JPH0345753B2 - - Google Patents

Info

Publication number
JPH0345753B2
JPH0345753B2 JP57225964A JP22596482A JPH0345753B2 JP H0345753 B2 JPH0345753 B2 JP H0345753B2 JP 57225964 A JP57225964 A JP 57225964A JP 22596482 A JP22596482 A JP 22596482A JP H0345753 B2 JPH0345753 B2 JP H0345753B2
Authority
JP
Japan
Prior art keywords
weight
parts
resin
acid
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57225964A
Other languages
Japanese (ja)
Other versions
JPS59117568A (en
Inventor
Kazuyoshi Iida
Hideki Hasegawa
Shintaro Yamaoka
Minoru Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP57225964A priority Critical patent/JPS59117568A/en
Publication of JPS59117568A publication Critical patent/JPS59117568A/en
Publication of JPH0345753B2 publication Critical patent/JPH0345753B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は乾式平版印刷用インキに関するもので
ある。 現在、一般的な印刷方法としては凸版印刷、平
版印刷、凹版印刷等があり、平版印刷の内、ウエ
ツトオフセツト印刷では、印刷版表面が親水部分
と親油部分からなり、インキは親油部分にのみ移
転し、画線が得られる方式である。この印刷方式
では画像が鮮明であり、高級な印刷物が得られる
こと、製版価格が安価で、短時間で製版ができる
ことを特徴としている。しかしこの印刷方法で
は、印刷時にインキと共に湿し水を使うため、イ
ンキのコントロールと共に湿し水についてもコン
トロールする必要があり、印刷作業は高度の技術
を要する。このため最近湿し水を使うことなく、
平版オフセツト印刷ができる印刷方式が提唱され
ている。すなわち、乾式平版印刷であり、この方
式での印刷は、従来のウエツトオフセツト印刷時
に問題となつていた湿し水による弊害、例えば印
刷インキの乳化、水負けによる転移不良、ゴース
テイングの発生などが改良される。 しかし通常のインキを使用して、この乾式平版
印刷法によつて印刷を長時間継続すると、版面で
の温度が上昇し、インキが非画線部に付着して汚
れを起しやすくなる。これを解決する手段として
各種インキ用の素材をシリコン化合物で変性する
手段が提案されている。例えば、シリコン変性ア
ルキツド樹脂(特公昭51−10124号、同51−22405
号)、シリコン変性フエノール樹脂(特公昭52−
10042号、特開昭52−62506号)、シリコン変性乾
性油(特公昭52−10041号、同52−10042号)、シ
リコン変性シクロペンタジエン系樹脂(特開昭56
−110705号、同56−110706号)などがある。これ
らの素材は、汚れには効果が見られるものの、組
合せによつては汚れ耐性がまだ不満足であつた
り、地汚れ耐性が改良されると共に印刷物の光沢
が劣化して、印刷物の品質が低下するなどの欠点
が見られる。一方、インキでの問題は保存中にイ
ンキが増粘するために作業性が悪くなる。さらに
はシロキサン化合物は一般インキ用素材に比べ、
非常に高価であるため、インキの価格も上昇して
しまうなどの欠点がある。 本発明者等は、上記の乾式平版印刷法に適合す
るインキ組成物について、インキと版の関連性に
ついて研究を重ね、乾式平版印刷法において実用
可能な印刷適性、インキの保存安定性に優れ、か
つ印刷効果のよい印刷物を得ることのできる乾式
平版印刷用インキの発明の至つた。 一般式 (式中、Hは水素原子、Rは炭素数1〜3のアル
キル基を表わし、m、nは0または1以上の整数
で、m+n=6である。) で示される共役二重結合を有する5員環化合物お
よびまたは該5員環化合物のデイールズアルダー
付加物〔A〕100重量部と、乾性油および脂肪酸
よりなる群から選ばれる少なくとも1種〔B〕5
〜50重量部とを共重合させることにより得られる
炭化水素樹脂〔〕100重量部に対し、不飽和カ
ルボン酸またはその無水物〔C〕1〜15重量部を
反応させた酸変性樹脂〔〕に、炭素数4〜9の
アルキル置換基を有するフエノールとホルマリン
との縮合により得られるフエノール樹脂〔D〕を
該酸変性樹脂〔〕100重量部に対し、5〜100重
量部を加熱反応させることにより得られる樹脂
〔〕をビヒクル成分として含有する乾式平版印
刷用インキに関する。 以下に本発明についてさらに詳細に記載する。 本発明は、下記一般式で示される共役二重結合
を有する5員環化合物およびまたはそのデイール
ズアルダー付加物を、原料成分〔A〕として用い
る。 式: (ここでRは炭素数1〜3のアルキル基を、Hは
水素原子を示し、m、nは0または1以上の整数
で、m+n=6である。) 具体的には5員環化合物として、シクロペンタ
ジエンおよびメチルシクロペンタジエンなど、ま
たこれらのデイールズアルダー付加物として、ジ
シクロペンタジエン、シクロペンタジエン−メチ
ルシクロペンタジエン共二量化物、トリシクロペ
ンタジエンなど、およびこれらの混合物などが工
業的には好ましく使用され、これらの中ではシク
ロペンタジエン、ジシクロペンタジエンあるいは
これらの混合物が特に好ましい。 〔A〕の純度が良いことは必ずしも必要でない
が、シクロペンタジエン、ジシクロペンタジエン
またはそれらのアルキル置換誘導体が80重量%以
上存在することが好ましい。例えば、ナフサ等の
高温熱分解副生油のC5留分中に含まれるシクロ
ペンタジエン、メチルシクロペンタジエンを熱二
量化させることによつて、ジシクロペンタジエ
ン、ジメチルシクロペンタジエン、シクロペンタ
ジエン−メチルシクロペンタジエン共二量体、シ
クロペンタジエン−イソプレン共二量体、シクロ
ペンタジエン−ピペリレン共二量体等の混合物に
した後、蒸留によりC5オレフイン、C5パラフイ
ンなどのC5成分の大部分を除去して得られる濃
縮された留分を使用してもさしつかえない。 本発明に用いられる〔B〕は乾性油および脂肪
酸より成る群から選ばれる少なくとも1種の成分
である。 乾性油としてヨウ素価120以上の植物油脂およ
び動物油脂であり、特にアマニ油、キリ油、大豆
油、脱水ヒマシ油等の乾性植物油が好ましい。ま
た、これらを熱処理したボイル油を用いることも
できる。 脂肪酸としては、ミリスチン酸、パルミチン
酸、ステアリン酸、オレイン酸、リノール酸、リ
ノレン酸およびエレオステアリン酸のような飽和
または不飽和の合成脂肪酸、およびアマニ油脂肪
酸、トール油脂肪酸のような天然脂肪酸である。
さらに脂肪酸を主成分とするトール油も脂肪酸と
して用いることができる。 また、〔B〕として上記成分の2種類以上を混
合して用いても特に問題はない。 本発明においては、上記の〔A〕100重量部に
対し、〔B〕5〜50重量部、好ましくは10〜40重
量部を無触媒で熱反応させることにより炭化水素
樹脂〔I〕を製造する。上記〔A〕と〔B〕の混
合物を、200〜300℃において30分から15時間、好
ましくは1〜7時間加熱することにより炭化水素
樹脂〔I〕を製造できる。〔B〕の量が上記範囲
に満たない場合には、十分な効果が認められず、
一方上記範囲を超える場合には、樹脂の軟化点が
低下するので好ましいものではない。 また、バインダー樹脂のパラフイン系溶剤への
優れた溶解性を得るためには、熱反応時に上記
〔A〕と〔B〕の他に炭素数4〜40を有するα−
オレフイン、好ましくは炭素数6〜20を有し、α
−オレフインのβ位にアルキル基を有しない直鎖
状および/または分岐状のα−オレフインを、
〔A〕100重量部に対し、5〜100重量部、好まし
くは10〜50重量部を添加することにより、上記要
求を満足するバインダー樹脂の製造が可能とな
る。〔A〕、〔B〕および上記α−オレフインの熱
反応により得られる樹脂を変性して製造される最
終樹脂のパラフイン系溶剤への溶解性は極めて良
好であり、これを用いたインキの印刷適性もさら
に向上する。 α−オレフインとしては、市販の純モノマーを
使用することができるが、(1)いわゆるエチレンの
オリゴマー化、(2)パラフインワツクスの熱分解の
製造方法で得られる単一モノマーまたは混合モノ
マーを使用することもできる。 上述のようにして得られる炭化水素樹脂〔I〕
は、不飽和カルボン酸またはその無水物〔C〕と
反応させるのであるが、〔C〕としては通常炭素
が3〜32、好ましくは3〜15のモノマーおよび多
価不飽和カルボン酸またはそれらの無水物であ
り、それらの代表的なものはアクリル酸、メタク
リル酸、マレイン酸、無水マレイン酸、テトラヒ
ドロフタル酸およびその無水物、フマール酸、シ
トラコン酸、イタコン酸およびこれらの混合物あ
るいは乾性油の脂肪酸例えばアマニ油脂肪酸等で
ある。これらの中では、マレイン酸および無水マ
レイン酸が好ましい。 本発明に用いる不飽和カルボン酸またはその無
水物の量比は、炭化水素樹脂〔I〕100重量部に
対し、1〜15重量部、好ましくは1〜10重量部で
ある。不飽和カルボン酸またはその無水物の量が
上記範囲に満たない場合には、生成した樹脂の極
性基の量が少ないため、極性基を有する樹脂とし
ての特徴がとぼしく、インキ用のビヒクルとして
用いた場合、顔料分散性、インキの流動性および
印刷効果が悪くなり、好ましくない。 また、上記範囲を超える場合には、極性基の量
が多すぎ、溶媒に対する溶解性が悪くなり、また
樹脂の変色、ゲル化が起りやすく好ましくない。
さらにインキに使用する場合に、ワニス化する際
の炭化水素溶媒に対する溶解性が悪くなり、また
インキの流動性、印刷物の光沢が悪くなり好まし
くない。なお、上記の酸変性反応は、100〜300℃
好ましくは150〜250℃の範囲内の温度で、無触媒
または公知のラジカル開始剤、例えば有機過酸化
物等の存在下で30分〜15時間、好ましくは1〜8
時間の範囲内で行うことができ、不飽和多価カル
ボン酸またはその無水物を用いる場合には、無触
媒で、不飽和モノカルボン酸またはその無水物を
用いる場合には、触媒の存在下に、反応を行うこ
とが好ましい。 本発明の酸変性樹脂〔〕はまた下記の一般法
によつても製造することができる。 即ち〔A〕と〔B〕の混合物を、溶媒の存在下
または不存在下に温度200〜300℃で熱重合させる
に際し、最初から或いは反応の途中から不飽和カ
ルボン酸またはその無水物を反応系に添加して熱
重合することによつて得ることもできる。 また、本発明において上記で得られた酸変性樹
脂〔〕の溶解性および軟化点を調節するため
に、あるいは樹脂〔〕の分子量を調節するため
に該酸変性樹脂〔〕を炭素数が6以上好ましく
は8〜22、特に好ましくは12〜15、の高級一価ア
ルコールでエステル化することも可能である。そ
の際用いられるアルコールの量は酸変性樹脂
〔〕中のカルボキシル基1モル当量に対して0
〜0.1モル当量、または樹脂〔〕中の酸無水物
