で0.7以上
の吸音率が得られ、電波吸収性と吸音性とを同時に達成
することができる優れた材料が提供される。
Therefore, the surface of ferrite particles with a particle size of 20 to 500 μm is coated with a mixture of an uncured thermosetting resin and a curing agent in an amount necessary for curing this uncured material, and the mixture is heated and cured in a mold. Therefore, the obtained product has a radio wave absorption of 5 to 50 dB and a sound absorption coefficient of 0.7 or more in the frequency band of 500 to 1500 days2, and is an excellent product that can simultaneously achieve radio wave absorption and sound absorption. materials will be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する際に用いられる金型の斜視図
、第2図は第1図の側面図、第3図は本発明の実施例の
中心周波数と残VI室法吸音率との関係を示すグラフ、
第4図は電波吸収機器の電波吸収測定用サンプルの配置
図、第5図は電波吸収性特性の測定方法のブロック図で
ある。 符号1・・・・・・金型 2・・・・・・かき板 3・・・・・・フェライト粒子
Fig. 1 is a perspective view of a mold used in carrying out the present invention, Fig. 2 is a side view of Fig. 1, and Fig. 3 shows the center frequency and residual VI room method sound absorption coefficient of an embodiment of the present invention. A graph showing the relationship between
FIG. 4 is a layout diagram of a sample for measuring radio wave absorption of a radio wave absorption device, and FIG. 5 is a block diagram of a method for measuring radio wave absorption characteristics. Code 1... Mold 2... Scraping plate 3... Ferrite particles

Claims (1)

【特許請求の範囲】 1)粒子径20〜500μmのフエライト粒子の表面に
、このフエライト粒子に対し1〜10重量%の熱硬化性
樹脂未硬化物と、この未硬化物の硬化に必要な量の硬化
剤等の混合物を被覆し、前記フエライト粒子が粘着しな
い状態とした後、金型内で加熱硬化させることを特徴と
する吸音性ならびに電波吸収性を具えた材料の製造法。 2)前記フエライト粒子が粘着しないように滑剤を添加
する請求項1記載の吸音性ならびに電波吸収性を具えた
材料の製造法。 3)前記フエライト粒子表面に熱硬化性樹脂の被覆時の
温度が熱硬化温度以下で処理し、その後、急冷する請求
項1又は2記載の吸音性ならびに電波吸収性を具えた材
料の製造法。
[Scope of Claims] 1) On the surface of ferrite particles having a particle size of 20 to 500 μm, an uncured thermosetting resin of 1 to 10% by weight based on the ferrite particles and an amount necessary for curing the uncured material. A method for producing a material having sound-absorbing properties and radio wave-absorbing properties, characterized in that the ferrite particles are coated with a mixture of a curing agent, etc. to make the ferrite particles non-adhesive, and then heated and cured in a mold. 2) The method for producing a material having sound absorbing properties and radio wave absorbing properties according to claim 1, wherein a lubricant is added to prevent the ferrite particles from sticking. 3) The method for producing a material having sound absorbing properties and radio wave absorbing properties according to claim 1 or 2, wherein the ferrite particles are coated with a thermosetting resin at a temperature below the thermosetting temperature, and then rapidly cooled.
JP18192389A 1989-07-14 1989-07-14 Manufacture of material provided with sound absorbing and wave absorbing properties Pending JPH0346399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18192389A JPH0346399A (en) 1989-07-14 1989-07-14 Manufacture of material provided with sound absorbing and wave absorbing properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18192389A JPH0346399A (en) 1989-07-14 1989-07-14 Manufacture of material provided with sound absorbing and wave absorbing properties

Publications (1)

Publication Number Publication Date
JPH0346399A true JPH0346399A (en) 1991-02-27

Family

ID=16109269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18192389A Pending JPH0346399A (en) 1989-07-14 1989-07-14 Manufacture of material provided with sound absorbing and wave absorbing properties

Country Status (1)

Country Link
JP (1) JPH0346399A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291785A (en) * 1992-04-13 1993-11-05 Nec Corp Electric wave absorber
JPH05299870A (en) * 1992-04-20 1993-11-12 Nec Corp Radio wave absorbing material
JPH09162587A (en) * 1995-12-07 1997-06-20 Honda Motor Co Ltd Electronic apparatus sealing material
WO1997042844A1 (en) * 1996-05-10 1997-11-20 Shishiai-Kabushikigaisha Energy conversion composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645586B2 (en) 1969-05-10 2003-11-11 Shishiai-Kabushikigaisha Energy conversion composition
JPH05291785A (en) * 1992-04-13 1993-11-05 Nec Corp Electric wave absorber
JPH05299870A (en) * 1992-04-20 1993-11-12 Nec Corp Radio wave absorbing material
JPH09162587A (en) * 1995-12-07 1997-06-20 Honda Motor Co Ltd Electronic apparatus sealing material
JP2843288B2 (en) * 1995-12-07 1999-01-06 本田技研工業株式会社 Electronic device sealing material
WO1997042844A1 (en) * 1996-05-10 1997-11-20 Shishiai-Kabushikigaisha Energy conversion composition
US6635327B2 (en) 1996-05-10 2003-10-21 Shishiai-Kabushikigaisha Energy conversion composition

Similar Documents

Publication Publication Date Title
JPS6166640A (en) Facing material-synthetic resin foam laminate and manufacture thereof
JPH0346399A (en) Manufacture of material provided with sound absorbing and wave absorbing properties
JPH10290094A (en) Electromagnetic-wave absorbing material and its manufacture
JP2000269680A (en) Electromagnetic wave absorbing board
US6259394B1 (en) Electric wave absorber
US6831223B2 (en) Electromagnetic shielding plate and electromagnetic shielding structure
CN116335269A (en) 3D electromagnetic wave-absorbing concrete super structure based on optimized pavement frequency directional steel fibers
JP3708885B2 (en) Radio wave absorber
JPH0730279A (en) Wave absorber and its manufacture
JPS62248207A (en) Wave absorbing material
JPH0292880A (en) Production of heat resistant and porous acoustical material
JPH0374812A (en) Ferrite magnetic material
JP3958563B2 (en) Radio wave absorber and manufacturing method thereof
JP2556756B2 (en) Composite plate and method of manufacturing the same
JPS6047100B2 (en) Nonflammable lightweight composite material and its manufacturing method
JPH01252590A (en) Ceramic cellular board of two layered structure and production thereof
JPH0935918A (en) Wide band single layer electromagnetic wave absorbing material
JP3974771B2 (en) Manufacturing method of radio wave absorber
JPH07227813A (en) Particle board having electromagnetic wave shielding function, and manufacture thereof
JP2003137631A (en) Porous inorganic formed and hardened material and double-layer porous inorganic formed and hardened material
JPH10245908A (en) Sound absorbing material
CN116486775A (en) Microporous composite material with sound absorption and insulation functions
JP2627700B2 (en) Manufacturing method of non-combustible soundproofing material
JPH07302994A (en) Manufacture of porous ferrite sintered body provided with radio-wave absorption capability
JPH05204385A (en) Sound absorbent