JPH0346007B2 - - Google Patents

Info

Publication number
JPH0346007B2
JPH0346007B2 JP60108283A JP10828385A JPH0346007B2 JP H0346007 B2 JPH0346007 B2 JP H0346007B2 JP 60108283 A JP60108283 A JP 60108283A JP 10828385 A JP10828385 A JP 10828385A JP H0346007 B2 JPH0346007 B2 JP H0346007B2
Authority
JP
Japan
Prior art keywords
polymer
parts
aniline
oxidizing agent
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60108283A
Other languages
Japanese (ja)
Other versions
JPS61266434A (en
Inventor
Tsuneo Hagiwara
Kaoru Iwata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10828385A priority Critical patent/JPS61266434A/en
Publication of JPS61266434A publication Critical patent/JPS61266434A/en
Publication of JPH0346007B2 publication Critical patent/JPH0346007B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> アニリン重合体はドーピングすることにより、
高い導電性を有する導電性高分子となり、またそ
の安定性も良好である。また、アニリン重合体か
ら得られる導電性高分子は、そのドーパントの量
をコントロールすることにより、広い範囲で導電
性をコントロールできる。従つてこれらの性質を
利用し、各種センサー、EMI材料、帯電防止等
に種々な用途が考えられる。 また、当該導電性高分子は高い導電性に加え
て、ドーピング、脱ドーピングが可逆的に行える
という酸化還元性を有し、また粉末状の物が得ら
れるため表面積が大きいことからこれらの性質を
利用した二次電池や各種電極材料として有用であ
る。 <従来技術> 本発明でアニリン重合体製造の原料として用い
るN,N′−ジフエニルフエニレンジアミンはゴ
ムの老化防止剤として用いられる安価な工業薬品
である。しかしながら、この化合物からアニリン
重合体が得られることは全く知られていない。 我々はN,N′−ジフエニルフエニレンジアミ
ンに化学酸化剤を作用させることにより、驚くべ
きことにアニリン重合体が極めて温和な条件で得
られることを見い出した。 アニリン重合体の製造法としては、アニリンそ
のものを用いて化学酸化剤の存在下、酸化重合さ
せる方法が知られている。しかしながら、この方
法はアニリンと化学酸化剤の反応が発熱反応のた
め反応のコントロールが困難であり、そのため副
反応が起こりやすいという欠点を有している。 それに対して、本発明者らは、N,N′−ジフ
エニルフエニレンジアミンという構造の異なる化
合物を原料として用いることにより、アニリン重
合体が得られるということの他に、その反応が温
和であり、副反応が起こりにくく、高規則性ポリ
マーが得られることを見い出し本発明を完成する
に到つた。 発明の構成 本発明はN,N′−ジフエニルフエニレンジア
ミンを化学酸化剤の存在下に重合させることを特
徴とするアニリン重合体の製造方法である。 以下、本発明の具体的内容について詳細に説明
する。 本発明のアニリン重合体は、N,N′−ジフエ
ニルフエニレンジアミンと化学酸化剤を含有する
溶液とを混合撹拌することにより簡単に得られ
る。 しかも、この方法によると反応系に共存する陰
イオンが生成ポリマー中に同時にドーパントとし
て取り込まれるために、新たに電子受容性化合物
をドーピングしなくとも高い導電性を発現する。 更に本発明により得られた重合体は温和な条件
で反応が進行するため規則性の優れたものであ
る。 本発明において用いられる化学酸化剤として
は、以下の如きものが挙げられる。 () 3価の鉄や2価の銅のハロゲン化水素塩、
硝酸塩、硫酸塩及びフエリシアン化カリウム等
の3価の鉄化合物。 () 無水クロム酸、重クロム酸等の6価のクロ
ム化合物 () 過硫酸ナトリウム、過硫酸カリウム、過硫
酸アンモニウム等の過硫酸化合物。 () ヨウ素−ヨウ化カリウム () クロラニル等のキノン化合物等が挙げられ
る。 これらの酸化剤を用いた場合、酸化剤中に含ま
れる陰イオンが生成ポリマー中にドーパントとし
て取り込まれるが、このドーピング効果を更に効
果的にするために、反応系に塩酸、硫酸、硝酸、
過塩素酸等の無機酸や酢酸、メタンスルホン酸、
p−トルエンスルホン酸、シユウ酸等の有機酸を
共存させることも出来る。 本発明においては、反応は温和かつ効率よく行
うために液状媒質中で行われる。 媒質としては、水や有機溶媒が用いられる。有
機溶媒としては、アセトニトリル、ベンゾニトリ
ル、ニトロメタン、ニトロベンゼン、アルコー
ル、テトラヒドロフラン等のN,N′−ジフエニ
ル−フエニレンジアミンや化学酸化剤を溶解しや
すいものが好ましいが必ずしもこれに限定されな
い。 化学酸化剤は、N,N′−ジフエニル−フエニ
レンジアミン1モルに対して4〜10酸化当量好ま
しくは4〜8酸化当量の範囲が用いられる。それ
以下でも目的物は得られるが、収量が低下する
し、それ以上では不必要に酸化剤を消費するので
無駄であるばかりが、好ましくない副反応が起る
ために適当でない。 反応温度は−50℃から100℃が採用される。好
適には−30℃から50℃が採用される。反応時間は
30分から1週間が採用されるが、反応温度との関
係から適宜選ばれる。 以下、実施例により本発明を詳述する。但し、
本発明は、これに限定されない。以下部とあるの
は重量部のことである。電導度は、得られた粉末
を3800Kg/cm2の成形圧で圧縮した錠剤を用いて、
四端子法により測定した。 実施例 1 水1200部に濃塩酸300部を入れ、その中にN,
N′−ジフエニル−p−フエニレンジアミン13.0部
を入れた。室温で30分ほど撹拌した為、5℃に冷
却して200部の水に溶解した過硫酸アンモニウム
34.2部を一時間に亘つて滴下した。滴下終了後5
℃で6時間撹拌し、更に室温で18時間撹拌した。
生じた濃緑色の固体を濾過して集め水及びアセト
ニトリルでよく洗浄して乾燥し、8.3部の濃緑色
固体を得た。得られた固体は汎用の溶剤には溶解
しなかつた。 得られたアニリン重合体のIRスペクトル
(KBr)を図1aに、ラマンスペクトル(励起光
488nmAr+レーザー)を図2aに示した。マツク
ダイアミツドらの方法{エー・ジー・マツクダイ
アミツド等、米国化学会ポリマー・プレプリン
ト、(A.G.Mac Diarmid,et al.,ACS
Polymer Preprint)25巻第248頁}に従つてアニ
リンを出発原料として得たアニリン重合体のIR
スペクトル(KBr)を図1bに、ラマンスペク
トルを図2bに示した。また前記アニリン重合体
の元素分析値(実測値)はC63.28%、H4.46%、
N10.90%で、MacDiarmidらの方法に従つて得
たアニリン重合体の元素分析値(実測値)C63.68
%、H4.54%、N11.95%とよく一致していた。以
