JPH0346345Y2 - - Google Patents

Info

Publication number
JPH0346345Y2
JPH0346345Y2 JP1982201796U JP20179682U JPH0346345Y2 JP H0346345 Y2 JPH0346345 Y2 JP H0346345Y2 JP 1982201796 U JP1982201796 U JP 1982201796U JP 20179682 U JP20179682 U JP 20179682U JP H0346345 Y2 JPH0346345 Y2 JP H0346345Y2
Authority
JP
Japan
Prior art keywords
heating element
differential
long
thermal resistor
thermocouples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982201796U
Other languages
Japanese (ja)
Other versions
JPS59106031U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP20179682U priority Critical patent/JPS59106031U/en
Publication of JPS59106031U publication Critical patent/JPS59106031U/en
Application granted granted Critical
Publication of JPH0346345Y2 publication Critical patent/JPH0346345Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【考案の詳細な説明】 本考案は、たとえば電力ケーブルのような長軸
発熱体の発生熱量測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring the amount of heat generated by a long-axis heating element such as a power cable.

考案の背景 ひとつの面の単位面積を単位時間に移動する熱
量を熱流量と呼ぶが、その測定方法には、従来次
のものが周知である。
Background of the invention The amount of heat that moves per unit area of one surface per unit time is called heat flow, and the following methods are well known for measuring it.

すなわち「第1図」のように、発熱体100の
表面に、熱抵抗体200を当てる。この熱抵抗体
200(シユミツトベルト)はたとえばゴム製
で、熱伝導率がλ、厚さがdである。そして熱抵
抗体200の中央における表裏の温度差を測定
し、それがΔTであるとき、熱流量Qは、単位面
積当り、 Q=λΔT/d で与えられる。
That is, as shown in FIG. 1, a thermal resistor 200 is placed on the surface of a heating element 100. This thermal resistor 200 (Schmidt belt) is made of rubber, for example, and has a thermal conductivity of λ and a thickness of d. Then, the temperature difference between the front and back surfaces at the center of the thermal resistor 200 is measured, and when the difference is ΔT, the heat flow rate Q is given by Q=λΔT/d per unit area.

しかし、この方法では、熱流を乱す恐れが多分
にあり、高精度の測定や、電力ケーブルのような
微小な熱量の測定には不向きであつた。
However, this method has a high risk of disturbing the heat flow, and is not suitable for high-precision measurements or for measuring minute amounts of heat such as those in power cables.

本考案は、上記の問題を解消する長軸発熱体の
発生熱量測定装置の提供を目的とするものであ
る。
The object of the present invention is to provide an apparatus for measuring the amount of heat generated by a long-axis heating element, which solves the above-mentioned problems.

考案の構成とその説明(第2、第3図) 本考案の特徴とするところは、長軸の発熱体1
0を円筒形の熱抵抗体20で取り囲みかつ両者の
間にすき間22ができるようにし;前記熱抵抗体
20に複数の差動熱電対30を、それぞれの一方
の接点32が表面に他方の接点34が内面に位置
するようにして、円周方向に均一に埋め込み、か
つそれらの差動熱電対30を直列に連結したこ
と、にある。
Structure of the device and its explanation (Figures 2 and 3) The feature of the device is that the long-axis heating element 1
0 is surrounded by a cylindrical thermal resistor 20 with a gap 22 between them; a plurality of differential thermocouples 30 are attached to the thermal resistor 20, and one contact 32 of each is attached to the surface of the other contact. The differential thermocouples 30 are embedded uniformly in the circumferential direction so that the thermocouples 34 are located on the inner surface, and the differential thermocouples 30 are connected in series.

10は長軸の発熱体を示す。 10 indicates a heating element along the long axis.

20は熱抵抗体で、たとえばFRP、ゴムなど
の絶縁体からなる。また、これは発熱体10を取
り囲む円筒体からなる(二つ割りでもよい)。ま
たその内径は発熱体10の外径よりも幾分大き
く、発熱体10との間にすき間22ができるよう
になつている。
A heat resistor 20 is made of an insulator such as FRP or rubber. Further, this is made of a cylindrical body surrounding the heating element 10 (it may be divided into two). Further, its inner diameter is somewhat larger than the outer diameter of the heating element 10, so that a gap 22 is formed between the heating element 10 and the heating element 10.