基1モル当量に対して0〜2.0モル当量である。
エステル化反応は、酸変性樹脂を加熱溶融する
か、またはベンゼン、トルエン、キシレン等の炭
化水素溶剤に溶解した状態で、一価アルコールを
加えて、たとえば150〜250℃の範囲で30分〜10時
間、好ましくは1〜5時間の範囲内の時間で行
う。 本発明においては、酸変性樹脂〔〕を、さら
にアルキル置換フエノール樹脂〔D〕と反応させ
ることにより、目的とする樹脂〔〕が得られ
る。本発明において用いられるフエノール樹脂
は、炭素数4〜9のアルキル置換基を有するフエ
ノールとホルマリンとの縮合により得られるもの
であり、ここでいうフエノールとしては具体的に
はp−tert−ブチルフエノール、sec−ブチルフ
エノール、p−tert−オクチルフエノール、ノニ
ルフエノールが工業的に好ましく用いられ、無置
換のフエノールあるいはクレゾールのようなフエ
ノール樹脂は、生成する樹脂〔〕の高沸点炭化
水素に対する溶解性を低下させるので好ましくな
い。また炭素数10以上の置換フエノール樹脂を用
いると、樹脂〔〕の軟化点が著しく低くなり好
ましくない。 またフエノール樹脂と反応させるかわりに、酸
変性樹脂〔〕の存在下でホルムアルデヒドとフ
エノール類を酸またはアルカリを触媒として又は
無触媒下で反応させても目的とするフエノール樹
脂変性樹脂〔〕を得ることができる。 変性に用いられるフエノール樹脂の量は、上記
酸変性樹脂〔〕100重量部に対し、フエノール
樹脂5〜100重量部の範囲であり、10〜50重量部
が更に好ましい。フエノール樹脂の量が上記範囲
に満たない場合には、得られる変性樹脂ビヒクル
としてインキを作製した場合に、インキの流動
性、印刷物の光沢などが十分でなく、上記範囲を
超えると樹脂のインキ溶剤への溶解性が悪くなる
のみならず工業的にも経済的でなく好ましくな
い。 反応は酸変性樹脂〔〕とフエノール樹脂を混
合溶融し150〜250℃で30分〜10時間、好ましくは
1〜5時間加熱するだけで十分であるが、必要に
応じて、酸触媒、例えば硫酸、トルエンスルホン
酸、フリーデルクラフト型触媒等を用いることも
できる。 以上のようにして得られる樹脂〔〕は軟化点
が100℃以上、特に130℃以上であることが好まし
い。軟化点が100℃より低いと、印刷インキにし
た場合、ミステイングが多く、乾燥速度が極端に
低下し、ブロツキングを起こし易く好ましくな
い。 さらに、軟化点が100℃より低いと乾式平版印
刷での地汚れ耐性が満足できない。 さらに、樹脂〔〕は酸価が5〜70、特に5〜
50の範囲であることが好ましい。酸価が上記範囲
に満たないと、顔料分散性が悪く、酸価が上記範
囲を超えると、パラフイン系溶剤への溶解性が低
下して、インキの流動性が劣化したり、保存中に
インキが増粘したりする。 この様にしてできた樹脂〔〕は保存中のイン
キの増粘が少なく、印刷物の光沢が良好であり、
乾式平版による印刷時の地汚れ耐性のいずれも同
時に満足する乾式平版印刷用インキを得ることが
できる。 このようにして得られた樹脂〔〕をビヒクル
成分として、本発明の乾式平版印刷用インキを調
整する方法は、通常公知の任意の方法に従つて行
うことが可能であり、例えば本発明の乾式平版印
刷用インキは上述のようにして得られた樹脂
〔〕100重量部を、中油長およびまたは長油長ア
ルキツド樹脂5〜150重量部、好ましくは10〜100
重量部、高沸点炭化水素系溶剤50〜200重量部に
常温または加熱下で溶解して常温での粘度を200
〜600ポイズに調整したワニスに顔秤等を配合し
て、混練することによつて得られる。また、アル
キツド樹脂の代りに、またはいつしよに乾性油や
重合乾性油を使用することもできる。 また必要に応じて、ワニス(ヒビクル)の作成
には所望する溶解性を得るために200〜260℃で保
温したクツキングワニスとすることも可能であ
る。 なお、インキ製造の際に使用される乾性油とし
ては樹脂〔〕の合成に用いられる乾性油が同様
に使用できるが、例えば、桐油、アマニ油、大豆
油、オイチシカ油等の植物性原油、およびボイル
油、0号油、1号油、3号油、4号油、5号油、
6号油、7号油、9号油、号外ワニス等重合アマ
ニ油、およびまたは同様に重合桐油等の重合植物
油である。さらに、中油長また長油長アルキツド
樹脂とはリノール酸、リノレン酸、オレイン酸、
リカーン酸、エレオステアリン酸、リシノレン酸
等の不飽和脂肪酸、ステアリン酸、パルミチン
酸、ラウリン酸、カプリン酸等の不飽和脂肪酸の
内からの1種または混合物、さらにはこれら脂肪
酸のグリセライドやトール油と、エチレングリコ
ール、ジエチレングリコール、ネオペンチルグリ
コール等のグリコール類、グリセリン、トリメチ
ロールエタン、トリメチロールプロパン、トリス
ヒドロキシエチルイソシアヌレート、ペンタエリ
スリトール、ジグリセリン、ジペンタエリスリト
ール、トリペンタエリスリトール等のポリオー
ル、と無水フタル酸、イソフタル酸、トリメリツ
ト酸、アジピン酸、テレフタル酸、(無水)マレ
イン酸、(無水)フマル酸等と、それぞれ群より
少なくとも一種類以上の成分からなるもので、油
長50%〜90%のアルキツド樹脂である。 本発明に用いられる高沸点炭化水素系溶剤は沸
点範囲200〜300℃、好ましくは250〜330℃で芳香
族系成分が50重量%以下、好ましくは30重量%以
下のものである。 さらに本発明の乾式平版印刷用インキにおい
て、地汚れ耐性を特に要求される場合は、0.1重
量部1〜10重量部の範囲でオルガノポリシロキサ
ンを添加することができる。この範囲の上限以上
にオルガノポリシロキサンを添加することは、イ
ンキの流動性劣化、インキ保存中の増粘、光沢劣
化等の弊害があり、好ましいものでない。 また、乾式平版印刷用インキに通常用いられる
添加剤を使用することもできる。 以下、実施例をもつて本発明を説明する。 合成例 1 純度97%にジシクロペンタジエン(DCPD)
850gとアマニ油250gを2のオートクレーブに
仕込み、窒素雰囲気中で撹拌下260℃で3.5時間加
熱した。加熱終了後オートクレーブを冷却し、内
容物を210℃/2mmHgで蒸溜して、920gの樹脂
(−1)を得た。樹脂(−1)の軟化点は
136.5℃であつた。 この樹脂(−1)150gを200℃で加熱溶融
し、無水マレイン酸4.5gを添加し、撹拌下4時
間反応を行い酸変性樹脂(−1)を得た。(
−1)の軟化点は147.0℃で酸価は13.5であつた。
引き続き、酸変性樹脂(−1)100gにp−
tert−オクチルフエノールとホルマリンとの縮合
反応により得られるレゾール型フエノール樹脂
17.6gを加え200℃で2時間反応を行い、軟化点
169.5℃、酸価12.7の樹脂(−1)を得た。 合成例 2 純度97%のDCPD800gとトール油200gを2
のオートクレーブに仕込み、260℃で6時間反応
させ、合成例1と同様に処理して、925gの樹脂
(−2)が得られた。(−2)の軟化点は
138.5℃であつた。 この樹脂(−2)150gを200℃で加熱溶融
し、無水マレイン酸7.5gを添加し、撹拌下3時
間反応を行い酸変性樹脂(−2)を得た。(
−2)の軟化点は158.0℃で酸価は24.2であつた。
引き続き、酸変性樹脂(−2)100gに4.2gの
デカノールを添加し200℃で1時間加熱撹拌した
後、p−ノニルフエノールとホルマリンとの縮合
反応により得られるレゾール型フエノール樹脂
20.2gを添加し200℃で3時間反応させて、軟化
点160.5℃で酸価19.4の樹脂(−2)を得た。 合成例 3 純度97%のDCPD800g、アマニ油100gおよび
1−ヘキセン100gを2のオートクレーブに仕
込み、280℃で2時間反応させ、合成例1と同様
に処理して、932gの樹脂(−3)を得た。(
−3)の軟化点は146.0℃であつた。 この樹脂(−3)150gを200℃で加熱溶融
し、無水マレイン酸4.5gを添加し、撹拌下3時
間反応を行い酸変性樹脂(−3)を得た。酸変
性樹脂(−3)の軟化点は155.0℃で酸価は
13.7であつた。引き続き、酸変性樹脂(−3)
100gにp−tert−オクチルフエノールとホルマ
リンとの縮合反応により得られるレゾール型フエ
ノール樹脂17.6gを加え200℃で2時間反応を行
い、軟化点175.0℃、酸価12.2の樹脂(−3)
を得た。 ワニス調整例 1 樹脂〔−1〕300gと9号アマニ油100g、日
本石油製3号ソルベント260gを撹拌機つき4つ
口フラスコに仕込み、N2ガスを吹き込みながら
加熱、昇温し、150℃として撹拌しながら、さら
に180℃とし、30分保温した後、3号ソルベント
28gを加えて、25℃での粘度が540ポイズのワニ
スIを得た。 このワニス1480gを撹拌機つき4つ口フラスコ
に仕込み、N2ガスを吹き込みながら撹拌、加熱
し、140℃にてALCH(川研フアインケミカル製、
ゲル化剤;ジイソプロピルモノアセチルアセトア
ルミニウム)5gを日本石油製5号ソルベント15
gに混合したゲル化剤溶液を添加し、さらに昇温
して190℃として1時間撹拌してゲルワニスを
得た。 ワニス調整例 2 樹脂〔−2〕305gと中国桐油100g、日本石
油製5号ソルベント200gおよび日本石油製0号
ソルベント80gを撹拌機つき4つ口フラスコに仕
込み、N2ガスを吹き込みながら加熱し、150℃と
して撹拌し、さらに昇温して180℃として、30分
間保温後、0号ソルベント20gを加えて、25℃の
粘度が480ポイズになるよう調整したワニスを
得た。 ワニス480gを撹拌機つき4つ口フラスコに
仕込み、N2ガスを吹き込みながら撹拌、加熱し、
140℃にてALCH5gを0号ソルベント15gに溶
解したゲル化剤溶液を添加し、さらに昇温して
190℃とし1時間撹拌してゲルワニスを得た。 ワニス調整例 3 樹脂〔−3〕を380g、アラキード5001(荒川
化学製長油長アルキツド樹脂)140g、日本石油
製0号ソルベント150gを撹拌機つき4つ口フラ
スコに仕込み、N2ガスを吹き込みながら加熱し、
150℃として撹拌し、さらに昇温して180℃とし
て、30分間保温後、0号ソルベント40gを加え
て、25℃の粘度が420ポイズになるよう調整した
ワニスを得た。 ワニス210gを撹拌機つき4つ口フラスコに
仕込み、N2ガスを吹き込みながら撹拌、加熱し、
90℃に保ち、オクトープアルミ(ホープ製薬製ゲ
ル化剤)3gを0号ソルベント17gによく混和さ
せたゲル化剤液を20g添加して、加熱、昇温し、
165℃となつた時点で、ゲルワニスの流動性が認
められたため汲出し、ゲルワニス−1を得た。 さらにワニス215gを撹拌機つき4つ口フラ
スコに仕込み、N2ガスを吹き込みながら撹拌、
加熱し、140℃にてALCH2gを0号ソルベント
6gに溶解したゲル化剤溶液8gを添加し、さら
に昇温して190℃として1時間撹拌してゲルワニ
ス−2を得た。 ワニス調整例 4 樹脂〔−3〕320gとアラキード6700(荒川化
学製中油長アルキツド樹脂)150gを撹拌機つき
4つ口フラスコに仕込み、N2ガスを吹き込みな
がら加熱し、150℃として撹拌を開始して、さら
に昇温を続け、240℃として、同温度で3時間ク
ツキングして、3号ソルベント167gを加え、25
℃での粘度568ポイズのワニスを得た。 ワニス290gとALCH2.5gと3号ソルベント
7.5gにてワニス調整例1と同様にしてゲルワニ
スを得た。 比較ワニス調整例 1 タマノール358(荒川化学製ロジンフエノール樹
脂)250gとボイル油120gと3号ソルベント240
gを撹拌機つき4つ口フラスコに仕込み、ワニス
調整例1と同様にして比較ワニスを得た。尚、
このワニスの25℃の粘度は600ポイズであつた。
