JPH0345937Y2 - - Google Patents

Info

Publication number
JPH0345937Y2
JPH0345937Y2 JP852186U JP852186U JPH0345937Y2 JP H0345937 Y2 JPH0345937 Y2 JP H0345937Y2 JP 852186 U JP852186 U JP 852186U JP 852186 U JP852186 U JP 852186U JP H0345937 Y2 JPH0345937 Y2 JP H0345937Y2
Authority
JP
Japan
Prior art keywords
ultraviolet
optical fiber
irradiation
irradiated
shutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP852186U
Other languages
Japanese (ja)
Other versions
JPS62122839U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP852186U priority Critical patent/JPH0345937Y2/ja
Publication of JPS62122839U publication Critical patent/JPS62122839U/ja
Application granted granted Critical
Publication of JPH0345937Y2 publication Critical patent/JPH0345937Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔考案の概要〕 連続走行する光フアイバまたは光フアイバ素線
の線条体に紫外線硬化性樹脂を被覆した後、紫外
線硬化性樹脂を硬化させる紫外線照射部を、線条
体に紫外線を照射する照射源と、連続走行する線
条体を挿通し、紫外線照射源から照射する紫外線
を非照射時に遮蔽する位置に、線条体の走行方向
に平行してスライドする筒形シヤツタと、必要に
応じて筒形シヤツタが紫外線照射源に対し遮蔽位
置にある状態で、筒形シヤツタの外側に筒形シヤ
ツタを内包する位置に配置した石英パイプを備え
た構造とし、複数条の線条体のコース別に、非硬
化コースの筒形シヤツタのみ紫外線照射源に対し
遮蔽位置にスライドすることによりコース別線条
体の被覆樹脂硬化を行うことができ、さらに筒形
シヤツタの外側に必要に応じ配置した石英パイプ
は、紫外線照射源の冷却空気流による線条体の振
れを防止するとともに、紫外線硬化を阻害する酸
素排除のためのパージを行う隔壁機能を備え、一
装置で複数本の線条の紫外線樹脂被覆の硬化を均
一、安定、高速に行うことができ、実効製造速度
の向上、高歩留率の確保がともにできる光フアイ
バ素線の製造装置。
[Detailed description of the invention] [Summary of the invention] After coating the linear body of a continuously running optical fiber or optical fiber bare wire with an ultraviolet curable resin, the ultraviolet ray irradiation part for curing the ultraviolet curable resin is applied to the filament. A cylindrical tube that passes through the irradiation source that irradiates the body with ultraviolet rays and the continuously running striatum, and slides parallel to the direction of movement of the striatum into a position that blocks the ultraviolet rays emitted from the ultraviolet irradiation source when not irradiated. The structure includes a shutter and, if necessary, a quartz pipe placed outside the cylindrical shutter in a position to enclose the cylindrical shutter while the cylindrical shutter is in a shielding position from the ultraviolet irradiation source. By sliding only the cylindrical shutter of the non-curing course to the shielding position against the ultraviolet irradiation source for each course of the striatum, it is possible to cure the coating resin of the striatum for each course. The quartz pipes arranged according to An optical fiber manufacturing device that can uniformly, stably, and quickly cure the ultraviolet resin coating of the filament, improving the effective manufacturing speed and ensuring a high yield rate.

〔産業上の利用分野〕[Industrial application field]

本考案は光フアイバ素線および心線の製造装置
に関し、とくに紫外線硬化性樹脂被覆の硬化を行
う紫外線照射部の構造に関する。
The present invention relates to an apparatus for manufacturing optical fiber strands and core wires, and more particularly to the structure of an ultraviolet irradiation section for curing an ultraviolet curable resin coating.