上の分析結果よりN,N′−ジフエニル−p−フ
エニレンジアミンよりアニリン重合体が得られた
と同定した。 またX線回折像パターンより判断した結果、本
実施例1で得たアニリン重合体(X線回折像図3
a)は、MacDiarmidらの方法より得た重合体
(X線回折像図3b)より結晶性に優れており、
規則正しい重合体が生成していることを示してい
る。N,N′−ジフエニル−p−フエニレンジア
ミンより得たアニリン重合体をIRスペクトル測
定用錠剤成型器で3800Kg/cm2の圧力で成型し、得
られたデイスク状物の電導度を測定した結果
4.0S/cmであつた。 実施例 2 水1300部に60%過塩素酸200部を入れ、その中
にN,N′−ジフエニル−p−フエニレンジアミ
ン13.0部を入れた。室温で30分ほど撹拌した。5
℃に冷却して200部の水に溶解した過硫酸アンモ
ニウム34.2部を一時間に亘つて滴下した。滴下終
了後5℃で6時間撹拌した後、更に室温で18時間
撹拌した。生じた黒緑色の固体を濾過して集め、
水及びアセトニトリルでよく洗浄した後乾燥し、
2.7部の導電性重合体を得た。 前記黒緑色の重合体を実施例1と同様に錠剤成
型器でペレツト状に成型したものの電導度は
0.9S/cmであつた。 実施例 3 水980部に濃硫酸40部を溶解し、N,N′−ジフ
エニル−p−フエニレンジアミン6.5部を懸濁さ
せた。撹拌しながら室温で過硫酸アンモニウム
17.1部を水100部に溶かして加えた。室温で24時
間撹拌し、生じた濃緑色の固体を濾過して集め
た。水及びアセトニトリルでよく洗浄した後、乾
燥して2.0部の導電性重合体を得た。 このものを実施例1と同様に成型して電導度を
測定すると0.2S/cmであつた。 実施例 4〜14 N,N′−ジフエニル−p−フエニレンジアミ
ン5.2部を、各種酸化剤及び溶媒を用い、無機酸
の存在下或は不存在下に、実施例3の方法に従つ
て酸化重合を行ない重合体を得た。このときの結
果を表1に示した。 【表】
[Detailed description of the invention] <Industrial application field> By doping the aniline polymer,
The resulting conductive polymer has high conductivity and also has good stability. Furthermore, the conductivity of conductive polymers obtained from aniline polymers can be controlled over a wide range by controlling the amount of dopants. Therefore, these properties can be used for various applications such as various sensors, EMI materials, and antistatic materials. In addition to high conductivity, the conductive polymer has redox properties that allow reversible doping and dedoping, and since it can be obtained in powder form, it has a large surface area, so these properties can be improved. It is useful as a secondary battery and various electrode materials. <Prior Art>N,N'-diphenylphenylenediamine used as a raw material for producing an aniline polymer in the present invention is an inexpensive industrial chemical used as an antiaging agent for rubber. However, it is completely unknown that aniline polymers can be obtained from this compound. We have surprisingly found that aniline polymers can be obtained under extremely mild conditions by reacting N,N'-diphenylphenylenediamine with a chemical oxidizing agent. As a method for producing aniline polymers, a method is known in which aniline itself is subjected to oxidative polymerization in the presence of a chemical oxidizing agent. However, this method has the disadvantage that the reaction between aniline and a chemical oxidizing agent is exothermic, making it difficult to control the reaction, and therefore side reactions are likely to occur. In contrast, the present inventors have found that by using a compound with a different structure, N,N'-diphenylphenylenediamine, as a raw material, in addition to being able to obtain an aniline polymer, the reaction is mild. The present inventors have discovered that a highly regular polymer can be obtained that is less likely to cause side reactions, and has completed the present invention. Structure of the Invention The present invention is a method for producing an aniline polymer, which is characterized by polymerizing N,N'-diphenylphenylenediamine in the presence of a chemical oxidizing agent. Hereinafter, specific contents of the present invention will be explained in detail. The aniline polymer of the present invention can be easily obtained by mixing and stirring N,N'-diphenylphenylenediamine and a solution containing