さらに比較ワニス1380gとALCH4gと3号ソル
ベント12gでワニス調整例1と同様にして比較ゲ
ルワニスを得た。 比較ワニス調整例 2 日石ネオポリマー150(日本石油製石油樹脂)
300gとアマニ油100gと3号ソルベント198gに
てワニス調整例1と同様な方法で比較ワニスを
得た(25℃の粘度452ポイズ)。 比較ワニス330gを撹拌機つき4つ口フラス
コに仕込み、オクトープアルミ8gを3号ソルベ
ント64gによく混和したゲル化剤液を添加し、
N2ガスを吹き込みながら、昇温し、168℃でゲル
ワニスの流動性が出始めた時点で汲出し、比較ゲ
ルワニスを得た。 インキの調整 3本ロールを用い下記の配合割合(重量比)で
練肉してインキ化した。
The present invention relates to a dry lithographic printing ink. Currently, common printing methods include letterpress printing, planographic printing, intaglio printing, etc. Among planographic printing, in wet offset printing, the printing plate surface consists of a hydrophilic part and a lipophilic part, and the ink is applied to the lipophilic part. This is a method that transfers the image only to the image and obtains a line image. This printing method is characterized by the fact that images are clear, high-quality printed matter can be obtained, plate making costs are low, and plate making can be done in a short time. However, since this printing method uses dampening water along with ink during printing, it is necessary to control the dampening water as well as the ink, and the printing operation requires a high level of skill. For this reason, I have not used dampening water recently.
A printing method that allows lithographic offset printing has been proposed. In other words, it is a dry lithographic printing method, and printing with this method eliminates the problems caused by dampening water that were problems with conventional wet offset printing, such as emulsification of printing ink, poor transfer due to water loss, and occurrence of ghosting. is improved. However, if printing is continued for a long time by this dry lithographic printing method using ordinary ink, the temperature on the plate surface will rise, and the ink will easily adhere to the non-image areas, causing stains. As a means to solve this problem, a method has been proposed in which various ink materials are modified with silicon compounds. For example, silicon-modified alkyd resin (Special Publication No. 51-10124, No. 51-22405)
No.), silicone-modified phenolic resin (Special Publication No. 1989-
10042, JP-A-52-62506), silicon-modified drying oil (JP-A-52-10041, JP-A-52-10042), silicone-modified cyclopentadiene resin (JP-A-52-10041, JP-A-52-10042)
-110705, 56-110706), etc. Although these materials are effective against stains, depending on the combination, the stain resistance may still be unsatisfactory, or when the background stain resistance is improved, the gloss of the printed matter deteriorates and the quality of the printed matter deteriorates. There are some drawbacks such as. On the other hand, the problem with ink is that the ink thickens during storage, resulting in poor workability. Furthermore, compared to general ink materials, siloxane compounds are
Since it is very expensive, it has disadvantages such as increasing the price of ink. The present inventors have repeatedly researched the relationship between the ink and the plate for ink compositions that are compatible with the above-mentioned dry lithographic printing method, and have found that the ink composition has excellent printability and storage stability that can be used practically in the dry lithographic printing method. In addition, we have achieved the invention of a dry lithographic printing ink that can produce printed matter with good printing effects. general formula (In the formula, H represents a hydrogen atom, R represents an alkyl group having 1 to 3 carbon atoms, m and n are integers of 0 or 1 or more, and m+n = 6.) 100 parts by weight of a 5-membered ring compound and/or a Diels-Alder adduct of the 5-membered ring compound [A], and at least one member selected from the group consisting of a drying oil and a fatty acid [B] 5
100 parts by weight of a hydrocarbon resin [] obtained by copolymerizing ~50 parts by weight with an acid-modified resin [] made by reacting 1 to 15 parts by weight of an unsaturated carboxylic acid or its anhydride [C]. , by heating and reacting 5 to 100 parts by weight of a phenol resin [D] obtained by condensation of a phenol having an alkyl substituent having 4 to 9 carbon atoms with formalin, to 100 parts by weight of the acid-modified resin []. The present invention relates to a dry lithographic printing ink containing the obtained resin [ ] as a vehicle component. The present invention will be described in further detail below. In the present invention, a five-membered ring compound having a conjugated double bond represented by the following general formula and/or its Diels-Alder adduct is used as the raw material component [A]. formula: (Here, R represents an alkyl group having 1 to 3 carbon atoms, H represents a hydrogen atom, m and n are integers of 0 or 1 or more, and m+n = 6.) Specifically, as a 5-membered ring compound. , cyclopentadiene and methylcyclopentadiene, and their Diels-Alder adducts such as dicyclopentadiene, cyclopentadiene-methylcyclopentadiene codimer, tricyclopentadiene, and mixtures thereof are industrially preferred. Of these, cyclopentadiene, dicyclopentadiene