JPH0345710A - Fiber material used for reinforcing soil - Google Patents

Fiber material used for reinforcing soil

Info

Publication number
JPH0345710A
JPH0345710A JP17707689A JP17707689A JPH0345710A JP H0345710 A JPH0345710 A JP H0345710A JP 17707689 A JP17707689 A JP 17707689A JP 17707689 A JP17707689 A JP 17707689A JP H0345710 A JPH0345710 A JP H0345710A
Authority
JP
Japan
Prior art keywords
soil
elongation
fiber
strength
sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17707689A
Other languages
Japanese (ja)
Inventor
Toshikazu Terakawa
寺川 寿和
Yoshiomi Hotta
堀田 義臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP17707689A priority Critical patent/JPH0345710A/en
Publication of JPH0345710A publication Critical patent/JPH0345710A/en
Pending legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain filament yarn for fiber-reinforced soil civil engineering work methods, having specific values of tensile characteristics of strength and elongation and capable of reinforcing soil formed from earth and sand, such as gravel, sand or silt. CONSTITUTION:The objective yarn having tensile characteristics of >=1.3g/d, preferably 1.5-18g/d strength at 2% elongation, >=4.5g/d, preferably 5-20g/d strength at 10% elongation and <=20%, preferably 1.5-15% breaking elongation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、礫、砂、シルトなどの土砂より形成される土
壌を補強する繊維材料に関するもので、さらに詳しくは
、擁壁や法面などの構築物築造や軟弱地盤の補強に際し
て、繊維材料と土砂とを、連続的、かつ合理的に混合し
て繊維補強土壌を作製するのに用いられる繊維材料に関
するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a fiber material for reinforcing soil formed from gravel, sand, silt, etc. The present invention relates to fiber materials that are used to create fiber-reinforced soil by continuously and rationally mixing fiber materials and earth and sand when constructing structures or reinforcing soft ground.

(従来技術) 土壌全体の力学的安定性を向上させる目的で土壌の中に
補強村を混入し、土壌にかかる自重や外力によって発生
する土壌内部のせん断変形を抑制し、土壌の見掛は強度
を向上させようとする土壌補強工法は、数多く開発され
、実施されている。
(Prior technology) In order to improve the mechanical stability of the soil as a whole, reinforcing particles are mixed into the soil, and the shear deformation inside the soil that occurs due to the soil's own weight and external forces is suppressed, and the apparent strength of the soil is reduced. Many soil reinforcement methods have been developed and implemented to improve soil quality.

土壌補強工法の中で、連続性糸条の繊維材料を用いた例
として、特開昭55−167170号は、噴射ノズルを
用い、高圧水または、圧縮空気を与えることによって、
連続長繊維例えば、ポリエステルフィラメントを繰り出
して施工面に吹き付け、同時に土砂を圧縮空気または、
高速ヘルドコンベアーなどにより搬送し、施工面上で、
ポリエステルフィラメントと混合して逐次、締め固めを
行い、これを所要厚みになるまで、積層することで、補
強土を作製するという土壌補強工法を開示している。
As an example of using a continuous thread fiber material in the soil reinforcement method, Japanese Patent Application Laid-open No. 167170/1983 describes a soil reinforcement method that uses a jet nozzle to apply high pressure water or compressed air.
Continuous long fibers, such as polyester filaments, are drawn out and sprayed onto the construction surface, and at the same time earth and sand are removed with compressed air or
Conveyed using a high-speed held conveyor, etc., on the construction surface,
It discloses a soil reinforcement method in which reinforced soil is created by mixing it with polyester filament, compacting it sequentially, and layering it until the required thickness is reached.

また、第3回国際ジオテキスタイル会議(1986、ウ
ィーン、オーストリア)でのE、ルフレープらの報告“
連続長繊維による土の補強“では、作製された補強土の
力学的特性を評価する方法として三軸圧縮試験を用いて
の評価法を開示している。
In addition, a report by E. Leflep et al. at the 3rd International Geotextile Conference (1986, Vienna, Austria) “
"Reinforcing soil with continuous long fibers" discloses an evaluation method using a triaxial compression test as a method for evaluating the mechanical properties of the reinforced soil produced.

