JPH0346141B2 - - Google Patents

Info

Publication number
JPH0346141B2
JPH0346141B2 JP57080701A JP8070182A JPH0346141B2 JP H0346141 B2 JPH0346141 B2 JP H0346141B2 JP 57080701 A JP57080701 A JP 57080701A JP 8070182 A JP8070182 A JP 8070182A JP H0346141 B2 JPH0346141 B2 JP H0346141B2
Authority
JP
Japan
Prior art keywords
ultrasonic
elements
probe
pitch
weighting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57080701A
Other languages
Japanese (ja)
Other versions
JPS58198335A (en
Inventor
Hirohide Miwa
Osamu Hayashi
Nobushiro Shimura
Atsuo Iida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57080701A priority Critical patent/JPS58198335A/en
Publication of JPS58198335A publication Critical patent/JPS58198335A/en
Publication of JPH0346141B2 publication Critical patent/JPH0346141B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

発明の技術分野 本発明は、分割振動子型の超音波探触子を備え
る超音波診断装置に関し、同時に選択される素子
群の送信駆動電圧および/または受信増幅利得に
重みづけを行なうことにより調音波ビームの走査
ピツチを該素子の配列ピツチ以下にしようとする
ものである。 従来技術と問題点 リニア・アレイ型探触子を用いる超音波診断装
置では、同時に駆動する素子群を逐次変更して第
1図aまたはbに示すように超音波ビームを平行
移動させる。同図aの例は複数のトランスデユー
サ素子1,2,3,……から成る又はそれに分割
された超音波探触子20から選択する連続した5
素子を順次変える(交替させる)ことにより、集
束形成された超音波ビーム30を矢印方向に平行
移動させる。、、……は素子群の選択順
序、30′は平行移動した最初のビームを示す。
ビームの走査ピツチP1を小さくすると画質を緻
密にできるが、この走査方式では該ピツチの最少
値は分割間隔(素子幅または素子配列ピツチ)W
が限界である。このため更に画質を緻密にしよう
とすれば分割間隔Wを狭くしなければならないの
で、素子の機械的強度が低下、加工困難などの問
題が生じる。また全体の幅が一定ならば探触子2
0に対する、リード線の本数が分割数増大につれ
て増え探触子の取扱いが容易でなくなる欠点があ
る。 第1図bの例は、同図aでは右端に1個加える
と同時に右端1個を外し、1時に2個の素子を変
えるのに対し、1時には1素子増減する(例えば
はに対して右端に素子6を追加し、はの
左端の素子1を取り除いている)ことにより、ビ
ーム30を素子配列ピツチの半分のピツチP2
w/2で移動させるようにしたものである。この
方式では第1図aに比べて2倍の緻密度が得られ
るが、しかし、この場合でもw/2未満の走査ピ
ツチは実現できない。また1走査毎に駆動素子数
が変るため受信温圧が走査線毎に変動する欠点が
ある。 発明の目的 本発明は、選択された素子群の各素子の駆動電
圧および受信利得に重みづけをすることにより、
素子配列ピツチに関係ない、該ピツチの1/2以下
でもあり得る任意のピツチで走査可能としようと
するものである。 発明の構成 本発明は、多数の送受トランスデユーサ素子を
配列してなる超音波端触子を備え、該配列内の複
数素子を1群として選択し作動させて超音波ビー
ムを集束形成し走査線とすると共に、選択素子を
変更して該走査線を移動させる超音波診断装置に
おいて、 駆動もしくは受信ビームの望ましい強度分布及
び該分布を素子配列ピツチ以下の任意のピツチで
移動させた強度分布を実現するために各選択素子
に与える重みづけの値を記憶する記憶手段と、 超音波ビームの各送出時に該記憶手段を読出
し、読出した値により各素子の送信駆動電圧及び
受信増幅利得の重み付けを行なう手段を備えるこ
とを特徴とするが、以下図示の実施例を参照しな
がらこれを詳細に説明する。 発明の実施例 第2図は本発明の一実施例を示す説明図で、実
線曲線41が駆動もしくは受信ビームの理想的強
度分布であり、それを実現するために各素子1〜
7に実線棒グラフ42で示す重みづけを与える。
このようにすれば送信もしくは受信される超音波
ビーム30は図示の如く素子4を中心とする同じ
分布になることは明らかである。次に破線曲線4
3で示す分布に変えると超音波ビーム30′の中
心は素子4と5の中間の分布の重心地点に移動す
る。この移動量は曲線43で設定した値により素
子4と5の間の任意の位置に設定することが可能
である。下表にピツチP3をw/3とする重み付
けの例を示す。
Technical Field of the Invention The present invention relates to an ultrasonic diagnostic apparatus equipped with a split transducer type ultrasonic probe, and performs adjustment by weighting the transmission drive voltage and/or reception amplification gain of a group of elements selected at the same time. The aim is to make the scanning pitch of the acoustic beam less than the arrangement pitch of the elements. Prior Art and Problems In an ultrasonic diagnostic apparatus using a linear array type probe, a group of simultaneously driven elements is sequentially changed to move an ultrasonic beam in parallel as shown in FIG. 1a or b. In the example shown in FIG.
By sequentially changing (alternating) the elements, the focused ultrasonic beam 30 is translated in the direction of the arrow. , . . . indicate the selection order of the element groups, and 30' indicates the first parallel-translated beam.