or mixtures thereof are particularly preferred. Although it is not necessary that [A] be of high purity, it is preferable that cyclopentadiene, dicyclopentadiene, or their alkyl-substituted derivatives be present in an amount of 80% by weight or more. For example, by thermally dimerizing cyclopentadiene and methylcyclopentadiene contained in the C5 fraction of high-temperature pyrolysis byproduct oil such as naphtha, dicyclopentadiene, dimethylcyclopentadiene, cyclopentadiene-methylcyclopentadiene, etc. After forming a mixture of codimer, cyclopentadiene-isoprene codimer, cyclopentadiene-piperylene codimer, etc., most of the C5 components such as C5 olefin and C5 paraffin are removed by distillation. The resulting concentrated fraction may be used. [B] used in the present invention is at least one component selected from the group consisting of drying oils and fatty acids. Drying oils include vegetable oils and animal fats with an iodine value of 120 or more, with drying vegetable oils such as linseed oil, tung oil, soybean oil, and dehydrated castor oil being particularly preferred. Moreover, boiled oil obtained by heat-treating these can also be used. Fatty acids include saturated or unsaturated synthetic fatty acids such as myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linoleic acid and eleostearic acid, and natural fatty acids such as linseed oil fatty acid and tall oil fatty acid. It is.
Furthermore, tall oil containing fatty acids as a main component can also be used as the fatty acid. Furthermore, there is no particular problem in using a mixture of two or more of the above components as [B]. In the present invention, hydrocarbon resin [I] is produced by thermally reacting 100 parts by weight of [A] with 5 to 50 parts by weight, preferably 10 to 40 parts by weight, of [B] without a catalyst. . Hydrocarbon resin [I] can be produced by heating the mixture of [A] and [B] above at 200 to 300°C for 30 minutes to 15 hours, preferably 1 to 7 hours. If the amount of [B] is less than the above range, sufficient effect will not be observed,
On the other hand, if it exceeds the above range, the softening point of the resin will decrease, which is not preferable. In addition, in order to obtain excellent solubility of the binder resin in paraffinic solvents, in addition to the above [A] and [B], α-
Olefin, preferably having 6 to 20 carbon atoms, α
- A linear and/or branched α-olefin that does not have an alkyl group at the β-position of the olefin,
[A] By adding 5 to 100 parts by weight, preferably 10 to 50 parts by weight, to 100 parts by weight, it becomes possible to produce a binder resin that satisfies the above requirements. The final resin produced by modifying the resin obtained by the thermal reaction of [A], [B] and the above α-olefin has extremely good solubility in paraffinic solvents, and the printing suitability of ink using this resin is extremely good. will also improve further. Commercially available pure monomers can be used as α-olefins, but single monomers or mixed monomers obtained by (1) so-called ethylene oligomerization or (2) thermal decomposition of paraffin wax can be used. You can also. Hydrocarbon resin [I] obtained as described above
is reacted with an unsaturated carboxylic acid or its anhydride [C], and [C] is usually a monomer having 3 to 32 carbon atoms, preferably 3 to 15 carbon atoms, and a polyunsaturated carboxylic acid or anhydride thereof. Typical of these are acrylic acid, methacrylic acid, maleic acid, maleic anhydride, tetrahydrophthalic acid and its anhydrides, fumaric acid, citraconic acid, itaconic acid and mixtures thereof or drying oil fatty acids, e.g. These include linseed oil fatty acids. Among these, maleic acid and maleic anhydride are preferred. The amount ratio of the unsaturated carboxylic acid or its anhydride used in the present invention is 1 to 15 parts by weight, preferably 1 to 10 parts by weight, based on 100 parts by weight of the hydrocarbon resin [I]. When the amount of unsaturated carboxylic acid or its anhydride is less than the above range, the amount of polar groups in the resulting resin is small, so the characteristics as a resin having polar groups are poor, and it cannot be used as a vehicle for ink. In this case, pigment dispersibility, ink fluidity, and printing effect deteriorate, which is undesirable. Moreover, if it exceeds the above range, the amount of polar groups is too large, solubility in solvents becomes poor, and discoloration and gelation of the resin tend to occur, which is not preferable.
Furthermore, when used in ink, the solubility in hydrocarbon solvents during varnishing becomes poor, and the fluidity of the ink and the gloss of printed matter become poor, which is undesirable. In addition, the above acid denaturation reaction is carried out at 100 to 300℃.
Preferably at a temperature within the range of 150 to 250°C, without a catalyst or in the presence of a known radical initiator, such as an organic peroxide, for 30 minutes to 15 hours, preferably 1 to 8 hours.
