JPH0345610A - Production of polychloroprene - Google Patents

Production of polychloroprene

Info

Publication number
JPH0345610A
JPH0345610A JP18026989A JP18026989A JPH0345610A JP H0345610 A JPH0345610 A JP H0345610A JP 18026989 A JP18026989 A JP 18026989A JP 18026989 A JP18026989 A JP 18026989A JP H0345610 A JPH0345610 A JP H0345610A
Authority
JP
Japan
Prior art keywords
polymer
polymerization
catalyst
chloroprene
polychloroprene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18026989A
Other languages
Japanese (ja)
Other versions
JP2758657B2 (en
Inventor
Hiroshi Yamakawa
浩 山川
Shinji Ozoe
真治 尾添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP18026989A priority Critical patent/JP2758657B2/en
Publication of JPH0345610A publication Critical patent/JPH0345610A/en
Application granted granted Critical
Publication of JP2758657B2 publication Critical patent/JP2758657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To produce polychloroprene having a high mol.wt. and a low degree of dechlorination in high yields by using a specified transition metal halide as a polymerization catalyst. CONSTITUTION:Polychloroprene is obtained by polymerizing chloroprene by using a metal halide of the formula: MXn (wherein M is a transition metal selected from among group IV-b, Vb and VIb metals, desirably Ti, Zr, V, Nb, Ta, Cr, W or the like, X is a halogen atom, and n is the number of the halogen atoms), e.g. VCl3, as a catalyst in optionally a fully dehydrated chlorinated aliphatic hydrocarbon solvent in an inert atmosphere desirably at 0 deg.C or below, more desirably at -30 to -80 deg.C for usually 4-20hr. The amount of the catalyst used is 10<-6>-10<-2>, desirably 10<-5>-10<-4> in terms of a molar ratio to the chloroprene.

Description

【発明の詳細な説明】 [産業上の利用分野] 乳化重合法により工業的に製造されているクロロプレン
は機械、自動車産業等でベルト、ホース、種々の成形体
、ワイヤー及びケーブルの被覆材、建築用シール材、ガ
スケット、接着剤等の広範な用途に用いられる。従って
、本発明の新規な重合方法により製造されたポリクロロ
プレンも、同様に上記の種々の分野への利用が可能であ
ると考えられる。
[Detailed Description of the Invention] [Industrial Field of Application] Chloroprene, which is industrially produced by emulsion polymerization, is used in the machinery and automobile industries, etc., for belts, hoses, various molded bodies, coating materials for wires and cables, and construction materials. Used in a wide range of applications including sealants, gaskets, and adhesives. Therefore, it is thought that polychloroprene produced by the novel polymerization method of the present invention can also be used in the various fields mentioned above.

[従来の技術、及び発明が解決しようとする課題]現在
ポリクロロプレンは乳化重合法により製造されている。
[Prior Art and Problems to be Solved by the Invention] Polychloroprene is currently produced by an emulsion polymerization method.

しかし、乳化重合法ではポリマーの分子構造の制御が十
分に行えないという問題点があった。従って、ミクロ構
造を制御する為に、クロロプレンのイオン重合法の検討
が従来から行われてきた。
However, the emulsion polymerization method has a problem in that the molecular structure of the polymer cannot be sufficiently controlled. Therefore, in order to control the microstructure, studies have been conducted on ionic polymerization of chloroprene.

例えばクロロプレンのアニオン重合の検討が以下に述べ
る触媒系で検討されている。
For example, anionic polymerization of chloroprene has been investigated using the catalyst system described below.

エルサリムスキイ等はアルキルリチウム系による重合を
検討した(例えば、ヴイソコモレキュラニエ・ソエディ
ネニア(Vysokollol、5oyed、)誌、第
6−7巻、1294頁、1964年)。しかし、この触
媒系では、単量体の転化率が7〜9%で重合が停止して
いる。
investigated polymerization using alkyllithium systems (for example, Vysokollol, 5oyed, Vol. 6-7, p. 1294, 1964). However, in this catalyst system, polymerization stops at a monomer conversion rate of 7 to 9%.