すなわち、上述の方法で作製された補強土の力学特性と
して、50〜330dTexのポリエステルマルチフィ
ラメントを用いて、乾燥砂に対する繊維混率が0.2重
量%において、134〜356 KPa/cfflの粘
着力を有していると言うもので、無補強の土砂(約10
 KPa/c+11)に比較して大きな差異があること
を示したものである。この該工法における長繊維と、土
粒子との絡み合いで双方の間に発生してくる摩擦力(疑
似粘着力)の大きさは、長繊維と土砂とがいかに三次元
的にかつ、緻密に交絡しているかという、いわゆる土砂
と繊維との間の表面摩擦力に依存する面と、補強材料自
身の機械的特性に依存する面の双方に関係しているもの
である。
That is, as for the mechanical properties of the reinforced soil produced by the above method, using polyester multifilament of 50 to 330 dTex, the adhesion strength of 134 to 356 KPa/cffl was obtained at a fiber blend ratio of 0.2% by weight to dry sand. It is said that it has some soil and sand (approximately 10
This shows that there is a large difference compared to KPa/c+11). In this construction method, the magnitude of the frictional force (pseudo adhesive force) generated between long fibers and soil particles due to their entanglement is determined by how three-dimensionally and densely entangled the long fibers and soil particles are. This is related to both the aspect that depends on the so-called surface friction force between the earth and sand and the fibers, and the aspect that depends on the mechanical properties of the reinforcing material itself.

(発明が解決しようとする課題) ところが、前述の特開昭55−167170号では、土
壌補強工法における施ニジステムの一例について述べて
おり、E、ルフレーブらの報告も、繊維補強土に発現す
る疑似粘着力を一般的な衣料用ポリエステルフィラメン
トの例で混率依存性を示すなどの繊維による補強理論の
概念について述ぺているにすぎず、補強性能に大きな影
響を及ぼす繊維材料の機械的特性について何ら開示され
ていない。この為、該工法の実施に際して好適な繊維材
料の選択指針がないことが、該工法の普及拡大上、解決
すべき大きな課題となっていた。
(Problem to be Solved by the Invention) However, the above-mentioned Japanese Patent Application Laid-Open No. 167170/1989 describes an example of the reinforcement system in the soil reinforcement method, and the report by E. Leflaive et al. It merely describes the concept of reinforcement theory using fibers, such as showing adhesion dependence on blending ratio using the example of polyester filament for general clothing, and does not provide any information on the mechanical properties of fiber materials that have a large effect on reinforcement performance. Not disclosed. For this reason, the lack of guidelines for selecting suitable fiber materials when implementing this method has become a major problem to be solved in order to spread the method.