When using an unsaturated polycarboxylic acid or its anhydride, it can be carried out without a catalyst, and when using an unsaturated monocarboxylic acid or its anhydride, it can be carried out in the presence of a catalyst. , it is preferable to carry out the reaction. The acid-modified resin of the present invention [ ] can also be produced by the following general method. That is, when thermally polymerizing a mixture of [A] and [B] at a temperature of 200 to 300°C in the presence or absence of a solvent, an unsaturated carboxylic acid or its anhydride is added to the reaction system from the beginning or during the reaction. It can also be obtained by thermal polymerization. In addition, in the present invention, in order to adjust the solubility and softening point of the acid-modified resin [] obtained above, or to adjust the molecular weight of the resin [], the acid-modified resin [] has a carbon number of 6 or more. Esterification with preferably 8 to 22, particularly preferably 12 to 15, higher monohydric alcohols is also possible. The amount of alcohol used at that time is 0 per molar equivalent of carboxyl group in the acid-modified resin [].
~0.1 molar equivalent, or 0 to 2.0 molar equivalent per molar equivalent of acid anhydride group in the resin [].
The esterification reaction is carried out by heating and melting the acid-modified resin or by adding a monohydric alcohol to the solution in a hydrocarbon solvent such as benzene, toluene, or xylene, and then heating the resin at a temperature of 150 to 250°C for 30 minutes to 10 minutes. The reaction time is preferably 1 to 5 hours. In the present invention, the desired resin [] is obtained by further reacting the acid-modified resin [] with the alkyl-substituted phenolic resin [D]. The phenolic resin used in the present invention is obtained by condensing a phenol having an alkyl substituent having 4 to 9 carbon atoms with formalin, and the phenol mentioned here specifically includes p-tert-butylphenol, sec-butylphenol, p-tert-octylphenol, and nonylphenol are preferably used industrially, and unsubstituted phenol or phenolic resin such as cresol reduces the solubility of the resulting resin in high-boiling hydrocarbons. This is not desirable because it causes Further, if a substituted phenol resin having 10 or more carbon atoms is used, the softening point of the resin [] will be significantly lowered, which is not preferable. Alternatively, instead of reacting with a phenolic resin, formaldehyde and phenols may be reacted in the presence of an acid-modified resin with an acid or alkali as a catalyst or without a catalyst to obtain the desired phenolic resin-modified resin. I can do it. The amount of phenolic resin used for modification is in the range of 5 to 100 parts by weight, more preferably 10 to 50 parts by weight, per 100 parts by weight of the acid-modified resin. If the amount of phenolic resin is less than the above range, when an ink is prepared using the obtained modified resin vehicle, the fluidity of the ink and the gloss of the printed matter will be insufficient, and if the amount exceeds the above range, the ink solvent of the resin will be insufficient. Not only does this result in poor solubility, but it is also industrially uneconomical and undesirable. For the reaction, it is sufficient to mix and melt the acid-modified resin [] and the phenolic resin and heat the mixture at 150 to 250°C for 30 minutes to 10 hours, preferably 1 to 5 hours, but if necessary, an acid catalyst such as sulfuric acid may be used. , toluenesulfonic acid, Friedel-Crafts type catalysts, etc. can also be used. The resin [] obtained as described above preferably has a softening point of 100°C or higher, particularly 130°C or higher. If the softening point is lower than 100°C, when used as a printing ink, there will be a lot of misting, the drying speed will be extremely low, and blocking will easily occur, which is undesirable. Furthermore, if the softening point is lower than 100° C., the scumming resistance in dry lithographic printing will not be satisfactory. Furthermore, the resin [] has an acid value of 5 to 70, especially 5 to 70.
A range of 50 is preferred. If the acid value is less than the above range, the pigment dispersibility will be poor, and if the acid value exceeds the above range, the solubility in paraffin solvents will decrease, resulting in deterioration of the fluidity of the ink, or the ink may deteriorate during storage. becomes thicker. The resin made in this way [] has less thickening of the ink during storage, and the gloss of printed matter is good.
It is possible to obtain an ink for dry lithographic printing that satisfies both resistance to background smearing during printing by dry lithography. The method for preparing the dry lithographic printing ink of the present invention using the thus obtained resin [ ] as a vehicle component can be carried out according to any commonly known method. In the lithographic printing ink, 100 parts by weight of the resin obtained as described above is mixed with 5 to 150 parts by weight, preferably 10 to 100 parts by weight, of a medium oil length and/or long oil length alkyd resin.