クラスノーセルスカヤ等はアルキルリチウム−ヨウ化リ
チウム系(例えば、ヴイソコモレキュラニエーソエディ
ネニア(Vysokomol、5oyed、)誌、A−
9(4)巻、第851頁、1967年)、アルキルリチ
ウム−ヨウ化リチウム−アルキルマグネシウム系(例え
ば、ヴイソコモレキュラーニエ・ソエディネニア(Vy
sokoaol 、5oyed、)誌、第6−9巻、1
637頁、1964年)を検討している。これらの触媒
系ではポリマーの収率は30〜80%まで向上したが、
生成したポリマーは不溶物である。
Krasnoselskaya et al.
9(4), p. 851, 1967), alkyllithium-lithium iodide-alkylmagnesium systems (e.g.
Sokoaol, 5oyed,), Volumes 6-9, 1
637 pages, 1964). With these catalyst systems, the polymer yield increased to 30-80%, but
The resulting polymer is insoluble.

この触媒系の検討はエルサリムスキイも行っている(例
えば、ドクラディ・アカデミイ・ナウク、(Dokra
dy Akade*ii Nauk)、5SSR誌)、
第169−−1巻、114頁、1961年)。
This catalyst system has also been studied by Yerushalimsky (for example, Dokrady Academy Nauk,
dy Akade*ii Nauk), 5SSR Magazine),
169-1, p. 114, 1961).

また、ア、ルキルマグネシウムーアルキルマグネシウム
イオダイド系はグズマンにより検討された(例えば、ヴ
イソコモレキュラーニエ・ソエディネニア(Vysok
oa+ol 、5oyed、)誌、第A−19(12)
巻、2793頁、1977年)。しかし、この触媒系で
は、クロロプレンの塩素の脱離による触媒の不活性化が
起こるという問題点があった。
In addition, the alkylmagnesium-alkylmagnesium iodide system was investigated by Guzman (for example, Vysok
oa+ol, 5oyed, ) magazine, No. A-19(12)
Vol. 2793, 1977). However, this catalyst system had a problem in that the catalyst was deactivated due to elimination of chlorine from chloroprene.

ボシュニアコフは変性Ziegler型触媒による重合
を検討している(例えば、アリュミャンスキイ・キミチ
ェスキア・ジュルナール(A「1Khim、Zh)誌、
第26−8巻、696頁、1973年)。しかし、生成
物は溶媒に不溶なゲル状ポリ→−である。
Bosniakov studied polymerization using modified Ziegler-type catalysts (for example, Alyumyansky Kimicheskia Jurnal (A "1Khim, Zh"),
26-8, p. 696, 1973). However, the product is a gel-like poly→- which is insoluble in the solvent.

また、アルキルアルミニウムーナフテン酸コバルト系が
カリュジュナイアにより検討されている(アゼルヴエジ
ャンスキイ・キミチェスキイ・ジュルナール(Azer
b、Khim、Zh、)誌、第3巻、89頁、1967
年)。ポリマーの収率は最大でも14%と小さく重合時
間の延長により収率の変化が見られず、触媒の失活が起
こるという問題があった。
In addition, a cobalt alkyl aluminum naphthenate system is being investigated by Kalyzhnaia (Azervezhanskii Kimicheskii Jurnal).
b, Khim, Zh,), Vol. 3, p. 89, 1967
Year). The yield of the polymer was as small as 14% at most, and no change in the yield was observed as the polymerization time was extended, resulting in the problem of deactivation of the catalyst.

カチオン重合では、クレバンスキイ等によるルイス酸を
用いた検討例があるが生成物は低分子量の液状物である
( lzv、Akad、Nauk、Ara+、SSR,
Khlm、。
In cationic polymerization, there are studies using Lewis acids by Klebansky et al., but the product is a low molecular weight liquid (lzv, Akad, Nauk, Ara+, SSR,
Khlm,.

Nauk誌、第13巻、147頁、1960年)[課題
を解決するための手段] 以上のように、従来検討されてきたイオン重合触媒は、
クロロプレン単量体中の塩素の脱離による触媒の失活、
触媒活性が小さく高分子量化が難かしい、溶媒に不溶な
ゲル状重合体を生成しやすい、或いは、低収率である等
の種々の問題点を有していた。
(Nauk Magazine, Vol. 13, p. 147, 1960) [Means for Solving the Problems] As mentioned above, the ionic polymerization catalysts that have been conventionally studied are:
Deactivation of the catalyst by elimination of chlorine in the chloroprene monomer,
It has various problems, such as low catalytic activity and difficulty in increasing the molecular weight, easy formation of gel-like polymers that are insoluble in solvents, and low yields.