(課題を解決するための手段) 本発明者らは、前述の課題を解決し、該工法に用いる繊
維材料の適性な機械的特性範囲を明確化することにより
、これまで明らかにされたことがない、より高度な補強
性能を有する補強土を構築するに好適な繊維材料の特定
化を威し得たものである。すなわち、本発明は、2%伸
張強度が1.3g/d以上、10%伸張強度が4.58
/d以上でかつ、破断伸度が20%以下の引張特性を有
する連続性繊維糸条である。本発明の目的を満足させる
ためには、低速度引張試験(補強土の三軸圧縮試験の圧
縮変形速度と同一の変形速度:相対速度1%/分)にお
ける、2%伸張強度がIJg/d以上、1.0%伸長強
度が4.5 g/d以上でかつ破断伸度が20%以下の
引張特性を有した連続性繊維糸条であることが必須であ
る。好ましい引張特性値としては、2%伸張強度が、1
.3〜18g/d10%伸張強度が4.5〜20g/d
の範囲でかつ破断伸度が1.5〜20%の範囲であり、
より好ましくは、2%、10%伸張強度がそれぞれ1.
5〜18g/d、5〜20g/dでかつ破断伸度が1.
5〜15% の範囲を有したものである。第1表、第2
表に示す如く、2%、10%伸張強度がそれぞれ、1.
3.4.5g/d未満、破断伸度が20%より大きな糸
条では、良好な補強土性能(総合評価)を得ることがで
きない。
(Means for Solving the Problems) The present inventors solved the above-mentioned problems and clarified the appropriate mechanical property range of the fiber material used in the method, thereby solving the problems that have been revealed so far. This made it possible to identify fiber materials suitable for constructing reinforced soil with higher reinforcement performance. That is, the present invention has a 2% tensile strength of 1.3 g/d or more and a 10% tensile strength of 4.58 g/d.
It is a continuous fiber yarn having a tensile property of /d or more and a breaking elongation of 20% or less. In order to satisfy the purpose of the present invention, the 2% tensile strength in a low-speed tensile test (the same deformation rate as the compressive deformation rate in the triaxial compression test of reinforced soil: relative speed 1%/min) must be IJg/d. As mentioned above, it is essential that the continuous fiber yarn has tensile properties such that the 1.0% elongation strength is 4.5 g/d or more and the elongation at break is 20% or less. Preferred tensile property values include a 2% tensile strength of 1
.. 3~18g/d10% elongation strength is 4.5~20g/d
and the elongation at break is in the range of 1.5 to 20%,
More preferably, the 2% and 10% elongation strengths are each 1.
5 to 18 g/d, 5 to 20 g/d, and the elongation at break is 1.
It has a range of 5 to 15%. Table 1, 2
As shown in the table, the 2% and 10% elongation strengths are 1.
If the yarn has a breaking elongation of less than 3.4.5 g/d and a breaking elongation of more than 20%, good reinforced soil performance (overall evaluation) cannot be obtained.

補強上性能は、一般に三軸圧縮試験における最大主応力
差(ピーク時応力)とピーク時歪みの2つのファクター
で一次的に表わすことができ、最大主応力差が大きい程
、またピーク時歪みが適度に小さい値であることが良い
とされている。
Reinforcement performance can generally be primarily expressed by two factors: the maximum principal stress difference (stress at peak) and strain at peak in a triaxial compression test.The larger the difference in maximum principal stress, the greater the strain at peak. It is said that a reasonably small value is good.

本発明者らの詳細な実験結果によれば、第1図に示すご
とく、最大主応力差(σ1−σ3)□や(補強上の三軸
圧縮試験で求められる最大圧縮応力、すなわち、土壌に
かかる自重や外力によって発生する土壌内部のせん断変
形に抵抗して発現する最大応力、ここでσ3は圧力水か
らの側圧、σ1は、σ3を作用させながらの軸応力であ
る。)は、繊維材料の素材種にかかわらず、繊維材料の
10%伸張強度に強く依存しており、該強度が大きい程
、最大主応力差が大きく発現することを初めて見い出し
た。これは10%伸張強度が、補強土の最大圧縮応力と
、強い相関性があることを示すものであり、実使用に耐
える性能である為には、4.5g/d以上あることが、
必須であることを究明した。
According to the detailed experimental results of the present inventors, as shown in Figure 1, the maximum principal stress difference (σ1-σ3) The maximum stress developed by resisting the shear deformation inside the soil caused by its own weight and external force (where σ3 is the lateral pressure from the pressurized water, and σ1 is the axial stress while applying σ3) is the fibrous material. It has been discovered for the first time that, regardless of the material type, it strongly depends on the 10% elongation strength of the fiber material, and the greater the strength, the greater the maximum principal stress difference. This shows that the 10% tensile strength has a strong correlation with the maximum compressive stress of the reinforced soil, and for the performance to withstand actual use, it must be 4.5 g/d or more.
We found out that it is essential.