a chemical oxidizing agent. Moreover, according to this method, anions coexisting in the reaction system are simultaneously incorporated into the resulting polymer as a dopant, so that high conductivity can be achieved without the need for additional doping with an electron-accepting compound. Furthermore, the polymer obtained according to the present invention has excellent regularity because the reaction proceeds under mild conditions. Examples of the chemical oxidizing agent used in the present invention include the following. () Hydrogen halide salts of trivalent iron and divalent copper,
Trivalent iron compounds such as nitrates, sulfates and potassium ferricyanide. () Hexavalent chromium compounds such as chromic anhydride and dichromic acid () Persulfate compounds such as sodium persulfate, potassium persulfate, and ammonium persulfate. () Iodine-potassium iodide () Quinone compounds such as chloranil, etc. are mentioned. When these oxidizing agents are used, the anions contained in the oxidizing agent are incorporated into the produced polymer as dopants, but in order to make this doping effect even more effective, hydrochloric acid, sulfuric acid, nitric acid,
Inorganic acids such as perchloric acid, acetic acid, methanesulfonic acid,
Organic acids such as p-toluenesulfonic acid and oxalic acid can also be present. In the present invention, the reaction is performed in a liquid medium in order to perform the reaction mildly and efficiently. Water or an organic solvent is used as the medium. The organic solvent is preferably one that easily dissolves N,N'-diphenyl-phenylenediamine and the chemical oxidizing agent, such as acetonitrile, benzonitrile, nitromethane, nitrobenzene, alcohol, and tetrahydrofuran, but is not necessarily limited thereto. The chemical oxidizing agent used is in the range of 4 to 10 oxidizing equivalents, preferably 4 to 8 oxidizing equivalents, per mole of N,N'-diphenyl-phenylenediamine. If the amount is less than that, the desired product can be obtained, but the yield is lower, and if it is more than that, the oxidizing agent is consumed unnecessarily, which is not only wasteful, but also unsuitable because undesirable side reactions occur. The reaction temperature is -50°C to 100°C. A temperature of -30°C to 50°C is preferably used. The reaction time is
The time period ranges from 30 minutes to one week, and is selected appropriately depending on the reaction temperature. Hereinafter, the present invention will be explained in detail with reference to Examples. however,
The present invention is not limited to this. The following parts refer to parts by weight. The electrical conductivity was determined using tablets made by compressing the obtained powder at a molding pressure of 3800 kg/cm 2 .
Measured using the four-terminal method. Example 1 Add 300 parts of concentrated hydrochloric acid to 1200 parts of water, and add N,
13.0 parts of N'-diphenyl-p-phenylenediamine was added. After stirring at room temperature for about 30 minutes, ammonium persulfate was cooled to 5°C and dissolved in 200 parts of water.
34.2 parts were added dropwise over an hour. 5 after completion of dripping
The mixture was stirred at ℃ for 6 hours and further stirred at room temperature for 18 hours.