〔従来の技術〕[Conventional technology]

光フアイバケーブルの普及には低価格の光フア
イバケーブルの製造の実現が急務である。現在そ
のための技術開発検討が進められているが、高速
製造技術と、高歩留り製造技術の両面を達成する
ことが必要である。代表的な例として、光フアイ
バの素線に紫外線硬化性樹脂(以下UV樹脂とい
う。)を使用したものは、その素線数に比例して
歩留りの向上が重要となるてくる。一方製造の高
速化においては、高速になるに従い、高速・低速
の製造工程上の照射条件調整に伴う歩留り低下の
傾向にあるのが現状である。
In order to popularize optical fiber cables, it is urgently necessary to manufacture low-cost optical fiber cables. Technological development studies for this purpose are currently underway, but it is necessary to achieve both high-speed manufacturing technology and high-yield manufacturing technology. As a typical example, for optical fibers in which ultraviolet curable resin (hereinafter referred to as UV resin) is used for the strands, it is important to improve the yield in proportion to the number of strands. On the other hand, as the speed of manufacturing increases, the current trend is that as the speed increases, the yield tends to decrease due to adjustment of irradiation conditions in the high-speed and low-speed manufacturing processes.

第6図A,Bは従来のUV樹脂硬化の例を説明
する図である。
FIGS. 6A and 6B are diagrams illustrating an example of conventional UV resin curing.

第6図A,Bは単心光フアイバ素線における
UV樹脂被覆光フアイバの通線パス21を紫外線
ランプ5、主ミラ40、補助ミラ50からなる照
射源から照射する例で、詳細説明は省略するが、
図示のとおり通線パス21を走行中一方の側面か
ら照射した後、引続き他方の側面から照射してい
る。
Figures 6A and B are for single optical fiber strands.
This is an example in which the wiring path 21 of the UV resin-coated optical fiber is irradiated from an irradiation source consisting of an ultraviolet lamp 5, a main mirror 40, and an auxiliary mirror 50, and detailed explanation will be omitted.
As shown in the figure, while the wire passing path 21 is traveling, it is irradiated from one side, and then it is irradiated from the other side.

第7図A,Bは通常のUV樹脂硬化技術におい
て、硬化工程ラインを停止したとき、硬化対象
体、たとえば本考案では光フアイバ素線また心線
の線条体が照射器内に存在している場合、硬化対
象体の焼損防止、あるいは硬化対象体が流れてい
ないときの照射面の過熱防止のため紫外線ランプ
5からの紫外線照射を遮断するため、電線、光フ
アイバなどの線条体コーテイングに用いられるシ
ヤツタ機構の例である(たとえば、UV・EB硬
化技術:(株)総合技術センター昭和57年10月30日発
行,181,187頁)。
Figures 7A and 7B show that in the conventional UV resin curing technology, when the curing process line is stopped, the object to be cured, for example, in the present invention, an optical fiber strand or a core wire is present in the irradiator. In order to prevent burnout of the object to be cured, or to prevent overheating of the irradiation surface when the object to be cured is not flowing, the ultraviolet ray irradiation from the ultraviolet lamp 5 is blocked. This is an example of the shutter mechanism used (for example, UV/EB curing technology: Sogo Gijutsu Center Co., Ltd., October 30, 1980, pages 181 and 187).

第7図Aはスライドシヤツタ22の例で、第7
図Bは回転シヤツタ23の例である。いずれのシ
ヤツタ機構も、照射源は紫外線ランプ5と主ミラ
40および図示しない主ミラ40に対向した補助
ミラからなり、線条体の全周に紫外線が照射さ
れ、照射しないときは、紫外線ランプは点灯起動
に時間を要するので、その都度消灯することな
く、スライドシヤツタ22、あるいは回転シヤツ
タ23を点線で表示する位置に移動させ、照射対
象体への照射を断つ構成である。
FIG. 7A shows an example of the slide shutter 22.
FIG. B shows an example of the rotary shutter 23. In both shutter mechanisms, the irradiation source consists of an ultraviolet lamp 5, a main mirror 40, and an auxiliary mirror (not shown) facing the main mirror 40. The ultraviolet rays are irradiated all around the striatum, and when not irradiated, the ultraviolet lamp is turned off. Since it takes time to start the lighting, the structure is such that the slide shutter 22 or the rotary shutter 23 is moved to the position indicated by the dotted line and the irradiation to the object to be irradiated is cut off, without turning off the light each time.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