parts by weight, dissolved in 50 to 200 parts by weight of a high boiling point hydrocarbon solvent at room temperature or under heating to reduce the viscosity at room temperature to 200 parts by weight.
It is obtained by blending varnish adjusted to ~600 poise with a face balance and kneading it. Drying oils or polymeric drying oils may also be used in place of or in addition to the alkyd resin. Furthermore, if necessary, the varnish (vehicle) can be prepared by heating it at 200 to 260°C to obtain the desired solubility. As the drying oil used in ink production, the drying oil used in the synthesis of resin can be similarly used, but for example, vegetable crude oil such as tung oil, linseed oil, soybean oil, oiticica oil, etc. Boil oil, No. 0 oil, No. 1 oil, No. 3 oil, No. 4 oil, No. 5 oil,
These include polymerized linseed oil such as No. 6 oil, No. 7 oil, No. 9 oil, and extra-sized varnish, and or similarly polymerized vegetable oils such as polymerized tung oil. Furthermore, medium-oil length and long-oil length alkyd resins include linoleic acid, linolenic acid, oleic acid,
One or a mixture of unsaturated fatty acids such as licanoic acid, eleostearic acid, and ricinolenic acid, stearic acid, palmitic acid, lauric acid, and capric acid, as well as glycerides and tall oil of these fatty acids. and glycols such as ethylene glycol, diethylene glycol and neopentyl glycol, polyols such as glycerin, trimethylolethane, trimethylolpropane, trishydroxyethyl isocyanurate, pentaerythritol, diglycerin, dipentaerythritol and tripentaerythritol, and anhydrous. It consists of at least one component from each group, such as phthalic acid, isophthalic acid, trimellitic acid, adipic acid, terephthalic acid, (anhydrous) maleic acid, (anhydrous) fumaric acid, etc., and has an oil length of 50% to 90%. It is an alkyd resin. The high-boiling hydrocarbon solvent used in the present invention has a boiling point range of 200 to 300°C, preferably 250 to 330°C, and an aromatic component content of 50% by weight or less, preferably 30% by weight or less. Furthermore, in the dry lithographic printing ink of the present invention, if scumming resistance is particularly required, organopolysiloxane may be added in an amount of 0.1 part by weight and 1 to 10 parts by weight. Adding organopolysiloxane in an amount exceeding the upper limit of this range is not preferable because it has disadvantages such as deterioration of ink fluidity, thickening during ink storage, and deterioration of gloss. Additionally, additives commonly used in dry lithographic printing inks can also be used. The present invention will be explained below with reference to Examples. Synthesis example 1 Dicyclopentadiene (DCPD) with purity of 97%
850 g and 250 g of linseed oil were placed in autoclave No. 2, and heated at 260° C. for 3.5 hours under stirring in a nitrogen atmosphere. After the heating was completed, the autoclave was cooled and the contents were distilled at 210° C./2 mmHg to obtain 920 g of resin (-1). The softening point of resin (-1) is
It was 136.5℃. 150 g of this resin (-1) was heated and melted at 200°C, 4.5 g of maleic anhydride was added, and the reaction was carried out for 4 hours with stirring to obtain an acid-modified resin (-1). (
-1) had a softening point of 147.0°C and an acid value of 13.5.
Subsequently, add p- to 100 g of acid-modified resin (-1)
Resol type phenolic resin obtained by condensation reaction of tert-octylphenol and formalin
Add 17.6g and react at 200℃ for 2 hours to determine the softening point.
Resin (-1) was obtained at 169.5°C and with an acid value of 12.7. Synthesis example 2 800g of DCPD with a purity of 97% and 200g of tall oil
The mixture was charged into an autoclave, reacted at 260°C for 6 hours, and treated in the same manner as in Synthesis Example 1 to obtain 925 g of resin (-2). The softening point of (-2) is
The temperature was 138.5℃. 150 g of this resin (-2) was heated and melted at 200°C, 7.5 g of maleic anhydride was added, and the reaction was carried out for 3 hours with stirring to obtain an acid-modified resin (-2). (
-2) had a softening point of 158.0°C and an acid value of 24.2.
Subsequently, 4.2 g of decanol was added to 100 g of acid-modified resin (-2) and heated and stirred at 200°C for 1 hour, followed by a resol type phenol resin obtained by a condensation reaction between p-nonylphenol and formalin.
20.2g was added and reacted at 200°C for 3 hours to obtain a resin (-2) with a softening point of 160.5°C and an acid value of 19.4. Synthesis Example 3 800g of DCPD with a purity of 97%, 100g of linseed oil, and 100g of 1-hexene were placed in the autoclave No. 2, and reacted at 280°C for 2 hours, and treated in the same manner as Synthesis Example 1 to produce 932g of resin (-3). Obtained. (
-3) had a softening point of 146.0°C. 150 g of this resin (-3) was heated and melted at 200°C, 4.5 g of maleic anhydride was added, and the reaction was carried out for 3 hours with stirring to obtain an acid-modified resin (-3). The softening point of acid-modified resin (-3) is 155.0℃ and the acid value is