上記、問題点を解決するため鋭意検討を行った結果、ク
ロロプレンを、下記の一般式(1)%式%(1) (ココテ、Mは周期表第IVb、Vb、及び、VIbを
族から選ばれる遷移金属を表し、XはF、Cl、、Br
及びlから選ばれるハロゲン原子を表し、nは該ハロゲ
ン原子の総数を表す)で表される金属ハライドを重合触
媒として重合することにより高分子量、かつ、単量体の
塩素の脱離傾向が小さい新規なりロロプレンの重合方法
を発明するに至った。
As a result of intensive studies to solve the above-mentioned problems, we found that chloroprene has the following general formula (1)% formula (1) (Kokote, M is selected from groups IVb, Vb and VIb of the periodic table) X represents a transition metal such as F, Cl, Br
and l represents a halogen atom, and n represents the total number of halogen atoms). By polymerizing the metal halide as a polymerization catalyst, the polymer has a high molecular weight and a small tendency to eliminate chlorine as a monomer. A new method for polymerizing roloprene was invented.

本発明で用いる金属ハライド触媒としては、周期表第1
Vb族、vb族、及びVIbを族の金属のハロゲン化物
を用いることが出来るが、好ましくは、IVb族のTi
(チタン)、Zr(ジルコニウム)、vb族のV(バナ
ジウム)、Nbにオブ)、Ta(タンタル)、及び、■
b族のCr(クロム)、W(タングステン)に属する金
属のハロゲン化物を用いるのが好ましく、四塩化チタン
、四臭化チタン、四ヨウ化チタン、四フッ化チタン、四
塩化ジルコニウム、四臭化ジルコニウム、四ヨウ化ジル
コニウム、四フッ化ジルコニウム、三塩化バナジウム、
三臭化バナジウム、三ヨウ化バナジウム、三フッ化バナ
ジウム、五塩化バナジウム、五臭化バナジウム、五ヨウ
化バナジウム、五フッ化バナジウム、五塩化ニオブ、五
臭化ニオブ、五ヨウ化ニオブ、五フッ化ニオブ、五塩化
タンタル、五臭化タンタル、五ヨウ化タンタル、五フッ
化タンタル、三塩化クロム、三臭化クロム、三ヨウ化ク
ロム、三フッ化クロム、六塩化タングステン、六臭化タ
ングステン、六ヨウ化タングステン、六フッ化タングス
テンが例示され、更に好ましくはハロゲン化バナジウム
、ハロゲン化タンタル、ハ係にあり、出来るだけ高純度
のものを用いるのが好ましい。
The metal halide catalyst used in the present invention is listed in Periodic Table 1.
Halides of metals of group Vb, group Vb, and group VIb can be used, but preferably Ti of group IVb is used.
(titanium), Zr (zirconium), V (vanadium) of the VB group, Nb (obium), Ta (tantalum), and ■
It is preferable to use halides of metals belonging to Group B, Cr (chromium) and W (tungsten), such as titanium tetrachloride, titanium tetrabromide, titanium tetraiodide, titanium tetrafluoride, zirconium tetrachloride, and tetrabromide. Zirconium, zirconium tetraiodide, zirconium tetrafluoride, vanadium trichloride,
Vanadium tribromide, vanadium triiodide, vanadium trifluoride, vanadium pentachloride, vanadium pentabromide, vanadium pentaiodide, vanadium pentafluoride, niobium pentachloride, niobium pentabromide, niobium pentaiodide, pentafluoride Niobium oxide, tantalum pentachloride, tantalum pentabromide, tantalum pentaiodide, tantalum pentafluoride, chromium trichloride, chromium tribromide, chromium triiodide, chromium trifluoride, tungsten hexachloride, tungsten hexabromide, Examples include tungsten hexaiodide and tungsten hexafluoride, and more preferred are vanadium halides, tantalum halides, and tungsten hexafluorides, and it is preferable to use those with as high purity as possible.