従来のこの種のUV樹脂硬化による光フアイバ
素線および心線の製造装置は、紫外線照射部構成
が、片方向からの順次照射によるため照射効率が
悪いこと、また複数硬化工程は、それぞれのコー
スごとに条件調整及び品質チエツク等を行う必要
があるが、従来の線条体コーテイングにおけるシ
ヤツタ機構はコース別にシヤツタ機能を備えてい
ないから、一台のUV照射部に複数のラインを通
すことができないといつた、一台のこの種UV照
射部を備えた製造装置で実効複数ラインの機能、
すなわち実効製造速度に高速化、さらに低速条件
調整による歩留り向上を図るうえで問題があつ
た。
Conventional equipment for manufacturing optical fibers and core wires using this type of UV resin curing has poor irradiation efficiency because the UV irradiation section is configured to irradiate sequentially from one direction, and multiple curing processes require separate courses for each course. It is necessary to adjust conditions and check the quality for each treatment, but since the shutter mechanism in conventional striatal coating does not have a shutter function for each course, it is not possible to pass multiple lines through one UV irradiation unit. A single manufacturing device equipped with this type of UV irradiation unit can effectively operate multiple lines.
That is, there was a problem in increasing the effective manufacturing speed and further improving the yield by adjusting the low speed conditions.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は従来の問題点を解決し、一台の製造装
置で実効複数ラインの機能、すなわち実効製造速
度の高速化と、低速条件調整による歩留向上を図
るため、連続走行する光フアイバまたは光フアイ
バ素線の複数条の線条体に紫外線硬化性樹脂を被
覆した後、紫外線照射部で紫外線を照射して紫外
線硬化性樹脂を硬化し光フアイバ素線または光フ
アイバ心線を製造する装置において、前記紫外線
照射部は、前記線条体に紫外線を照射する紫外線
素照射源と、前記連続走行する複数条の線条体を
それぞれコース別に挿通し、前記紫外線照射源か
ら照射する紫外線をコース別に前記複数条の線条
体それぞれの非照射時に遮蔽する位置に、前記複
数条の線条体それぞれの走行方向に平行して該コ
ース別に線条体を内包してスライドする筒形シヤ
ツタを備えた構造を特徴としている。
This invention solves the problems of the conventional method, and aims to increase the effective production speed of multiple lines using one manufacturing device, and to improve the yield by adjusting low-speed conditions. In an apparatus for manufacturing an optical fiber or a cored optical fiber by coating a plurality of filaments of a fiber with an ultraviolet curable resin and then curing the ultraviolet curable resin by irradiating the ultraviolet rays in an ultraviolet irradiation section. , the ultraviolet irradiation section inserts an ultraviolet element irradiation source that irradiates the striatum with ultraviolet rays and the plurality of continuously running striatum, respectively, for each course, and irradiates the ultraviolet rays from the ultraviolet irradiation source for each course. A cylindrical shutter is provided at a position where each of the plurality of striatum is shielded during non-irradiation, and slides in parallel with the running direction of each of the plurality of striatum, enclosing the striatum for each course. It is characterized by its structure.

〔作用〕[Effect]

本考案は連続走行する線条体の走行方向に平行
してスライドする筒形シヤツタにより、線条体の
UV樹脂硬化を全面照射で均一効果的に行うとと
もに、一つの装置内の紫外線照射部で、複数の線
条体のUV樹脂被覆硬化を行うことができ、また
照射速度条件調整をコース別に行うことができ、
実効製造線速が上がつても、光フアイバ素線およ
び心線の高歩留率を確保できる。以下図面にもと
づき実施例について説明する。
This invention uses a cylindrical shutter that slides parallel to the running direction of the continuously running striatum.
In addition to uniformly and effectively curing the UV resin by irradiating the entire surface, it is also possible to cure the UV resin coating of multiple filaments using the UV irradiation section in one device, and the irradiation speed conditions can be adjusted for each course. is possible,
Even if the effective manufacturing speed increases, a high yield rate of optical fiber strands and core wires can be ensured. Examples will be described below based on the drawings.