It was 13.7. Subsequently, acid modified resin (-3)
To 100 g, 17.6 g of resol type phenolic resin obtained by condensation reaction of p-tert-octylphenol and formalin was added and reacted at 200°C for 2 hours to obtain a resin (-3) with a softening point of 175.0°C and an acid value of 12.2.
I got it. Varnish preparation example 1 300 g of resin [-1], 100 g of No. 9 linseed oil, and 260 g of Nippon Oil No. 3 solvent were placed in a four-necked flask with a stirrer, and heated while blowing N2 gas to raise the temperature to 150°C. While stirring, further raise the temperature to 180℃ and keep it warm for 30 minutes, then add No. 3 solvent.
28 g were added to obtain Varnish I with a viscosity of 540 poise at 25°C. 1,480 g of this varnish was placed in a four-necked flask with a stirrer, stirred and heated while blowing N2 gas, and heated to 140°C using ALCH (manufactured by Kawaken Fine Chemicals).
Gelling agent; diisopropyl monoacetylacetoaluminum) 5g was added to Nippon Oil No. 5 Solvent 15.
A gelling agent solution mixed with g was added thereto, and the temperature was further raised to 190°C and stirred for 1 hour to obtain a gel varnish. Varnish preparation example 2 305 g of resin [-2], 100 g of Chinese tung oil, 200 g of Nippon Oil No. 5 solvent, and 80 g of Nippon Oil No. 0 solvent were placed in a four-necked flask with a stirrer, heated while blowing N 2 gas, The mixture was stirred at 150°C, further raised to 180°C, kept at the temperature for 30 minutes, and 20g of No. 0 solvent was added to obtain a varnish whose viscosity at 25°C was adjusted to 480 poise. Pour 480g of varnish into a four-necked flask with a stirrer, stir and heat while blowing N2 gas.
At 140℃, add a gelling agent solution containing 5g of ALCH dissolved in 15g of No. 0 solvent, and further raise the temperature.
The mixture was heated to 190°C and stirred for 1 hour to obtain a gel varnish. Varnish preparation example 3 Put 380g of resin [-3], 140g of Arachide 5001 (Arakawa Chemical long oil long alkyd resin), and 150g of No. 0 solvent made by Nippon Oil into a four-necked flask with a stirrer, and while blowing N2 gas. Heat,
The mixture was stirred at 150°C, further raised to 180°C, kept at the temperature for 30 minutes, and 40g of No. 0 solvent was added to obtain a varnish whose viscosity at 25°C was adjusted to 420 poise. Pour 210g of varnish into a four-necked flask with a stirrer, stir and heat while blowing N2 gas.
Maintain the temperature at 90℃, add 20g of a gelling agent solution made by thoroughly mixing 3g of Octope Aluminum (gelling agent manufactured by Hope Pharmaceutical) with 17g of No. 0 solvent, heat and raise the temperature.
When the temperature reached 165°C, fluidity of the gel varnish was observed, so it was pumped out to obtain gel varnish-1. Furthermore, 215 g of varnish was placed in a four-necked flask with a stirrer, and stirred while blowing in N2 gas.
The mixture was heated to 140°C, and 8g of a gelling agent solution prepared by dissolving 2g of ALCH in 6g of No. 0 solvent was added thereto, and the temperature was further raised to 190°C and stirred for 1 hour to obtain gel varnish-2. Varnish preparation example 4 320 g of resin [-3] and 150 g of Arachide 6700 (Arakawa Chemical's medium-length alkyd resin) were placed in a 4-necked flask with a stirrer, heated while blowing N2 gas, and the mixture was heated to 150°C and stirring started. Then, continue to raise the temperature to 240℃, heat for 3 hours at the same temperature, add 167g of No. 3 solvent, and heat to 250℃.
A varnish with a viscosity of 568 poise at °C was obtained. 290g of varnish, 2.5g of ALCH and No. 3 solvent
A gel varnish was obtained using 7.5 g in the same manner as in Varnish Preparation Example 1. Comparative varnish adjustment example 1 Tamanol 358 (Arakawa Chemical rosin phenol resin) 250g, boiled oil 120g and No. 3 solvent 240
A comparative varnish was obtained in the same manner as in Varnish Preparation Example 1. still,
The viscosity of this varnish at 25°C was 600 poise.
Furthermore, a comparative gel varnish was obtained in the same manner as in Varnish Preparation Example 1 using 1380 g of comparative varnish, 4 g of ALCH, and 12 g of No. 3 solvent. Comparative varnish adjustment example 2 Nisseki Neopolymer 150 (Nippon Oil petroleum resin)
A comparative varnish was obtained in the same manner as in Varnish Preparation Example 1 using 300 g of linseed oil, 100 g of linseed oil, and 198 g of No. 3 solvent (viscosity at 25°C: 452 poise). 330 g of comparative varnish was placed in a four-necked flask with a stirrer, and a gelling agent solution prepared by thoroughly mixing 8 g of octope aluminum with 64 g of No. 3 solvent was added.
The temperature was raised while blowing N 2 gas, and when the gel varnish began to show fluidity at 168°C, it was pumped out to obtain a comparison gel varnish. Preparation of ink Ink was prepared by kneading the following blending ratio (weight ratio) using three rolls.