単量体であるクロロブレンは十分に脱水したものを用い
るのが好ましく、また不純物は出来る限り低減させたも
のを用いるのが好ましい。従って、本発明で用いる該単
量体は蒸留した後、水素化カルシウム等を用いた、一般
的な脱水方法を用いて脱水する必要がある。更に好まし
くは、脱水した該単量体を触媒を用いて再度脱水したも
のを用いるのが好ましい。
It is preferable to use the monomer chlorobrene that has been sufficiently dehydrated, and it is also preferable to use one that has reduced impurities as much as possible. Therefore, after the monomer used in the present invention is distilled, it is necessary to dehydrate it using a general dehydration method using calcium hydride or the like. More preferably, the dehydrated monomer is dehydrated again using a catalyst.

クロロブレンの重合に際して、該金属ハライドのクロロ
ブレンに対する仕込量はモル比で10−8〜10”−2
(触媒モル数/単量体モル数)であり、5 更に好ましくは10〜10−’(触媒モル数/単量体モ
ル数)であるが、これは本発明を何等制限するものでは
なく、該仕込比は得ようとするクロロプレン重合体の分
子量との関係から任意に設定され得る。
During the polymerization of chlorobrene, the amount of metal halide to be charged to chlorobrene is in a molar ratio of 10-8 to 10''-2.
(Number of moles of catalyst/Number of moles of monomer), and more preferably 10 to 10-' (Number of moles of catalyst/Number of moles of monomer), but this does not limit the present invention in any way. The charging ratio can be arbitrarily set in relation to the molecular weight of the chloroprene polymer to be obtained.

本発明による重合法では、溶媒は必ずしも必要ではない
。しかし、溶液重合も同様に何等問題なく行い得る。こ
の除用いる溶媒としては、触媒との反応が起こらない限
り如何なる溶媒も用いることが出来る。ポリクロロプレ
ンの溶解性を考慮すしてハロゲン化脂肪族炭化水素溶媒
が好適に用いられ、更に、一般にイオン重合に際して用
いられる溶媒が好適に用いられる。本発明で用いること
ができる溶媒としては、ジクロロメタン、1.1−ジク
ロロエタン、1,2−ジクロロエタン、1クロロエタン
、1クロロプロパン、クロロホルム、1.1.2.2−
テトラクロロエタン等の塩素系脂肪族炭化水素が例示さ
れるが、これは使用可能な溶媒を制限するものではない
。また、該塩素系溶媒の他、ヨウ化脂肪族炭化水素、臭
化脂肪族炭化水素等を用いることが出来る。溶媒は常法
により十分に脱水したものを用いる必要があり、好まし
くは、重合前に、再度、使用する金属ハライド触媒によ
り脱水したものを用いる。また、金属ハライドによって
は塩素系脂肪族炭水素に可溶のものがある為、予め該金
属触媒の溶媒に対する溶解性を調べ、可能な限り重合系
が均−系となるように設定するのが好ましい。
A solvent is not necessarily required in the polymerization method according to the invention. However, solution polymerization can likewise be carried out without any problems. As the solvent to be removed, any solvent can be used as long as it does not react with the catalyst. Considering the solubility of polychloroprene, a halogenated aliphatic hydrocarbon solvent is preferably used, and furthermore, a solvent generally used in ionic polymerization is preferably used. Solvents that can be used in the present invention include dichloromethane, 1.1-dichloroethane, 1,2-dichloroethane, 1chloroethane, 1chloropropane, chloroform, 1.1.2.2-
Examples include chlorinated aliphatic hydrocarbons such as tetrachloroethane, but this does not limit usable solvents. In addition to the chlorinated solvent, iodinated aliphatic hydrocarbons, brominated aliphatic hydrocarbons, etc. can be used. It is necessary to use a solvent that has been sufficiently dehydrated by a conventional method, preferably one that has been dehydrated again using the metal halide catalyst used before polymerization. Additionally, some metal halides are soluble in chlorinated aliphatic hydrocarbons, so it is best to check the solubility of the metal catalyst in the solvent in advance and set the polymerization system to be as homogeneous as possible. preferable.