〔実施例〕〔Example〕

第1図は本考案の一実施例の要部構成の概要を
示す図で、第2図は本考案の一実施例の要部配置
の上面からの概要を示す図である。1は光フアイ
バ素線、1′はUV樹脂被覆光フアイバ、2は本
考案による筒形シヤツタ、3は石英パイプ、4
1,42は石英板、51,52は紫外線ランプ、
6は筒形シヤツタ2を光フアイバ素線1の走行方
向に平行してスライドさせるスライドガイド部、
7は紫外線照射状態で高熱になる筒形シヤツタ2
の閉時冷却を行う冷却空気導入口、80,81は
石英パイプ3内に紫外線硬化作用を阻外する酸素
排除のためのパージを行うパージ用物質ガスの導
入口および導出口、9および91は導外線ランプ
51,52の冷却空気取入口および排気口、10
乃至13は主ミラ、14乃至17は補助ミラを示
す。
FIG. 1 is a diagram showing an outline of the configuration of main parts of an embodiment of the present invention, and FIG. 2 is a diagram showing an outline of the arrangement of main parts of an embodiment of the invention from above. 1 is an optical fiber wire, 1' is a UV resin coated optical fiber, 2 is a cylindrical shutter according to the present invention, 3 is a quartz pipe, 4
1 and 42 are quartz plates, 51 and 52 are ultraviolet lamps,
6 is a slide guide portion for sliding the cylindrical shutter 2 in parallel to the running direction of the optical fiber 1;
7 is a cylindrical shutter 2 that becomes extremely hot when exposed to ultraviolet rays.
9 and 91 are cooling air inlet ports for cooling the quartz pipe 3 when closed; Cooling air intake and exhaust ports of conductor lamps 51 and 52, 10
13 to 13 are main mirrors, and 14 to 17 are auxiliary mirrors.

第3図A,Bは本考案に係る紫外線照射部の作
動状態を説明する図で、第4図は本考案に係る筒
形シヤツタのスライドガイド部を構成するスライ
ド機構の例を示すブロツク図である。第1図と同
じ符号は同じ部分を示す。
3A and 3B are diagrams for explaining the operating state of the ultraviolet irradiation section according to the present invention, and FIG. 4 is a block diagram showing an example of a slide mechanism that constitutes the slide guide section of the cylindrical shutter according to the present invention. be. The same reference numerals as in FIG. 1 indicate the same parts.

第3図Aは線条体、本例では光フアイバ素線1
が走行していない場合で、筒形シヤツタ2は通常
閉状態にある。光フアイバ素線のUV樹脂硬化工
程の走行を開始するに伴い、たとえば第4図に例
示したスライド機構により、筒形シヤツタ2は電
磁弁32の駆動によりエアシリンダ31などに連
結して下方へスライドし、紫外線が線条体のUV
樹脂被覆光フアイバに照射される。33はエアシ
リンダ31の制御用空気源を示す。もし静止の線
条体に紫外線を照射し続けた場合、照射源からの
輻射熱により線条体は高温になり、溶断または焼
損することになり、高出力紫外線ランプによる作
業の継続は不可能である。本考案は第3図A,B
および第4図に例示した筒形シヤツタのスライド
機構により、強力な光源、本考案では紫外線ラン
プを使用して高速、高歩留りの線条体コーテイン
グを実現できる。
Figure 3A shows the striatum, in this example, the optical fiber strand 1
is not running, and the cylindrical shutter 2 is normally closed. As the UV resin curing process for the optical fiber starts, the cylindrical shutter 2 is connected to the air cylinder 31 by driving the electromagnetic valve 32 and slid downward by the slide mechanism illustrated in FIG. 4, for example. However, the ultraviolet rays are the UV of the striatum.
A resin-coated optical fiber is irradiated. Reference numeral 33 indicates a control air source for the air cylinder 31. If a stationary ray body is continuously irradiated with ultraviolet rays, the ray body will become hot due to the radiant heat from the irradiation source and will melt or burn out, making it impossible to continue working with a high-power UV lamp. . This invention is shown in Figure 3 A and B.
Furthermore, by the sliding mechanism of the cylindrical shutter illustrated in FIG. 4, high-speed, high-yield coating of the filament body can be realized using a powerful light source, in the present invention, an ultraviolet lamp.