差動熱電対30は、微小温度差を測定するため
に従来から使用されているもので、一般の熱電対
のように基準温度接点を定めず、両接点を、温度
差を測定しようとする位置にそれぞれ設置するも
のである。この場合は、一方の接点32を熱抵抗
体20の表面に、また他方の接点34を熱抵抗体
20の内面に埋め込んでいる。
The differential thermocouple 30 has traditionally been used to measure minute temperature differences, and instead of setting a reference temperature junction like a general thermocouple, both junctions are placed at the position where the temperature difference is to be measured. They will be installed in each location. In this case, one contact 32 is embedded in the surface of the thermal resistor 20, and the other contact 34 is embedded in the inner surface of the thermal resistor 20.

また差動熱電対30は、たとえば「第2図」に
一点鎖線40で示したように、熱抵抗体20の長
さ方向の中央部において、円周方向に一巡する位
置に多数埋め込む。またこれらの差動熱電対30
は円周方向に均一に(等間隔に)配置し、かつそ
れらを直列に接続する。なお50は測定器(直流
電位差計)を示す。
Further, a large number of differential thermocouples 30 are embedded in the longitudinal center of the thermal resistor 20 at positions going around the circumferential direction, for example, as shown by dashed lines 40 in FIG. Also these differential thermocouples 30
are arranged uniformly (at equal intervals) in the circumferential direction and connected in series. Note that 50 indicates a measuring device (DC potentiometer).

なお、全部の差動熱電対30は直列に連結して
もよいし、また各列ごとに(一点鎖線40の列は
一点鎖線40だけ、一点鎖線42の列は42だけ
という具合に)分割し、それぞれの列ごとに直列
に連結してもよい。
In addition, all the differential thermocouples 30 may be connected in series, or they may be divided into each row (the row indicated by the dashed-dotted line 40 has only 40, and the row indicated by the dashed-dotted line 42 has only 42). , each column may be connected in series.

さらに、各列を円周方向あるいは半径方向に複
数のブロツクに分割してもよい。
Furthermore, each row may be divided into a plurality of blocks in the circumferential or radial direction.

このように差動熱電対30を複数のブロツクに
分割すると、長軸の発熱体10の軸方向、あるい
は、円周方向の熱流量の分布測定が可能になる。
By dividing the differential thermocouple 30 into a plurality of blocks in this way, it becomes possible to measure the distribution of heat flow in the axial direction or circumferential direction of the long-axis heating element 10.

なお、発熱体10の単位長当たりの熱流量Q
は、熱抵抗体20の熱抵抗をRth、差動熱電対3
0の直列連結数をN、差動熱電対30全体の検出
する温度の和をΔTiとすると、軸方行一列の1ブ
ロツクにおいては、 Q=ΔTi/N Rth になる。
In addition, the heat flow rate Q per unit length of the heating element 10
is the thermal resistance of the thermal resistor 20, Rth is the thermal resistance of the thermal resistor 20, and the differential thermocouple 3 is
If the number of serially connected thermocouples 30 is N, and the sum of temperatures detected by all the differential thermocouples 30 is ΔTi, then in one block in one axial row and column, Q=ΔTi/N Rth.

考案の効果 長軸の発熱体10を取り囲む円筒形の熱抵抗体
20内に多数の差動熱電対30を均一に埋め込
み、かつそれらを直列に連結し、かつ発熱体10
と熱抵抗体20との間にすき間22を形成しこれ
が熱の流れを均一にする働きをするので、熱流を
乱さずに、精密測定することができる。
Effects of the invention A large number of differential thermocouples 30 are uniformly embedded in the cylindrical thermal resistor 20 surrounding the long-axis heating element 10, and they are connected in series, and the heating element 10
A gap 22 is formed between the heat resistor 20 and the heat resistor 20, and this serves to make the heat flow uniform, so that precise measurements can be made without disturbing the heat flow.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術の説明図、第2図は差動熱電
対を埋めこむ位置の説明図、第3図は差動熱電対
の埋めこみ位置における断面の説明図。 10:発熱体、20:熱抵抗体、30:差動熱
電対。
FIG. 1 is an explanatory diagram of the prior art, FIG. 2 is an explanatory diagram of the position where a differential thermocouple is embedded, and FIG. 3 is an explanatory diagram of a cross section at the embedded position of the differential thermocouple. 10: heating element, 20: thermal resistor, 30: differential thermocouple.