次に、第2図、第3図に示すように、ピーク時歪み(補
強上の三軸圧縮試験で求められる最大圧縮応力を示す時
の圧縮歪み率、すなわち、せん断変形に抵抗して発現す
る最大応力時の歪みで、土壌の耐変形性能を示すファク
ターである。)は、繊維材料の2%伸張強度と、破断伸
度に強く依存しており、該強度が大きい程、該伸度が小
さい程、補強上の耐変形性能が向上することを初めて見
い出した。そして、実使用に耐える性能であるためには
、それぞれ、1.3 g/d以上、20%未満であるこ
とが必須であることを究明した。
Next, as shown in Figures 2 and 3, the peak strain (compressive strain rate at which the maximum compressive stress determined by the triaxial compression test on the reinforcement is shown), that is, the rate of compressive strain that occurs while resisting shear deformation The strain at maximum stress, which is a factor that indicates the deformation resistance of soil, is strongly dependent on the 2% tensile strength of the fiber material and the elongation at break, and the higher the strength, the lower the elongation. It was discovered for the first time that the smaller the size, the better the deformation resistance on reinforcement. It was determined that in order to have performance that can withstand actual use, it is essential that the content be 1.3 g/d or more and less than 20%, respectively.

本発明に言う連続性繊維糸条とは、−船釣に゛ヤーン゛
の名称で呼ばれている糸条の総称であるが前述したごと
く土砂との接触表面積を大きくし、土砂との摩擦力を大
きくするために、糸条の形態としては、マルチフィラメ
ントであることが好ましい。
The continuous fiber thread referred to in the present invention is a general term for threads called "yarn" in boat fishing. In order to increase the size of the yarn, it is preferable that the yarn be in the form of a multifilament.

繊維の種類としては、例えば、ポリアミド系、ポリエス
テル系、ポリオレフィン系、ポリアクリル系、芳香族ポ
リアミド系の合成繊維や炭素繊維などであり、特に限定
するものではないが、土中耐久性の面からポリエステル
系、ポリアクリル系合成繊維が特に望ましい。また、本
発明において用いられる土砂は、日本統一土質分類によ
る礫(G)礫質上(CF)、砂(S)、砂質土(SF)
などが最適である。
The types of fibers include, for example, synthetic fibers such as polyamide, polyester, polyolefin, polyacrylic, and aromatic polyamide, and carbon fiber, and are not particularly limited, but from the standpoint of durability in soil, Polyester-based and polyacrylic-based synthetic fibers are particularly desirable. In addition, the soil used in the present invention is gravel (G), gravelly (CF), sand (S), and sandy soil (SF) according to the Japan Unified Soil Classification.
etc. is optimal.

次いで、実施例を用いて、本発明の効果を詳細に説明す
る。
Next, the effects of the present invention will be explained in detail using Examples.