上述した実施例は、本考案の要旨を説明する例
として単一条の線条体について説明したが、本考
案の具体的態様は、複数の線条体を、一被覆装置
の一照射部でコース別に同時走行させても、それ
ぞれの線条体に対して硬化のための照射条件をそ
れぞれの線条体に平行してスライドする筒形シヤ
ツタを作動させることによりチエツクすることが
でき、全線条体の被覆硬化条件の確認が行え、高
速、高歩留りの多条被覆硬化工程ラインを一被覆
装置の一照射部で実現できる。
In the above-mentioned embodiment, a single striatum was explained as an example to explain the gist of the present invention, but in a specific embodiment of the present invention, a plurality of striatum are treated in one course with one irradiation part of one coating device. Even if they are run simultaneously, the irradiation conditions for curing each striatum can be checked by operating a cylindrical shutter that slides parallel to each striatum. The coating curing conditions can be confirmed, and a high-speed, high-yield multi-strip coating curing process line can be realized with one irradiation section of one coating device.

第5図は、本考案による多条線条体の同時走行
における被覆照射の実施例の要部構成と作動状態
を説明する図である。
FIG. 5 is a diagram illustrating the main part configuration and operating state of an embodiment of coating irradiation during simultaneous running of multi-filament bodies according to the present invention.

なお本実施例の照射源は複数本の紫外線ランプ
51,52を線条体の光フアイバ素線1の走行方
向に対し垂直方向に並列配置した例を示してある
が、照射源の配置構成はとくに限定されるもので
はない。第1図と同じ符号は同じ部分を示す。5
3,54は照射光集束用ミラを示す。本実施例か
らも明らかなように、コース別スライド式の筒形
シヤツタ構成とすることにより従来の照射源とし
ての紫外線ランプユニツトごとに線条体走行1コ
ースという非効率性を解消し、複数ラインを一照
射装置で照射できる。
Note that the irradiation source in this embodiment is an example in which a plurality of ultraviolet lamps 51 and 52 are arranged in parallel in a direction perpendicular to the running direction of the optical fiber element 1 of the striatum, but the arrangement of the irradiation source is It is not particularly limited. The same reference numerals as in FIG. 1 indicate the same parts. 5
3 and 54 indicate mirrors for converging irradiated light. As is clear from this example, by adopting a sliding cylindrical shutter configuration for each course, the inefficiency of the conventional method of running one course of the linear body for each ultraviolet lamp unit as an irradiation source can be eliminated, and multiple lines can be can be irradiated with one irradiation device.

本来、紫外線硬化技術は低エネルギ加工であ
り、エネルギ価格に比し、歩留りを向上させる方
が実質の省エネルギになる。したがつて本考案に
よれば生産量に見合つたコース数の選択も可能と
なる。なお照射設備のランニング価格も、一台の
照射装置の方が低廉となる。
Originally, ultraviolet curing technology is a low-energy process, and compared to energy costs, improving yields actually results in energy savings. Therefore, according to the present invention, it is also possible to select the number of courses commensurate with the production volume. Furthermore, the running cost of the irradiation equipment is also cheaper for one irradiation device.

また遮光制御用のシヤツタ自身は、透光性のい
わゆる光学材料ではないことから、従来のシヤツ
タでは線条体通線時にUV樹脂の付着などにより
石英パイプ(第1図3)の汚線される問題を本考
案に線条体走行方向に平行してスライドする筒形
シヤツタ構造は結果的に解決した。
In addition, since the shutter itself for light-shielding control is not made of a so-called optical material that is translucent, conventional shutters cause stains on the quartz pipe (Fig. 1, 3) due to adhesion of UV resin when the wire is passed through the wire. The problem was eventually solved by the present invention, which has a cylindrical shutter structure that slides in parallel to the running direction of the filament.