The image quality can be improved by reducing the beam scanning pitch P1 , but in this scanning method, the minimum value of the pitch is the division interval (element width or element arrangement pitch) W.
is the limit. Therefore, in order to further improve the image quality, the division interval W must be narrowed, which causes problems such as a decrease in the mechanical strength of the element and difficulty in processing. Also, if the overall width is constant, probe 2
0, the number of lead wires increases as the number of divisions increases, making it difficult to handle the probe. In the example shown in Figure 1b, in Figure 1a, one element is added to the right end and at the same time one right end is removed, and two elements are changed at one time, whereas one element is increased or decreased at one time (for example, one element is added to the right end with respect to (by adding element 6 to , and removing element 1 at the left end of ), the beam 30 is arranged at a pitch P 2 = half of the element arrangement pitch.
It is designed to move at w/2. In this method, a density twice as high as that in FIG. 1a can be obtained, but even in this case, a scanning pitch of less than w/2 cannot be achieved. Furthermore, since the number of driving elements changes for each scan, there is a drawback that the received temperature and pressure varies from scan line to scan line. Purpose of the Invention The present invention achieves
It is intended to enable scanning at any pitch, which may even be 1/2 or less of the pitch, regardless of the element arrangement pitch. Structure of the Invention The present invention includes an ultrasonic end contact made by arranging a large number of transmitting/receiving transducer elements, and selects and operates a plurality of elements in the array as a group to focus and scan an ultrasonic beam. In an ultrasonic diagnostic device that moves the scanning line by changing the selected element, the desired intensity distribution of the driving or receiving beam and the intensity distribution obtained by moving the distribution by an arbitrary pitch equal to or smaller than the element arrangement pitch are used. A storage means for storing weighting values to be given to each selection element in order to achieve this, and a storage means for reading the storage means at each transmission of an ultrasound beam, and weighting the transmission drive voltage and reception amplification gain of each element using the read values. This will be described in detail below with reference to the illustrated embodiments. Embodiment of the Invention FIG. 2 is an explanatory diagram showing an embodiment of the present invention, in which a solid line curve 41 is the ideal intensity distribution of the driving or receiving beam, and in order to realize it, each element 1 to
7 is given a weighting indicated by a solid line bar graph 42.
It is clear that in this way the transmitted or received ultrasound beams 30 will have the same distribution centered on the element 4 as shown. Next, dashed curve 4
When the distribution is changed to that shown by 3, the center of the ultrasonic beam 30' moves to the center of gravity of the distribution between elements 4 and 5. This amount of movement can be set at any position between elements 4 and 5 based on the value set by curve 43. The table below shows an example of weighting in which pitch P 3 is set to w/3.