(実施例1〜2)(比較例1〜3) 補強土性能評価用の土砂と繊維が三次元的に交絡した繊
維補強土を作製するために、回転台に設置された内径1
0cIIlφ×高さ30cmのプラスチックモールドの
中に、予め乾燥させた砂(日本統一土質分類の°’ S
 −M ”粒子径75 um 〜2000μm )と、
第1表に示す連続性繊維糸条と、水(乾燥砂に対して1
0重量%混合)を同時にかつ、連続的に投入し、逐次、
押し固めながら、10cmφ×20cmHの三軸圧縮試
験用供試体を作製した。この時の繊維混率は、0.3重
量%とした。供試体を側圧1.0 kg−f/ d、圧
縮相対速度を1%/分の条件下で三軸圧縮試験を実施し
、応力〜歪み曲線を求めて補強土性能(最大主応力差、
およびピーク時歪み率)を測定した。その結果を実施例
1と同条件下で測定した比較例1〜3と対比して第1表
に示す。結果が示すごとく繊維の引張特性が補強土性能
に大きく関与していることは明白である。同一素材、同
一デニール、同一混率であっても、示す補強土性能は様
々であり、土砂を混合する繊維物性をいかに選択するの
かがこの繊維補強土工法を効率的に実施して行く上での
ポイントであることは明らかであり、本発明の物性を備
えた繊維材料を用いることにより、優れた補強土を構築
することが可能であることは、明白である。
(Examples 1-2) (Comparative Examples 1-3) In order to produce fiber-reinforced soil in which soil and fibers are three-dimensionally intertwined for evaluation of reinforced soil performance, an inner diameter 1
Pre-dried sand (°' S of the Japan Unified Soil Classification
-M” particle size 75 um to 2000 μm),
Continuous fiber yarn shown in Table 1 and water (1% to dry sand)
0% by weight mixture) was added simultaneously and continuously, and sequentially,
While compacting, a 10 cmφ x 20 cmH triaxial compression test specimen was prepared. The fiber mixing ratio at this time was 0.3% by weight. A triaxial compression test was conducted on the specimen under the conditions of a lateral pressure of 1.0 kg-f/d and a relative compression speed of 1%/min, and the stress-strain curve was determined to determine the reinforced soil performance (maximum principal stress difference,
and peak strain rate) were measured. The results are shown in Table 1 in comparison with Comparative Examples 1 to 3, which were measured under the same conditions as Example 1. As the results show, it is clear that the tensile properties of fibers are greatly involved in the performance of reinforced soil. Even with the same material, same denier, and the same mixing ratio, the performance of reinforced soil varies, and how to select the physical properties of the fibers used to mix soil and sand is the key to efficiently implementing this fiber-reinforced soil method. It is clear that this is a key point, and that it is possible to construct excellent reinforced soil by using the fiber material having the physical properties of the present invention.

(実施例3〜6)(比較例4〜7) 実施例1と同じ要領で、表2の繊維素材を用いて三軸圧
縮試験用供試体を作製し、補強土性能を測定した。各種
素材、各種デニールでの実験結果であるが、表2が示す
ごとく、補強土性能が繊維の引張特性に強く依存してい
ることは明白である。
(Examples 3 to 6) (Comparative Examples 4 to 7) In the same manner as in Example 1, specimens for triaxial compression tests were prepared using the fiber materials shown in Table 2, and the reinforced soil performance was measured. As shown in Table 2, the experimental results using various materials and various deniers clearly show that the performance of reinforced soil strongly depends on the tensile properties of the fibers.

(発明の効果) 繊維材料を用いて補強土を作る繊維補強土工法において
本発明の繊維材料を用いることによって実施例に示すご
とく補強土性能がすぐれた繊維補強土を作り出すことが
可能である。高性能な引張特性を有した繊維材料を用い
ることによって施工時に補強上の積層厚みを小さくする
ことが出来たり、高層や急勾配への土木構造物の築造等
が可能となる。また、同一補強性能を得るに際しては、
従来技術と比較して繊維混率を低減させることが可能で
あり、このことは、施工能力の増大、コスト合理化につ
ながるもので、繊維補強土工法の普及拡大に貢献すると
ころ大である。
(Effects of the Invention) By using the fiber material of the present invention in a fiber reinforced earth construction method that uses fiber materials to create reinforced soil, it is possible to create fiber reinforced soil with excellent reinforced soil performance as shown in Examples. By using fiber materials with high performance tensile properties, it is possible to reduce the laminated thickness for reinforcement during construction, and it becomes possible to construct civil engineering structures on high-rises and steep slopes. In addition, when obtaining the same reinforcement performance,
It is possible to reduce the fiber blend ratio compared to conventional technology, which leads to an increase in construction capacity and cost rationalization, and will greatly contribute to the spread of fiber-reinforced earthwork methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は、それぞれ、最大主応力差と
10%伸張強度、ピーク時歪と2%伸張強度、ピーク時
歪と破断伸度との関係を示したグラフである。
Figures 1, 2, and 3 are graphs showing the relationships between maximum principal stress difference and 10% elongation strength, peak strain and 2% elongation strength, and peak strain and elongation at break, respectively. .