さらにそれぞれのコースごとの筒形シヤツタを
任意に、または自動的に開閉することにより、順
次照射条体別の走行線条体引出しが可能で、線条
体の歩留り向上が図れる。
Furthermore, by arbitrarily or automatically opening and closing the cylindrical shutters for each course, it is possible to sequentially draw out the running rays for each irradiated ray, thereby improving the yield of the rays.

〔考案の効果〕[Effect of idea]

以上詳述したように、本考案は紫外線照射部に
おける線条体の走行方向に平行してスライドする
筒形シヤツタ構成とすることにより、一照射装置
で複数の線条体を照射条件に従つての引出しを可
能とし、高速・高歩留りの多条被覆ライン製造装
置が実現され、その効果が大きい。
As described in detail above, the present invention uses a cylindrical shutter structure that slides in parallel to the running direction of the filamentous bodies in the ultraviolet irradiation section, so that a plurality of filamentous bodies can be irradiated with one irradiation device according to the irradiation conditions. A high-speed, high-yield multi-strip coating line manufacturing device has been realized, and its effects are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の一実施例の要部構成概要図、
第2図は本考案の一実施例の要部配置上面概略
図、第3図A,Bは本考案に係る紫外線照射部の
作動状態を説明する図、第4図は本考案に係る筒
形シヤツタのスライド機構の例、第5図は本考案
に係る紫外線照射部の他の実施例の要部構成と作
動状態説明図、第6図A,Bは従来のUV樹脂硬
化例の説明図、第7図A,Bは従来のシヤツタ機
構例である。 1……光フアイバ素線、1′……UV樹脂被覆
光フアイバ、2……筒形シヤツタ、3……石英パ
イプ、41,42……石英板、51,52……紫
外線ランプ、6……スライドガイド部、7……冷
却空気導入口、80……N2パージ導入口、81
……N2パージ導出口、9……ランプ冷却空気取
入口、91……ランプ冷却空気排気口、10,1
1,12,13……主ミラ、14,15,16,
17……補助ミラ、31……エアシリンダ、32
……電磁弁、33……空気源、5……紫外線ラン
プ、21……通線パス、40……主ミラ、50…
…補助ミラ、22……スライドシヤツタ、23…
…回転シヤツタ。
FIG. 1 is a schematic diagram of the main parts of an embodiment of the present invention.
Fig. 2 is a schematic top view of the arrangement of essential parts of an embodiment of the present invention, Figs. 3 A and B are diagrams illustrating the operating state of the ultraviolet irradiation section according to the present invention, and Fig. 4 is a cylindrical shape according to the present invention. An example of a slide mechanism for a shutter; FIG. 5 is an explanatory diagram of the main part configuration and operating state of another embodiment of the ultraviolet irradiation unit according to the present invention; FIGS. 6A and B are explanatory diagrams of a conventional UV resin curing example; FIGS. 7A and 7B show examples of conventional shutter mechanisms. 1... Optical fiber wire, 1'... UV resin coated optical fiber, 2... Cylindrical shutter, 3... Quartz pipe, 41, 42... Quartz plate, 51, 52... Ultraviolet lamp, 6... Slide guide part, 7...Cooling air inlet, 80... N2 purge inlet, 81
... N2 purge outlet, 9...Lamp cooling air intake, 91...Lamp cooling air exhaust port, 10,1
1, 12, 13...Lord Mira, 14, 15, 16,
17...Auxiliary mirror, 31...Air cylinder, 32
... Solenoid valve, 33 ... Air source, 5 ... Ultraviolet lamp, 21 ... Wiring path, 40 ... Main mirror, 50 ...
...Auxiliary mirror, 22...Slide shutter, 23...
...Rotating shutter.