【表】 このような表を得る簡単な方法は先ず第2図の
曲線41の形状を決定し、所望のピツチでそれを
探触子20に沿つて移動させて各移動動点におけ
る棒グラフ42を読取ることである。棒グラフ4
2の各値は探触子の曲線41で覆われる部分(開
口面)の各素子の送信駆動電圧又は受信増幅利得
の指標となるが、これらに比例した値で素子を動
作させるには読取り専用メモリ(ROM)に該各
値を記憶させておき、それを読出して当該開口内
素子群の駆動、増幅回路に係数として入力すると
よい。重みづけ用の分布曲線41,43をガウス
分布、COS分布、COS2分布等とすればビーム形
状が良くなるが、必ずしもこれに限らない。要は
一様分布でなければビーム中心を素子幅wの制約
なしに任意の位置に移動できるということであ
る。また、一括して選択する素子数も上記の例に
限定されない。 第3図は素子配列が円弧状に湾曲した扇形走査
型探触子への応用例で、21は超音波伝達媒体が
充填される前室、22は被測定体である。aの例
は前室内媒体の超音波伝播速度v1が被測定体22
のそれv2とほぼ等しい場合である。このときはビ
ーム30は探触子20の曲率のほぼ中心23を通
つて被測定体22内を扇状に走査する。このた
め、、肋骨のすき間から心臓を観測する場合等に
有効である。bの例はv1<v2としてビーム30を
屈折させ(θ2>θ1)探触子を素子配列の幅および
前室の深さ共に小型化したものである。この場合
には探触子20の素子間隔が均一で前室内超音波
ビームの走査ピツチが均一でも被測定体22内の
走査ピツチは周辺部へ向かうほど粗くなるが、本
発明を適用することでこの走査ピツチの粗密も補
正できる。即ち周辺部での走査ピツチが中心部の
それより密になるように重み付け等を変ればよ
い。 第4図は円弧状の探触子20,20′を交叉し
て配設し、2断面を同時に観察できる探触子であ
るが、これに本発明は適用できる。また第5図の
ように探触子20をマトリクス状に分割した2次
元走査平面アレイ型の場合にも本発明を適用でき
る。この場合には重み付けは3次元的な山形とな
る。この場合には同じ走査ピツチを得るのに本発
明の駆動法適用で分割数を低減できるので、例え
ば分割数を縦横共に1/2に低減すると全体で1/4の
分割数で済み、製造コスト低減、リード線数低減
による走査性向上などの利点がある。 第6図は振動子20の重みづけ駆動および受信
回路の構成例である。タイミング発生回路50か
らの信号は駆動波形発生回路51に導びかれ、こ
こで駆動波形が発生する。この駆動波形は例えば
インパルス、或いは振動子20の共振周波数に応
じた正弦波の1〜3波などである。前掲の表1の
ような重みづけデータはデジタル値でメモリ
(ROM)52に格納されている。このメモリ5
2から読出された重みづけデータはD/A変換器
53でアナログ値に変換され、ゲインコントロー
ラ54で受信アンプ(RA)55および駆動アン
プ(DA)56のゲイン調整に用いられる。これ
らのアンプ55,56はそれぞれ振動子20の分
割素子数分設けてある。57は駆動時の過大電圧
が受信アンプ55へ入力するのを阻止するリミツ
タ、58は受信アンプ55の全出力を合成する加
算器、59はその出力を整流する整流回路、60
は陰極線管(CRT)である。超音波送信時には
探触子20内の多数の素子の一部の複数素子を同
時選択し、かつその選択素子を逐次変え、選択素
子内各素子の駆動電圧を前記分布曲線に従つて変
えるが、これらの制御は増幅器の利得制御のみで
行なうことができる。即ち非選択素子の増幅器の
利得は0とし、選択素子の増幅器の利得は該分布
曲線に従う値とすればよい。こうして超音波ビー
ムを走査線とする平行走査、扇形走査などが行な
われ、また反射波は同じ(同じでなくてもよい
が)探触子20で受信され、アンプ55で重み付
け増幅され、加算、整流後、CRT60に表示さ
れる。 発明の効果 以上述べたように本発明によれば、振動子の分
割間隔以下の細かい走査ピツチが得られるので、
振動子を細かく分割する必要がなくなる。このた
め振動子の製造が容易となつてコスト面で大きく
改善されるばかりでなく、リード線を少なくでき
操作性もあがる利点がある。
[Table] A simple way to obtain such a table is to first determine the shape of the curve 41 in FIG. It is about reading. bar graph 4
Each value of 2 is an index of the transmission drive voltage or reception amplification gain of each element in the part covered by the curve 41 of the probe (aperture surface), but in order to operate the elements at a value proportional to these, read-only values are required. It is preferable to store each value in a memory (ROM), read it out, and input it as a coefficient to the drive and amplification circuit for the in-aperture element group. If the weighting distribution curves 41 and 43 are Gaussian distribution, COS distribution, COS 2 distribution, etc., the beam shape will be improved, but this is not necessarily the case. The point is that if the distribution is not uniform, the beam center can be moved to any position without the restriction of the element width w. Furthermore, the number of elements to be selected at once is not limited to the above example. FIG. 3 shows an example of application to a fan-shaped scanning probe in which the element array is curved in an arcuate manner, where 21 is a front chamber filled with an ultrasonic transmission medium, and 22 is an object to be measured. In the example of a, the ultrasonic propagation velocity v 1 of the front chamber medium is the measured object 22.
This is the case when it is almost equal to that of v 2 . At this time, the beam 30 scans the inside of the object to be measured 22 in a fan shape through approximately the center 23 of the curvature of the probe 20. Therefore, it is effective when observing the heart through the gap between the ribs. In the example b, the beam 30 is refracted so that v 1 <v 221 ), and the probe is made smaller in both the width of the element array and the depth of the front chamber. In this case, even if the element spacing of the probe 20 is uniform and the scanning pitch of the ultrasonic beam in the front chamber is uniform, the scanning pitch within the object to be measured 22 becomes coarser toward the periphery. The density of this scanning pitch can also be corrected. That is, the weighting etc. may be changed so that the scanning pitch in the peripheral area is denser than