溶媒の量は、通常クロロブレン単量体1モルに対して0
m1〜100m1を用いるのが好ましいして変更し得る
ものである。
The amount of solvent is usually 0 per mole of chloroprene monomer.
It is preferable to use m1 to 100 m1, but it can be varied.

重合温度はクロロブレン単量体のラジカル重合を防ぐ意
味で0℃以下で行うのが好ましい。重合温度は0℃以下
であれば何等問題はないが、更に好ましくは一30℃〜
−80℃で行う。
The polymerization temperature is preferably 0° C. or lower in order to prevent radical polymerization of the chloroprene monomer. There is no problem as long as the polymerization temperature is 0°C or lower, but it is more preferably between -30°C and
Perform at -80°C.

重合時間は、触媒の活性により異なるが、通常4時間か
ら20時間である。
The polymerization time varies depending on the activity of the catalyst, but is usually 4 to 20 hours.

[発明の効果] 本発明によれば、高収率、高分子量かつ、脱、塩素量の
小さい新規なポリクロロプレンの重合方法を提供するこ
とが出来る。
[Effects of the Invention] According to the present invention, it is possible to provide a novel method for polymerizing polychloroprene with high yield, high molecular weight, and a small amount of dechlorination and chlorine.

[実施例] 以下、実施例により本発明をより詳細に説明するが、こ
れは本発明を何等制限するものではない。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples, but these are not intended to limit the present invention in any way.

実施例1 三方コックを取り付け、撹拌子を入れた100m1の1
0フラスコを真空ラインに接続し、十分に脱気乾燥した
後、窒素置換した。該反応器を真空ラインから取外し、
窒素雰囲気下で三塩化バナジウム0.699ミリモルを
仕込んだ。この反応器を再度、窒素ラインに接続し、脱
気した。水素化カルシウムで脱水し、脱気した1、2−
ジクロロエタン32.8グラムを、真空ラインで該反応
器へ仕込んだ。次に、撹拌下で、水素化カルシウムで脱
水し、脱気を行ったクロロブレン単量体72.0グラム
を三塩化バナジウム3グラムを仕込んだ100m1の1
0フラスコに真空ラインで仕込み、撹拌下、脱水した。
Example 1 A 100m1 tank equipped with a three-way cock and a stirrer
The flask was connected to a vacuum line, thoroughly degassed and dried, and then replaced with nitrogen. removing the reactor from the vacuum line;
0.699 mmol of vanadium trichloride was charged under a nitrogen atmosphere. The reactor was again connected to the nitrogen line and degassed. 1,2- Dehydrated with calcium hydride and degassed
32.8 grams of dichloroethane was charged to the reactor via the vacuum line. Next, under stirring, 72.0 g of chlorobrene monomer, which had been dehydrated with calcium hydride and degassed, was added to a 100 ml solution containing 3 g of vanadium trichloride.
0 flask via a vacuum line, and dehydrated while stirring.

このクロロブレン単量体を、該反応器に真空ラインで仕
込み重合を開始した。その後、−28℃で10時間重合
し、内容物をメタノールに注ぎ、ポリマーを沈殿により
分離した。ポリマーをテトラヒドロフランに溶解させ、
メタノール/水(体積比1/1)混合溶液中に注ぎ再沈
した。更に、再度、ポリマーのテトラヒドロフラン溶液
を水に注ぎ再沈した。この操作を2度行った後、最後に
ポリマーのテトラヒドロフラン溶液をメタノール中に注
ぎ再沈し、ポリマーを単離した。単離したポリマーをベ
ンゼンに溶解させ、凍結乾燥を行った後、分析を行った
This chloroprene monomer was charged into the reactor via a vacuum line to initiate polymerization. Thereafter, polymerization was carried out at −28° C. for 10 hours, the contents were poured into methanol, and the polymer was separated by precipitation. Dissolve the polymer in tetrahydrofuran,
It was poured into a mixed solution of methanol/water (volume ratio 1/1) and reprecipitated. Furthermore, the tetrahydrofuran solution of the polymer was poured into water again to cause reprecipitation. After performing this operation twice, finally, a tetrahydrofuran solution of the polymer was poured into methanol and reprecipitated to isolate the polymer. The isolated polymer was dissolved in benzene, freeze-dried, and then analyzed.