【表】【table】

【表】【table】

【表】【table】

【表】 これらのインキにつき評価した。すなわち、版
胴に電熱ヒーターを設置して版面温度を上昇でき
るように改造した印刷機に、シリコーンゴムより
なる非粘着層を有する乾式平版刷版を取り付け、
湿し水を供給することなく、版面温度を上昇させ
ながら印刷し、一定のベタ濃度で印刷物に地汚れ
が発生した際の版面温度を測定した。結果を以下
の表に示す。
[Table] These inks were evaluated. In other words, a dry lithographic printing plate with a non-adhesive layer made of silicone rubber was attached to a printing machine that had been modified to increase the temperature of the plate surface by installing an electric heater on the plate cylinder.
Printing was carried out while increasing the plate surface temperature without supplying dampening water, and the plate surface temperature was measured when scumming occurred on the printed matter at a constant solid density. The results are shown in the table below.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 一般式 (式中、Hは水素原子、Rは炭素数1〜3のアル
キル基を表わし、m、nは0または1以上の整数
で、m+n=6である。) で示される共役二重結合を有する5員環化合物お
よびまたは該5員環化合物のデイールズアルダー
付加物〔A〕100重量部と、乾性油および脂肪酸
よりなる群から選ばれる少なくとも1種〔B〕5
〜50重量部とを共重合させることにより得られる
炭化水素樹脂〔〕100重量部に対し、不飽和カ
ルボン酸またはその無水物〔C〕1〜15重量部を
反応させた酸変性樹脂〔〕に、炭素数4〜9の
アルキル置換基を有するフエノールとホルマリン
との縮合により得られるフエノール樹脂〔D〕を
該酸変性樹脂〔〕100重量部に対し、5〜100重
量部を加熱反応させることにより得られる樹脂
〔〕をワニス成分として含有することを特徴と
する乾式平版印刷用インキ。 2 樹脂〔〕100重量部、中油長およびまたは
長油長アルキツド樹脂5〜150重量部および芳香
族化合物含有量50重量%以下で、かつ沸点範囲
200〜350℃を有する炭化水素溶剤50〜200重量部
からなるワニスを含有する特許請求の範囲第1項
記載の乾式平版印刷用インキ。 3 樹脂〔〕100重量部、乾性油または重合乾
性油5〜150重量部および芳香族化合物含有量50
重量%以下で、かつ沸点範囲200〜350℃を有する
炭化水素溶剤50〜200重量部からなるワニスを含
有する特許請求の範囲第1項記載の乾式平版印刷
用インキ。 4 樹脂〔〕100重量部、中油長およびまたは
長油長アルキツド樹脂5〜150重量部、芳香族化
合物含有量50重量%以下で、かつ沸点範囲200〜
350℃を有する炭化水素溶剤50〜200重量部および
オルガノポリシロキサン0.1〜10重量部からなる
ワニスを含有する特許請求の範囲第2項記載の乾
式平版用印刷インキ。 5 樹脂〔〕100重量部、乾性油およびまたは
重合乾性油50〜150重量部、芳香族含有量50重量
%以下で、かつ沸点範囲200〜350℃を有する炭化
水素溶剤50〜200重量部およびオルガノポリシロ
キサン0.1〜10重量部からなるワニスを含有する
特許請求の範囲第3項記載の乾式平版印刷用イン
キ。
[Claims] 1. General formula (In the formula, H represents a hydrogen atom, R represents an alkyl group having 1 to 3 carbon atoms, m and n are integers of 0 or 1 or more, and m+n = 6.) 100 parts by weight of a 5-membered ring compound and/or a Diels-Alder adduct of the 5-membered ring compound [A], and at least one member selected from the group consisting of a drying oil and a fatty acid [B] 5
100 parts by weight of a hydrocarbon resin [] obtained by copolymerizing ~50 parts by weight with an acid-modified resin [] made by reacting 1 to 15 parts by weight of an unsaturated carboxylic acid or its anhydride [C]. , by heating and reacting 5 to 100 parts by weight of a phenol resin [D] obtained by condensation of a phenol having an alkyl substituent having 4 to 9 carbon atoms with formalin, to 100 parts by weight of the acid-modified resin []. An ink for dry planographic printing characterized by containing the obtained resin [ ] as a varnish component. 2 Resin [] 100 parts by weight, medium oil length and/or long oil length alkyd resin 5 to 150 parts by weight, aromatic compound content 50% by weight or less, and boiling point range
The dry lithographic printing ink according to claim 1, which contains a varnish consisting of 50 to 200 parts by weight of a hydrocarbon solvent having a temperature of 200 to 350°C. 3 Resin [] 100 parts by weight, drying oil or polymerized drying oil 5 to 150 parts by weight, and aromatic compound content 50 parts by weight
The dry lithographic printing ink according to claim 1, which contains a varnish consisting of 50 to 200 parts by weight of a hydrocarbon solvent having a boiling point range of 200 to 350°C. 4 Resin [] 100 parts by weight, medium oil length and/or long oil length alkyd resin 5 to 150 parts by weight, aromatic compound content 50% by weight or less, and boiling point range 200 to 200 parts by weight.
The printing ink for dry lithography according to claim 2, which contains a varnish consisting of 50 to 200 parts by weight of a hydrocarbon solvent having a temperature of 350°C and 0.1 to 10 parts by weight of an organopolysiloxane. 5 100 parts by weight of resin [], 50 to 150 parts by weight of drying oil and/or polymerized drying oil, 50 to 200 parts by weight of a hydrocarbon solvent having an aromatic content of 50% by weight or less and a boiling point range of 200 to 350°C, and organohydrogen The dry lithographic printing ink according to claim 3, which contains a varnish containing 0.1 to 10 parts by weight of polysiloxane.
JP57225964A 1982-12-24 1982-12-24 Ink for dry-type lithographic printing Granted JPS59117568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57225964A JPS59117568A (en) 1982-12-24 1982-12-24 Ink for dry-type lithographic printing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57225964A JPS59117568A (en) 1982-12-24 1982-12-24 Ink for dry-type lithographic printing

Publications (2)

Publication Number Publication Date
JPS59117568A JPS59117568A (en) 1984-07-06
JPH0345753B2 true JPH0345753B2 (en) 1991-07-12

Family

ID=16837639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57225964A Granted JPS59117568A (en) 1982-12-24 1982-12-24 Ink for dry-type lithographic printing

Country Status (1)

Country Link
JP (1) JPS59117568A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948920A (en) * 1996-12-11 1999-09-07 Elf Atochem North America, Inc. Epoxides from dicyclopentadiene--unsaturated oil copolymers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110706A (en) * 1980-02-06 1981-09-02 Nippon Zeon Co Ltd Production of novel modified resin
JPS56110705A (en) * 1980-02-06 1981-09-02 Nippon Zeon Co Ltd Production of novel modified resin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110706A (en) * 1980-02-06 1981-09-02 Nippon Zeon Co Ltd Production of novel modified resin
JPS56110705A (en) * 1980-02-06 1981-09-02 Nippon Zeon Co Ltd Production of novel modified resin

Also Published As

Publication number Publication date
JPS59117568A (en) 1984-07-06

Similar Documents

Publication Publication Date Title
JPS623187B2 (en)
US3957736A (en) Process for the preparation of a resin
US4317753A (en) Offset ink compositions
JPS623186B2 (en)
US4252699A (en) Novel varnish composition for offset printing inks
US4028291A (en) Process for the production of resins for printing ink
US5763565A (en) Process for making self-gelled resin solutions for ink formulations
JPH0345753B2 (en)
JP2000159867A (en) Resin for printing ink
AU606218B2 (en) Ink compositions for waterless plates
EP0407201B1 (en) Ink compositions for waterless plates
JP2719964B2 (en) Waterless lithographic ink composition
JP2661236B2 (en) Waterless lithographic ink composition
JPS6225182A (en) Ink composition for water-free litho printing
JP2789227B2 (en) Waterless lithographic ink composition
JP4924859B2 (en) Polyester resin, its production method, binder for printing ink and printing ink
JP2007045999A (en) Reaction product composition and printing ink containing the same and printed matter
GB2041380A (en) Varnish composition for offset printing inks
JPS6154832B2 (en)
JPH1121490A (en) Binder resin of vehicle for litho printing ink and its production
JPH1067832A (en) Esterified copolymer of di-or poly-unsaturated hydrocarbon
JP2949178B2 (en) Waterless printing ink binder
JPS6123823B2 (en)
JP2006335923A (en) Printing ink and its printed matter
JP2007031656A (en) Alkyd resin, printing ink comprising the same and printed matter using the same