that in the central area. FIG. 4 shows a probe in which arc-shaped probes 20 and 20' are disposed in an intersecting manner so that two cross sections can be observed simultaneously, and the present invention can be applied to this probe. The present invention can also be applied to a two-dimensional scanning plane array type probe in which the probe 20 is divided into a matrix as shown in FIG. In this case, the weighting becomes a three-dimensional mountain shape. In this case, the number of divisions can be reduced by applying the driving method of the present invention to obtain the same scanning pitch. For example, if the number of divisions is reduced to 1/2 in both the vertical and horizontal directions, the total number of divisions will be reduced to 1/4, and the manufacturing cost will be reduced. There are advantages such as improved scanning performance due to reduced number of lead wires. FIG. 6 shows a configuration example of a weighted drive and reception circuit for the vibrator 20. A signal from the timing generation circuit 50 is guided to a drive waveform generation circuit 51, where a drive waveform is generated. This drive waveform is, for example, an impulse or one to three sine waves depending on the resonant frequency of the vibrator 20. The weighting data as shown in Table 1 above is stored in the memory (ROM) 52 as a digital value. This memory 5
The weighting data read out from RA 2 is converted into an analog value by a D/A converter 53, and is used by a gain controller 54 to adjust the gains of a receiving amplifier (RA) 55 and a driving amplifier (DA) 56. These amplifiers 55 and 56 are provided as many as the number of divided elements of the vibrator 20, respectively. 57 is a limiter that prevents excessive voltage from being input to the receiving amplifier 55 during driving; 58 is an adder that combines all the outputs of the receiving amplifier 55; 59 is a rectifier circuit that rectifies the output; 60
is a cathode ray tube (CRT). When transmitting ultrasonic waves, some of the multiple elements in the probe 20 are simultaneously selected, the selected elements are sequentially changed, and the driving voltage of each element in the selected elements is changed according to the distribution curve. These controls can be performed only by controlling the gain of the amplifier. That is, the gain of the amplifier of the non-selected element may be set to 0, and the gain of the amplifier of the selected element may be set to a value that follows the distribution curve. In this way, parallel scanning, fan scanning, etc. are performed using the ultrasonic beam as a scanning line, and the reflected waves are received by the same (although not necessarily the same) probe 20, weighted and amplified by the amplifier 55, added, After rectification, it will be displayed on CRT60. Effects of the Invention As described above, according to the present invention, a fine scanning pitch smaller than the division interval of the vibrator can be obtained.
There is no need to divide the vibrator into smaller pieces. This not only simplifies the manufacture of the vibrator and greatly improves the cost, but also has the advantage of reducing the number of lead wires and improving operability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のリニアアレイ型超音波探触子の
説明図、第2図は本発明の一実施例を示す要部説
明図、第3図〜第5図は本発明を適用可能な種々
の探触子の説明図、第6図は本発明に係る振動子
の重みづけ駆動および受信回路の構成図である。 図中、1〜10は送受トランスデユーサ素子、
20は探触子、30,30′は超音波ビーム、4
1,43は分布曲線である。
Fig. 1 is an explanatory diagram of a conventional linear array type ultrasonic probe, Fig. 2 is an explanatory diagram of main parts showing an embodiment of the present invention, and Figs. 3 to 5 are various diagrams to which the present invention can be applied. FIG. 6 is an explanatory diagram of the probe, and FIG. 6 is a configuration diagram of the weighting drive and reception circuit of the transducer according to the present invention. In the figure, 1 to 10 are transmitting and receiving transducer elements;
20 is a probe, 30 and 30' are ultrasound beams, 4
1,43 is a distribution curve.