Claims (1)

【実用新案登録請求の範囲】 連続走行する光フアイバまたは光フアイバ素線
の複数条の線条体に紫外線硬化性樹脂を被覆した
後、紫外線照射部で紫外線を照射して紫外線硬化
性樹脂を硬化し光フアイバ素線または光フアイバ
心線を製造する装置において、 前記紫外線照射部は、 前記線条体に紫外線を照射する紫外線照射源
と、 前記連続走行する複数条の線条体をそれぞれコ
ース別に挿通し、前記紫外線照射源から照射する
紫外線をコース別に前記複数条の線条体それぞれ
の非照射時に遮蔽する位置に、前記複数条の線条
体それぞれの走行方向に平行して該コース別に線
条体を内包してスライドする筒形シヤツタ2を備
えてなる ことを特徴とする光フアイバ素線および心線の製
造装置。
[Scope of Claim for Utility Model Registration] After coating a continuously running optical fiber or multiple strands of optical fiber with an ultraviolet curable resin, the ultraviolet curable resin is cured by irradiating it with ultraviolet rays in an ultraviolet irradiation section. In an apparatus for manufacturing an optical fiber raw wire or an optical fiber core wire, the ultraviolet irradiation section includes: an ultraviolet irradiation source that irradiates the striae with ultraviolet rays; and a plurality of continuously running striae, each of which is irradiated with ultraviolet light by a course. A line is inserted in parallel to the running direction of each of the plurality of striated bodies at a position where the ultraviolet rays irradiated from the ultraviolet ray irradiation source are shielded for each course when each of the plurality of striated bodies is not irradiated. An apparatus for producing optical fibers and core wires, comprising a cylindrical shutter 2 that slides while enclosing a strip.
JP852186U 1986-01-24 1986-01-24 Expired JPH0345937Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP852186U JPH0345937Y2 (en) 1986-01-24 1986-01-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP852186U JPH0345937Y2 (en) 1986-01-24 1986-01-24

Publications (2)

Publication Number Publication Date
JPS62122839U JPS62122839U (en) 1987-08-04
JPH0345937Y2 true JPH0345937Y2 (en) 1991-09-27

Family

ID=30792973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP852186U Expired JPH0345937Y2 (en) 1986-01-24 1986-01-24

Country Status (1)

Country Link
JP (1) JPH0345937Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6694324B2 (en) * 2016-05-17 2020-05-13 浜松ホトニクス株式会社 Surface treatment equipment

Also Published As

Publication number Publication date
JPS62122839U (en) 1987-08-04

Similar Documents

Publication Publication Date Title
US6626561B2 (en) Lamp structure, having elliptical reflectors, for uniformly irradiating surfaces of optical fiber and method of use thereof
CN1260013C (en) Ultraviolet lamp system and method
US7322122B2 (en) Method and apparatus for curing a fiber having at least two fiber coating curing stages
KR900003450B1 (en) Preparation method for optical fiber
CN107664877A (en) Light irradiation device and light illuminating method
JPH0345937Y2 (en)
US7249941B2 (en) Device for manufacturing plastic lens
CN1130996C (en) Device for predrying tipping paper
KR101609123B1 (en) UV curing apparatus
KR20190037917A (en) Uv light curing system
JPS62262807A (en) Ultraviolet-ray emitting device for wire rod
US6509068B2 (en) Method for passing multiple fibers through a small zone of high intensity radiant energy
JPH04295032A (en) Curing device for coating material applied on optical fiber
JP4090273B2 (en) Edge exposure device
JPH105667A (en) Ultraviolet irradiation apparatus and method therefor
EP3971150A1 (en) Reflector for curing optical fibers and methods of using the same
CN213291414U (en) Irradiation mechanism for LED ultraviolet irradiation crosslinking equipment
JP2578256Y2 (en) Curing device for coating agent applied to optical fiber
NL2026720B1 (en) Reflector for curing optical fibers and methods of using the same
JP3714864B2 (en) Edge exposure device
KR100860181B1 (en) Apparatus and method for multi-irradiation crosslinking using infrared ray
CN116550576B (en) 360-degree-angle omnidirectional UV LED curing system for outer surface of tubular object
CN200988028Y (en) Device for quick blocking radiation source
TWI708876B (en) Composite fiber manufacturing system with light curing and method for manufacturing composite fiber using light curing technology
KR20190037939A (en) Uv light curing system