Claims (1)

【特許請求の範囲】[Claims] 2%伸張強度が1.3g/d以上、10%伸張強度が、
4.5g/d以上でかつ、破断伸度が、20%以下の引
張特性を有する繊維補強土工法用連続性繊維糸条。
2% elongation strength is 1.3 g/d or more, 10% elongation strength is
A continuous fiber yarn for fiber-reinforced earthworks having tensile properties of 4.5 g/d or more and a breaking elongation of 20% or less.
JP17707689A 1989-07-11 1989-07-11 Fiber material used for reinforcing soil Pending JPH0345710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17707689A JPH0345710A (en) 1989-07-11 1989-07-11 Fiber material used for reinforcing soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17707689A JPH0345710A (en) 1989-07-11 1989-07-11 Fiber material used for reinforcing soil

Publications (1)

Publication Number Publication Date
JPH0345710A true JPH0345710A (en) 1991-02-27

Family

ID=16024706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17707689A Pending JPH0345710A (en) 1989-07-11 1989-07-11 Fiber material used for reinforcing soil

Country Status (1)

Country Link
JP (1) JPH0345710A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6397520B1 (en) 1997-12-19 2002-06-04 E. I. Du Pont De Nemours And Company Method of supporting plant growth using polymer fibers as a soil substitute
US8173919B2 (en) 2006-07-03 2012-05-08 Autoliv Development Ab Seat belt buckle fastening detector and seat belt buckle
CN104032727A (en) * 2014-06-09 2014-09-10 河海大学 Clay with high unconfined compressive strength

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6397520B1 (en) 1997-12-19 2002-06-04 E. I. Du Pont De Nemours And Company Method of supporting plant growth using polymer fibers as a soil substitute
US6555219B2 (en) 1997-12-19 2003-04-29 E. I. Du Pont De Nemours And Company Method of supporting plant growth using polymer fibers as a soil substitute
US8173919B2 (en) 2006-07-03 2012-05-08 Autoliv Development Ab Seat belt buckle fastening detector and seat belt buckle
CN104032727A (en) * 2014-06-09 2014-09-10 河海大学 Clay with high unconfined compressive strength

Similar Documents

Publication Publication Date Title
Al-Refeai Behavior of granular soils reinforced with discrete randomly oriented inclusions
JP4633256B2 (en) A fiber having an improved sinusoidal shape, concrete reinforced thereby, and a related method.
US5628822A (en) Graded fiber design and concrete reinforced therewith
US5456752A (en) Graded fiber design and concrete reinforced therewith
US20030203204A1 (en) High strength polyethylene fibers and their applications
GB1582945A (en) Manufacture of articles made from a water hardenable mass and a reinforcing element
AU2008236152A1 (en) Polypropylene fiber, method of producing the same and utilization of the same
JPH01271513A (en) Laminate unwoven cloth
Peled et al. Treatments of polypropylene fibres to optimize their reinforcing efficiency in cement composites
JPH0345710A (en) Fiber material used for reinforcing soil
KR100971114B1 (en) Reinforce fiber of concrete
Peled et al. Woven fabric reinforcement of cement matrix
Nosraty et al. Intraply hybrid composites based on basalt and nylon woven fabrics: tensile and compressive properties
Czigany et al. Determination of the damage zone size in textile fabric reinforced polypropylene composites by locating the acoustic emission
Naamian High Stpength Fiber Reinforced Cement Composites
CN210194094U (en) Geotextile
KR100318987B1 (en) Geogrid and polyester yarn being suitable to geogrid and preparation thereof
JP2007169836A (en) Sheet for block mat
Barhum et al. Effect of short fibres on fracture behaviour of textile reinforced concrete
JPH08246288A (en) Thick woven fabric sheet for engineering work
CN210062283U (en) High-strength capital construction geotextile
JP2930842B2 (en) Waterproof / defense fabric
Baykal et al. Comparison of woven and nonwoven geotextile reinforcement using stress path tests
JPS607379Y2 (en) Pine for civil engineering work
CN208052717U (en) A kind of tensile type geotextiles