Claims (1)

【特許請求の範囲】 1 多数の送受トランスデユーサ素子を配列して
なる超音波探触子を備え、該配列内の複数素子を
1群として選択し作動させて超音波ビームを集束
形成し走査線とすると共に、選択素子を変更して
該走査線を移動させる超音波診断装置において、 駆動もしくは受信ビームの望ましい強度分布及
び該分布を素子配列ピツチ以下の任意のピツチで
移動させた強度分布を実現するために各選択素子
に与える重みづけの値を記憶する記憶手段52
と、 超音波ビームの各送出時に該記憶手段を読出
し、読出した値により各素子の送信駆動電圧及び
受信増幅利得の重み付けを行なう手段53,5
4,55,56を備えることを特徴とする超音波
診断装置。 2 多数の送受トランスデユーサ素子が直線状、
円弧状、球面状、または平面状に配列されること
を特徴とした特許請求の範囲第1項記載の超音波
診断装置。
[Claims] 1. An ultrasonic probe having a large number of transmitting/receiving transducer elements arranged, and selecting and operating the plurality of elements in the arrangement as one group to focus and scan an ultrasonic beam. In an ultrasonic diagnostic device that moves the scanning line by changing the selected element, the desired intensity distribution of the driving or receiving beam and the intensity distribution obtained by moving the distribution by an arbitrary pitch equal to or smaller than the element arrangement pitch are used. Storage means 52 for storing weighting values given to each selection element for realization
and means 53, 5 for reading the storage means each time an ultrasonic beam is transmitted, and weighting the transmission drive voltage and reception amplification gain of each element based on the read values.
4, 55, and 56. 2 A large number of transmitting and receiving transducer elements are linear,
The ultrasonic diagnostic apparatus according to claim 1, wherein the ultrasonic diagnostic apparatus is arranged in an arc shape, a spherical shape, or a planar shape.
JP57080701A 1982-05-13 1982-05-13 Scanning line moving system of ultrasonic probe Granted JPS58198335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57080701A JPS58198335A (en) 1982-05-13 1982-05-13 Scanning line moving system of ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57080701A JPS58198335A (en) 1982-05-13 1982-05-13 Scanning line moving system of ultrasonic probe