Claims (1)

【実用新案登録請求の範囲】 (1) 長軸の発熱体10を円筒形の熱抵抗体20で
取り囲みかつ両者の間にすき間22ができるよ
うにし;前記熱抵抗体20に複数の差動熱電対
30を、それぞれの一方の接点32が表面に他
方の接点34が内面に位置するようにして、円
周方向に均一に埋め込み、かつそれらの差動熱
電対30を直列に連結したことを特徴とする、
長軸発熱体の発生熱量測定装置。 (2) 差動熱電対30が複数のブロツクに分割され
ていることを特徴とする、実用新案登録請求の
範囲第1項に記載の長軸発熱体の発生熱量測定
装置。
[Claims for Utility Model Registration] (1) A long-axis heating element 10 is surrounded by a cylindrical thermal resistor 20 with a gap 22 between them; The differential thermocouples 30 are embedded uniformly in the circumferential direction, with one contact 32 located on the surface and the other contact 34 on the inner surface, and these differential thermocouples 30 are connected in series. and
A device for measuring the amount of heat generated by a long-axis heating element. (2) An apparatus for measuring the amount of heat generated by a long-axis heating element according to claim 1 of the utility model registration, characterized in that the differential thermocouple 30 is divided into a plurality of blocks.
JP20179682U 1982-12-30 1982-12-30 Heat generation measuring device for long-axis heating element Granted JPS59106031U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20179682U JPS59106031U (en) 1982-12-30 1982-12-30 Heat generation measuring device for long-axis heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20179682U JPS59106031U (en) 1982-12-30 1982-12-30 Heat generation measuring device for long-axis heating element

Publications (2)

Publication Number Publication Date
JPS59106031U JPS59106031U (en) 1984-07-17
JPH0346345Y2 true JPH0346345Y2 (en) 1991-09-30

Family

ID=30427284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20179682U Granted JPS59106031U (en) 1982-12-30 1982-12-30 Heat generation measuring device for long-axis heating element

Country Status (1)

Country Link
JP (1) JPS59106031U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6451484B2 (en) * 2015-05-11 2019-01-16 株式会社デンソー Heat flux sensor manufacturing method and heat flow generator used therefor

Also Published As

Publication number Publication date
JPS59106031U (en) 1984-07-17

Similar Documents

Publication Publication Date Title
Yang et al. An experimental study of natural convection heat transfer from a horizontal cylinder in high Rayleigh number laminar and turbulent regions
JPS58795A (en) Gamma ray senser having heat flow path in radius direction
JPH0346345Y2 (en)
US3605490A (en) Heat sensor
JPH0262948A (en) Method of measuring gel point temperature
EP1565715A1 (en) Fluid temperature measurement
US4995731A (en) Method for measuring heat transfer coefficient and sensor including heat transfer element and thermal insulation element
US2587622A (en) Method and apparatus for measuring heat flow during quenching of metals
US4162175A (en) Temperature sensors
CN106225943A (en) A kind of device and method measuring high quartz melting furnace temperature based on Transient Heat Transfer theory
Chattle Platinum resistance thermometry up to the gold point
SU765712A1 (en) Device for measuring thermal conductivity coefficient of electroconductive materials
US3995490A (en) Method and apparatus for the continuous monitoring of a continuous metallurgical process
Farber et al. Variation of heat transfer coefficient with length
JPS5471679A (en) Thermal resistance measuring device
SU972262A2 (en) Device for measuring loose material temperature
JPS646932B2 (en)
SU570825A1 (en) Device for investigating thermal conductivity on liquids and gases
Thornhill et al. Experimental investigation into the temperature and heat transfer distribution around air-cooled cylinders
JPS6349702Y2 (en)
SU863680A1 (en) Unit for heating wire
SU418780A1 (en)
JPS566116A (en) Liquid level indicator
Okhapkin A study of the heat transfer characteristics of a heat-insulating composite material(Issledovanie kharakteristik teploperenosa kompozitsionnogo teplozashchitnogo materiala)
RU2131118C1 (en) Sensor of heat flow and process of its manufacture