The resulting dark green solid was collected by filtration, thoroughly washed with water and acetonitrile, and dried to obtain 8.3 parts of a dark green solid. The resulting solid was insoluble in common solvents. Figure 1a shows the IR spectrum (KBr) of the obtained aniline polymer, and the Raman spectrum (excitation light
488 nmAr + laser) is shown in Figure 2a. AGMac Diarmid et al., American Chemical Society Polymer Preprint, (AGMac Diarmid, et al., ACS
IR of aniline polymer obtained using aniline as a starting material according to Polymer Preprint) Vol. 25, p. 248
The spectrum (KBr) is shown in Figure 1b, and the Raman spectrum is shown in Figure 2b. In addition, the elemental analysis values (actual measurements) of the aniline polymer are C63.28%, H4.46%,
Elemental analysis value (actual value) of aniline polymer obtained according to the method of MacDiarmid et al. at N10.90% C63.68
%, H4.54%, and N11.95%. From the above analysis results, it was identified that an aniline polymer was obtained from N,N'-diphenyl-p-phenylenediamine. Furthermore, as a result of judgment from the X-ray diffraction image pattern, the aniline polymer obtained in Example 1 (X-ray diffraction image
a) has better crystallinity than the polymer obtained by the method of MacDiarmid et al. (X-ray diffraction image Figure 3b),
This shows that an ordered polymer is formed. Results of molding an aniline polymer obtained from N,N'-diphenyl-p-phenylenediamine at a pressure of 3800 kg/cm 2 using a tablet molding machine for IR spectroscopy, and measuring the electrical conductivity of the resulting disc-shaped product.
It was 4.0S/cm. Example 2 200 parts of 60% perchloric acid was added to 1300 parts of water, and 13.0 parts of N,N'-diphenyl-p-phenylenediamine was added thereto. The mixture was stirred at room temperature for about 30 minutes. 5
The mixture was cooled to 0.degree. C., and 34.2 parts of ammonium persulfate dissolved in 200 parts of water was added dropwise over an hour. After the dropwise addition was completed, the mixture was stirred at 5° C. for 6 hours, and then further stirred at room temperature for 18 hours. The resulting black-green solid is collected by filtration.
After thoroughly washing with water and acetonitrile, dry
2.7 parts of conductive polymer were obtained. The electrical conductivity of the black-green polymer molded into pellets using a tablet molding machine in the same manner as in Example 1 was
It was 0.9S/cm. Example 3 40 parts of concentrated sulfuric acid was dissolved in 980 parts of water, and 6.5 parts of N,N'-diphenyl-p-phenylenediamine was suspended. Ammonium persulfate at room temperature with stirring
17.1 parts was dissolved in 100 parts of water and added. Stirred at room temperature for 24 hours and collected the resulting dark green solid by filtration. After thorough washing with water and acetonitrile, the mixture was dried to obtain 2.0 parts of a conductive polymer. This product was molded in the same manner as in Example 1, and its electrical conductivity was measured to be 0.2 S/cm. Examples 4-14 5.2 parts of N,N'-diphenyl-p-phenylenediamine were oxidized according to the method of Example 3 using various oxidizing agents and solvents in the presence or absence of inorganic acids. Polymerization was performed to obtain a polymer. The results at this time are shown in Table 1. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