Publications (2)

Publication Number Publication Date
JPS58198335A JPS58198335A (en) 1983-11-18
JPH0346141B2 true JPH0346141B2 (en) 1991-07-15

Family

ID=13725626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57080701A Granted JPS58198335A (en) 1982-05-13 1982-05-13 Scanning line moving system of ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS58198335A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4644795A (en) * 1985-07-29 1987-02-24 Advanced Technology Laboratories, Inc. High resolution multiline ultrasonic beamformer
JPH04193270A (en) * 1990-11-27 1992-07-13 Matsushita Electric Ind Co Ltd Ultrasonic diagnosis apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54155683A (en) * 1978-05-30 1979-12-07 Matsushita Electric Ind Co Ltd Electronic scanning system ultrasoniccwave tomooinspection device
JPS5636942A (en) * 1976-09-23 1981-04-10 Hoffmann La Roche Forming device for picture of section
JPS56164974A (en) * 1980-05-23 1981-12-18 Touitsu Kogyo Kk Electronic scanning type ultrasonic video device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636942A (en) * 1976-09-23 1981-04-10 Hoffmann La Roche Forming device for picture of section
JPS54155683A (en) * 1978-05-30 1979-12-07 Matsushita Electric Ind Co Ltd Electronic scanning system ultrasoniccwave tomooinspection device
JPS56164974A (en) * 1980-05-23 1981-12-18 Touitsu Kogyo Kk Electronic scanning type ultrasonic video device

Also Published As

Publication number Publication date
JPS58198335A (en) 1983-11-18

Similar Documents

Publication Publication Date Title
US4180790A (en) Dynamic array aperture and focus control for ultrasonic imaging systems
US4159462A (en) Ultrasonic multi-sector scanner
US4180792A (en) Transmit-receive transducer array and ultrasonic imaging system
US4242912A (en) Method and apparatus for producing cross-sectional images using ultrasound
US4245250A (en) Scan converter for ultrasonic sector scanner
JP4172841B2 (en) Ultrasound imaging system, method of operating ultrasound imaging system and multiplexer motherboard
US5014711A (en) Ultrasonic diagnosis apparatus
CA1238405A (en) Curvilinear array ultrasonic scanner
US5882309A (en) Multi-row ultrasonic transducer array with uniform elevator beamwidth
US20090306510A1 (en) Ultrasound Imaging Apparatus
US6923066B2 (en) Ultrasonic transmitting and receiving apparatus
JPH0137146B2 (en)
US5901708A (en) Method and apparatus for forming ultrasonic three-dimensional images using cross array
US20040122321A1 (en) Multiplexer for connecting a multi-row ultrasound transducer array to a beamformer
JP4643591B2 (en) Ultrasonic imaging device
JPH027946A (en) Probe, imaging apparatus utilizing the same and application of the apparatus
US4487073A (en) Ultrasonic system
EP0002061A1 (en) Scan converter for ultrasonic sector scanner and method
JPH0346141B2 (en)
Bom et al. A dynamically focused multiscan system
JPH06237930A (en) Ultrasonic diagnostic device
US4484476A (en) Acoustic microscope device
JPH06304172A (en) Ultrasonic diagnostic device
JP4673678B2 (en) Ultrasonic imaging device
Von Ramm et al. Thaumascan: design considerations and performance characteristics