ゲル浸透クロマトグラフィー分析から、生成したポリマ
ーは分子量(LogMw)が3〜5の分布を有するゴム
状物であった。また、生成したポリマーの塩素含有量は
39%とほぼ理論値に近く塩素の脱離傾向は非常に小さ
かった。ガラス転移温度はDSC測定の結果、−44,
3℃で、通常、ラジカル重合で得られるポリクロロプレ
ンに比べ高い数値を示した。また、単位触媒モル数当り
のポリマー生成量で表した触媒活性は13,000(グ
ラム1モル)であった。
Gel permeation chromatography analysis revealed that the produced polymer was a rubbery material with a molecular weight (LogMw) distribution of 3 to 5. Further, the chlorine content of the produced polymer was 39%, which was close to the theoretical value and the tendency for chlorine to be eliminated was very small. As a result of DSC measurement, the glass transition temperature is -44,
At 3°C, it showed a higher value than polychloroprene usually obtained by radical polymerization. Further, the catalytic activity expressed as the amount of polymer produced per unit catalyst mole was 13,000 (gram 1 mole).

実施例2 三方コックを取り付け、撹拌子を入れた100m1の1
0フラスコを真空ラインに接続し、十分に脱気乾燥した
後、窒素置換した。該反応器を真空ラインから取外し、
窒素雰囲気下で五塩化タンタル0.419ミリモルを仕
込んだ。この反応器を再度、窒素ラインに接続し、脱気
した。水素化カルシウムで脱水し、脱気した1、2−ジ
クロロエタン29.5グラムを、真空ラインで該反応器
へ仕込んだ。次に、撹拌下で、水素化カルシウムで脱水
し、脱気を行ったクロロプレン単量体37.3グラムを
五塩化タンタル1グラムを仕込んだ100m1の10フ
ラスコに真空ラインで仕込み、撹拌下、脱水した。この
クロロプレン単量体を、該反応器に真空ラインで仕込み
重合を開始した。その後、−28℃で20時間重合し、
内容物をメタノールに注ぎ、ポリマーを沈殿により分離
した。ポリマーをテトラヒドロフランに溶解させ、メタ
ノール/水(体積比1/1)混合溶液中に注ぎ再沈した
。更に、再度、ポリマーのテトラヒドロフラン溶液を水
に注ぎ再沈した。この操作を2度行った後、最後にポリ
マーのテトラヒドロフラン溶液をメタノール中に注ぎ再
沈し、ポリマーを単離した。単離したポリマーをベンゼ
ンに溶解させ、凍結乾燥を行った後、分析を行った。ゲ
ル浸透クロマトグラフィー分析から、生成したポリマー
は分子量(L−ogMw)が3〜4の分布を有する半固
体物であった。また、生成したポリマーの塩素含有量は
38%とほぼ理論値に近く塩素の脱離傾向は非常に小さ
かった。ガラス転移温度はDSC測定の結果、−46,
0℃で、通常、ラジカル重合で得られるポリクロロプレ
ン(ガラス転移点−49℃)に比べ高い数値を示した。
Example 2 A 100m1 tank equipped with a three-way cock and a stirrer
The flask was connected to a vacuum line, thoroughly degassed and dried, and then replaced with nitrogen. removing the reactor from the vacuum line;
0.419 mmol of tantalum pentachloride was charged under a nitrogen atmosphere. The reactor was again connected to the nitrogen line and degassed. 29.5 grams of 1,2-dichloroethane, dehydrated with calcium hydride and degassed, was charged to the reactor via a vacuum line. Next, under stirring, 37.3 grams of chloroprene monomer that had been dehydrated with calcium hydride and degassed was charged into a 100 ml flask containing 1 gram of tantalum pentachloride via a vacuum line, and dehydrated under stirring. did. This chloroprene monomer was charged into the reactor via a vacuum line to initiate polymerization. Thereafter, polymerization was carried out at -28°C for 20 hours,
The contents were poured into methanol and the polymer was separated by precipitation. The polymer was dissolved in tetrahydrofuran, poured into a mixed solution of methanol/water (volume ratio 1/1), and reprecipitated. Furthermore, the tetrahydrofuran solution of the polymer was poured into water again to cause reprecipitation. After performing this operation twice, finally, a tetrahydrofuran solution of the polymer was poured into methanol and reprecipitated to isolate the polymer. The isolated polymer was dissolved in benzene, freeze-dried, and then analyzed. Gel permeation chromatography analysis revealed that the produced polymer was a semi-solid with a molecular weight (L-ogMw) distribution of 3 to 4. Furthermore, the chlorine content of the produced polymer was 38%, which was close to the theoretical value and the tendency for chlorine to be eliminated was very small. As a result of DSC measurement, the glass transition temperature is -46,
At 0°C, it showed a higher value than polychloroprene (glass transition point -49°C), which is usually obtained by radical polymerization.