図1a,図1bは実施例1における2種のアニ
リン重合体の赤外吸収スペクトル図である。図2
a,図2bはそれらに対応するラマンスペクトル
図である。図3のa,bはそれらに対応するX線
回折像である。
1a and 1b are infrared absorption spectra of two types of aniline polymers in Example 1. Figure 2
a and FIG. 2b are the corresponding Raman spectra. 3A and 3B are the corresponding X-ray diffraction images.

Claims (1)

【特許請求の範囲】[Claims] 1 N,N′−ジフエニルフエニレンジアミンを
化学酸化剤の存在下に重合させることを特徴とす
るアニリン重合体の製造方法。
1. A method for producing an aniline polymer, which comprises polymerizing N,N'-diphenylphenylenediamine in the presence of a chemical oxidizing agent.
JP10828385A 1985-05-22 1985-05-22 Production of aniline polymer Granted JPS61266434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10828385A JPS61266434A (en) 1985-05-22 1985-05-22 Production of aniline polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10828385A JPS61266434A (en) 1985-05-22 1985-05-22 Production of aniline polymer

Publications (2)

Publication Number Publication Date
JPS61266434A JPS61266434A (en) 1986-11-26
JPH0346007B2 true JPH0346007B2 (en) 1991-07-12

Family

ID=14480725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10828385A Granted JPS61266434A (en) 1985-05-22 1985-05-22 Production of aniline polymer

Country Status (1)

Country Link
JP (1) JPS61266434A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625342B2 (en) * 1986-05-28 1994-04-06 日産自動車株式会社 Electrochromic material
JPH082961B2 (en) * 1987-04-30 1996-01-17 株式会社小松製作所 Method for producing film for plastic battery
JP3204550B2 (en) * 1991-12-11 2001-09-04 日東電工株式会社 Method for producing conductive organic polymer
JPH09509695A (en) * 1994-03-04 1997-09-30 ビーアイシーシー パブリック リミテッド カンパニー Polyanilines and their production

Also Published As

Publication number Publication date
JPS61266434A (en) 1986-11-26

Similar Documents

Publication Publication Date Title
JPS61197633A (en) Sulfonated electroconductive organic polymer
JPS62119237A (en) Dopant for electrically-conductive high polymer compound
JPH0346007B2 (en)
JPS60133027A (en) Production of electrically conductive organic polymer
JPS63118323A (en) Production of polymer having isothianaphthene structure
JP2649670B2 (en) Method for producing conductive organic polymer
JPS62131029A (en) Production of aniline polymer
JPS61195137A (en) Method of doping organic polymer
JPH0333725B2 (en)
JPH0555532B2 (en)
JPH0367533B2 (en)
JPH06239996A (en) Conductive polymer and its preparation
JP3175163B2 (en) Novel pyrrole monomer, its production method and functional polymer membrane
JPS61141725A (en) Production of carbazole polymer
JP2704482B2 (en) Organic polymer
JPS63120733A (en) Production of electroconductive composite material
JP2000191774A (en) Production of water-soluble electroconductive polyaniline
JP2992131B2 (en) Method for producing polyaniline
JP3058737B2 (en) Polypyrrole derivative and method for producing the same
JP2862244B2 (en) Pyrrole derivatives and polymers thereof
JPH0635510B2 (en) Method for producing polyaniline having rod-shaped morphology
JPH0551450A (en) Production of polyaniline derivative
JPS6348312A (en) Production of polyacetylene
SU1126577A1 (en) Process for producing polynitriles and polythiocyanates
JPH04108889A (en) Electrochromic display element and secondary electric cell

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term