また、単位触媒モル数当りのポリマー生成量で表した触
媒活性は15,000 (グラム1モル)であった。
Further, the catalytic activity expressed as the amount of polymer produced per unit catalyst mole was 15,000 (gram 1 mole).

実施例3 三方コックを取り付け、撹拌子を入れた10.Omlの
1日フラスコを真空ラインに接続し、十分に脱気乾燥し
た後、窒素置換した。該反応器を真空ラインから取外し
、窒素雰囲気下で六塩化タングステン0.630ミリモ
ルを仕込んだ。この反応器を再度、窒素ラインに接続し
、脱気した。水素化カルシウムで脱水し、脱気した1、
2−ジクロロエタン26.7グラムを、真空ラインで該
反応器へ仕込んだ。次に、撹拌下で、水素化カルシウム
で脱水し、脱気を行ったクロロプレン単量体43.4グ
ラムを六塩化タングステン1グラムを仕込んだ100m
1の10フラスコに真空ラインで仕込み、撹拌下、脱水
した。このクロロプレン単量体を、該反応器に真空ライ
ンで仕込み重合を開始した。その後、−28℃で20時
間重合し、内容物をメタノールに注ぎ、ポリマーを沈殿
により分離した。ポリマーをテトラヒドロフランに溶解
させ、メタノール/水(体積比1/1)混合溶液中に注
ぎ再沈した。更に、再度、ポリマーのテトラヒドロフラ
ン溶液を水に注ぎ再沈した。この操作を2度行った後、
最後にポリマーのテトラヒドロフラン溶液をメタノール
中に注ぎ再沈し、ポリマーを単離した。単離したポリマ
ーをベンゼンに溶解させ、凍結乾燥を行った後、分析を
行った。
Example 3 10. A three-way cock was attached and a stirrer was inserted. An Oml 1-day flask was connected to a vacuum line, thoroughly degassed and dried, and then replaced with nitrogen. The reactor was removed from the vacuum line and charged with 0.630 mmol of tungsten hexachloride under a nitrogen atmosphere. The reactor was again connected to the nitrogen line and degassed. Dehydrated with calcium hydride and degassed 1,
26.7 grams of 2-dichloroethane was charged to the reactor via the vacuum line. Next, under stirring, 43.4 g of chloroprene monomer, which had been dehydrated with calcium hydride and degassed, was placed in a 100 m
The mixture was charged into 10 flasks using a vacuum line, and dehydrated with stirring. This chloroprene monomer was charged into the reactor via a vacuum line to initiate polymerization. Thereafter, polymerization was carried out at −28° C. for 20 hours, the contents were poured into methanol, and the polymer was separated by precipitation. The polymer was dissolved in tetrahydrofuran, poured into a mixed solution of methanol/water (volume ratio 1/1), and reprecipitated. Furthermore, the tetrahydrofuran solution of the polymer was poured into water again to cause reprecipitation. After performing this operation twice,
Finally, a tetrahydrofuran solution of the polymer was poured into methanol and reprecipitated to isolate the polymer. The isolated polymer was dissolved in benzene, freeze-dried, and then analyzed.

ゲル浸透クロマトグラフィー分析から、生成したポリマ
ーは分子ffi(LogMw)が4〜6の分布を有する
弾性体であった。また、生成したポリマーの塩素量は3
9%と理論値に近く塩素の脱離傾向は非常に小さかった
。ガラス転移温度はDSC測定の結果、−36℃で、通
常、ラジカル重合で得られるポリクロロプレンに比べ、
高い値を示した。また、単位触媒モル当りのポリマー生
成機で表した触媒活性は46000 (グラム1モル)
であった。
Gel permeation chromatography analysis revealed that the produced polymer was an elastic body with a molecular ffi (LogMw) distribution of 4 to 6. In addition, the amount of chlorine in the generated polymer was 3
It was 9%, which was close to the theoretical value, and the tendency for chlorine desorption was very small. The glass transition temperature was -36℃ as a result of DSC measurement, compared to polychloroprene usually obtained by radical polymerization.
It showed a high value. In addition, the catalytic activity expressed as a polymer generator per unit catalyst mole is 46000 (gram 1 mole)
Met.

【図面の簡単な説明】[Brief explanation of drawings]

図1及び図2は実施例1及び実施例3で得られたポリマ
ーのGPC溶出曲線を表す。
1 and 2 show GPC elution curves of the polymers obtained in Example 1 and Example 3.

Claims (1)

【特許請求の範囲】[Claims] (1)クロロプレンを、下記の一般式(1)MX_n(
1) (ここで、Mは周期表第IVb、Vb、及び、VIbを族か
ら選ばれる遷移金属を表し、XはF、Cl、Br及びI
から選ばれるハロゲン原子を表し、nは該ハロゲン原子
の総数を表す)で表される金属ハライドを重合触媒とし
て重合することを特徴とするポリクロロプレンの製造方
法。
(1) Chloroprene is expressed by the following general formula (1) MX_n(
1) (Here, M represents a transition metal selected from groups IVb, Vb, and VIb of the periodic table, and X represents F, Cl, Br, and I
1. A method for producing polychloroprene, which comprises polymerizing a metal halide represented by a halogen atom selected from the following, where n represents the total number of halogen atoms, as a polymerization catalyst.
JP18026989A 1989-07-14 1989-07-14 Method for producing polychloroprene Expired - Fee Related JP2758657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18026989A JP2758657B2 (en) 1989-07-14 1989-07-14 Method for producing polychloroprene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18026989A JP2758657B2 (en) 1989-07-14 1989-07-14 Method for producing polychloroprene

Publications (2)

Publication Number Publication Date
JPH0345610A true JPH0345610A (en) 1991-02-27
JP2758657B2 JP2758657B2 (en) 1998-05-28

Family

ID=16080281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18026989A Expired - Fee Related JP2758657B2 (en) 1989-07-14 1989-07-14 Method for producing polychloroprene

Country Status (1)

Country Link
JP (1) JP2758657B2 (en)

Also Published As

Publication number Publication date
JP2758657B2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
US4002815A (en) Cyclopentene-dicyclopentadiene copolymers and method of making same
US3072630A (en) Polymerization of ethylene using coordination catalyst system with a halide promotor
JPS6160094B2 (en)
US3002961A (en) Process for the preparation of propylene of high molecular weight
JP2003514928A (en) Production of isobutylene copolymer
US3210332A (en) Production of solid olefin polymers
JP3388865B2 (en) Method for producing isobutylene polymer having olefin group
JPH0345610A (en) Production of polychloroprene
US3418259A (en) Crystalline polybenzyls and process of producing same
US3088940A (en) Hompolymerization of acrylonitrile with catalyst compositions comprising organo tin hydride and metal halide complexes
CA1134550A (en) Cyclopentene copolymerization process
US3208985A (en) Olefin polymerization with a heavy metal compound-organohydrogen siloxane catalyst
US3346514A (en) Crystalline polybenzyls
JPS6125732B2 (en)
Kaeriyama Polymerization of epoxides by zirconocene dichloride
US3468817A (en) Crystalline polymers of propylene oxide
US3385841A (en) Polymerization process
JPH0125490B2 (en)
US3510465A (en) Process for polymerizing olefinic hydrocarbons
US3468856A (en) Method for preparation of polyvinyl ethers
JPH0236204A (en) Production of isobutylene-based polymer having functional terminal
US3151104A (en) Polymers of propadiene
EP0017456B1 (en) Crystalline co-polybenzyls and process of producing them
EP0325174B1 (en) Process for controlling the molecular weight of poly(trialkylsilylpropyne) polymers
US3474127A (en) Process of producing thermoplastic prepolymers from allyl esters of polybasic acids

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees