JPH0345568A - Carbon fiber reinforced composite material - Google Patents

Carbon fiber reinforced composite material

Info

Publication number
JPH0345568A
JPH0345568A JP1182314A JP18231489A JPH0345568A JP H0345568 A JPH0345568 A JP H0345568A JP 1182314 A JP1182314 A JP 1182314A JP 18231489 A JP18231489 A JP 18231489A JP H0345568 A JPH0345568 A JP H0345568A
Authority
JP
Japan
Prior art keywords
composite material
oxidation
carbon fiber
carbon
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1182314A
Other languages
Japanese (ja)
Inventor
Chihiro Kawai
千尋 河合
Tadashi Igarashi
五十嵐 廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1182314A priority Critical patent/JPH0345568A/en
Publication of JPH0345568A publication Critical patent/JPH0345568A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the subject material having improved thermal shock resistance by using an oxidation-resistant ceramics at both surface parts of a matrix and continuously varying the composition from the C at the center to the oxidation-resistant ceramics at both surface parts. CONSTITUTION:C powder is mixed with oxidation-resistant ceramic powder such as Si3N4 or SiC and a slight amount of Al2O3 powder as matrix components at specific compositional ratios. The obtained powdery mixture is kneaded with an acrylamide resin, etc., and dispersed in a solution for electrophoresis. A woven cloth of C fiber and a C plate are dipped into the solution as a cathode and an anode, respectively, and the powdery mixture is deposited on the woven C cloth by electrophoresis. A composite material composed of a powdery mixture having a prescribed compositional ratio and woven cloth of C fiber acting as a reinforcing material can be produced by this process. The objective C fiber reinforced composite material is produced by heating and drying the composite material to remove volatile components and sintering the product under pressure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐酸化性に優れた炭素繊維強化複合材料に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a carbon fiber reinforced composite material with excellent oxidation resistance.

〔従来の技術〕[Conventional technology]

炭素のマ) IJラックス中強化材として炭素繊維を含
む炭素繊維強化炭素複合材料(所謂C/Cフンポジット
)は、100OC”以上の高温下で優れた比強度及び比
剛性を示すことから、宇宙往還機等の断熱材料への適用
が検討されている。
Carbon fiber-reinforced carbon composite material (so-called C/C composite), which contains carbon fiber as a reinforcing material in IJ Lux, exhibits excellent specific strength and specific stiffness at high temperatures of 100 OC" or higher, and is therefore used for space travel. Application to insulation materials for machines, etc. is being considered.

しかしながら、炭素繊維強化炭素複合材料は、炭素を原
料としているため高温での耐酸化性に欠ける欠点がある
。この欠点を補うため、高温下で優れた耐酸化性を有す
るセラミックスを化学蒸着法等により表面被覆した被覆
複合材料が提案されている。
However, carbon fiber-reinforced carbon composite materials have the drawback of lacking oxidation resistance at high temperatures because they use carbon as a raw material. In order to compensate for this drawback, a coated composite material has been proposed in which the surface is coated with a ceramic material having excellent oxidation resistance at high temperatures by chemical vapor deposition or the like.

ところが、このような被覆複合材料はマトリックスであ
る炭素と表面部分のセラミックスとの熱膨張係数に差が
あるため、加熱と冷却の熱サイクル下で両者の界面に熱
応力による亀裂が発生して、セラミックス被覆が剥離し
たり、強度が著しく低下するという欠点があった。
However, in such coated composite materials, there is a difference in the coefficient of thermal expansion between the carbon matrix and the ceramic surface, so cracks occur at the interface between the two due to thermal stress during thermal cycles of heating and cooling. There were drawbacks such as the ceramic coating peeling off and the strength significantly decreasing.

又、マトリックスとして炭素の代りにセラミックスを用
いた炭素繊維強化セラミックス複合材料も検討されてい
るが、耐酸化性に優れる反面、曲げ強度が著しく低下す
る欠点があった。
Also, carbon fiber reinforced ceramic composite materials using ceramics instead of carbon as a matrix have been considered, but although they have excellent oxidation resistance, they have the drawback of significantly lower bending strength.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明はかかる従来の事情に鑑み、優れた耐酸化性、耐
熱衝撃性及び強度特性を兼ね備えた炭素繊維強化複合材
料を提供することを目的とする。
In view of the conventional circumstances, the present invention aims to provide a carbon fiber reinforced composite material that has excellent oxidation resistance, thermal shock resistance, and strength characteristics.

(課題を解決するための手段) 上記目的を達成するため、本発明の炭素繊維強化複合材
料は、炭素とセラミックスの複合物からなる板状のマト
リックスと、マトリックス中に強化材として含まれる炭
素繊維とからなり、当該マトリックスの両側の表面部分
が耐酸化性セラミックスからなり、両側の表面部分に対
する中心部分が炭素であって、中心部分から両側の表面
部分までの組成が炭素から耐酸化性セラミックスまでほ
ぼ連続的に変化していることを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the carbon fiber reinforced composite material of the present invention comprises a plate-shaped matrix made of a composite of carbon and ceramics, and carbon fibers contained in the matrix as a reinforcing material. The surface portions on both sides of the matrix are made of oxidation-resistant ceramics, the center portions of the matrix on both sides are carbon, and the composition from the center portion to the surface portions on both sides ranges from carbon to oxidation-resistant ceramics. It is characterized by an almost continuous change.

〔作用〕[Effect]

本発明の炭素繊維強化複合材料では、マ) IJラック
ス体が炭素と耐酸化性セラミックスとの複合した組成で
、しかも中心部分(炭素)から両側の表面部分(耐酸化
性セラミックス)までほぼ連続的に変化した傾斜組成に
なっている。
In the carbon fiber reinforced composite material of the present invention, the IJ lux body has a composite composition of carbon and oxidation-resistant ceramics, and is almost continuous from the center portion (carbon) to the surface portions on both sides (oxidation-resistant ceramics). It has a gradient composition that has changed.

従って、外部に露出するマ) IJラックス両側の表面
部分を構成する耐酸化性セラミックスが優れた耐酸化性
を付与し、同時にマ) リツクスの中心部分は炭素であ
るため優れた強度特性を示す。しかも、中心部分と両側
の表面部分の間は炭素から耐酸化性セラミックスまでほ
ぼ連続的に変化した傾斜組成となっているので、組成の
傾斜に伴なってマ) IJラックス熱膨張係数が連続的
に変化し、熱サイクル下での熱応力の発生が緩和され、
耐熱衝撃性を改善向上させることが出来る。
Therefore, the oxidation-resistant ceramics constituting the surface portions on both sides of the matrix IJ lux exposed to the outside provide excellent oxidation resistance, and at the same time, since the central portion of the matrix is carbon, it exhibits excellent strength characteristics. Moreover, between the center part and the surface parts on both sides, there is a gradient composition that changes almost continuously from carbon to oxidation-resistant ceramics, so as the composition gradient increases, the IJ Lux thermal expansion coefficient is continuous. , the occurrence of thermal stress under thermal cycles is alleviated,
Thermal shock resistance can be improved.

耐酸化性セラミックスは、耐熱性及び耐酸化性に優れた
炭化珪素(Sin) 、窒化珪素(SiN)、炭化チタ
ン(TiC)又は窒化硼素(EN)等が好ましい。
The oxidation-resistant ceramics are preferably silicon carbide (Sin), silicon nitride (SiN), titanium carbide (TiC), or boron nitride (EN), which have excellent heat resistance and oxidation resistance.

(実施例) 実施例1 マトリックス成分として、平均粒径2μmの炭素粉末と
、:31C粉末を微量のAlO粉末と混合し、SiC/
(Si(1!+O)を0120.40.60.80.1
00 mo1%とした各混合粉末を準備した。各混合粉
末をアクリルアマイド系樹脂とよく混練し、電気泳動用
の浴液に夫々分散させた。これらの各浴液中に、陰極と
してPAN系炭素炭素繊維織布び陽極として炭素板を浸
漬し、よく攪拌しながら約200 Vの電圧を印加して
10分間通電した。電気泳動により各混合粉末粒子が炭
素繊維織布上に析出し、マ) IJツクス戊成分ある上
記各stc/ <sia+c )組成の混合粉末と強化
材となる炭素繊維織布とから構成された複合体が得られ
た。
(Example) Example 1 As matrix components, carbon powder with an average particle size of 2 μm and :31C powder were mixed with a trace amount of AlO powder, and SiC/
(Si(1!+O)0120.40.60.80.1
Each mixed powder having a concentration of 0.00 mo1% was prepared. Each mixed powder was thoroughly kneaded with an acrylamide resin and dispersed in a bath liquid for electrophoresis. A PAN-based carbon fiber woven fabric as a cathode and a carbon plate as an anode were immersed in each of these bath solutions, and while stirring well, a voltage of about 200 V was applied and electricity was applied for 10 minutes. By electrophoresis, each mixed powder particle is precipitated on a carbon fiber woven fabric, and a composite composed of a mixed powder having the above-mentioned stc/<sia+c) composition and a carbon fiber woven fabric serving as a reinforcing material is formed. I got a body.

次に、得られた各複合体を、マトリックス成分のSin
/ (SiO+C)組成に基ずき第1表の如く組合せて
11枚ずつ積層し、100C’で一時間乾燥後、更に5
00Cで三時間加熱して揮発物を除去した。
Next, each of the obtained composites was mixed with the matrix component Sin
/ (SiO+C) Based on the composition, 11 sheets were laminated in combination as shown in Table 1, and after drying at 100C' for 1 hour,
The volatiles were removed by heating at 00C for 3 hours.

この積層物を2000 C’で二時間200 kVf−
♂の圧力で加圧焼結し、夫々厚さ3Nの炭素繊維強化複
合材料を得た。
This laminate was heated at 2000 C' for 2 hours at 200 kVf-
Pressure sintering was performed at a pressure of ♂ to obtain carbon fiber reinforced composite materials each having a thickness of 3N.

第  1  表 試料  積層順のマ)IJツクス戊成分組成SiOmo
1%)株  100−80−60−40−20−0 (
0100) −20−40−60−80−Zo。
Table 1 Sample Lamination order Ma) IJTxX component composition SiOmo
1%) stock 100-80-60-40-20-0 (
0100) -20-40-60-80-Zo.

2   100−100−0−0−0−0−0−0−0
−100−1003    全でSiO100 4全で c  o(azoo) (注)※印は本発明例を示す(以下同じ)。
2 100-100-0-0-0-0-0-0-0
-100-1003 SiO100 in total 4 in total co(azoo) (Note) *marks indicate examples of the present invention (the same applies below).

得られた各炭素繊維強化複合材料について、以下の耐酸
化試験と曲げ試験を行なった。耐酸化試験は、25X2
5X3mlNの試料(四側面は大気と非接触)を大気中
で1500 (’にて一時間加熱し、加熱前後の重量か
ら酸化による重量減少を求め、耐酸化性を評価した。又
、曲げ試験は40X4X3fi の試料を3点曲げ試験
により行なった。
The following oxidation resistance test and bending test were conducted on each of the obtained carbon fiber reinforced composite materials. Oxidation resistance test is 25X2
A 5 x 3 mlN sample (four sides not in contact with the atmosphere) was heated in the atmosphere at 1500°C for one hour, and the weight loss due to oxidation was determined from the weight before and after heating to evaluate the oxidation resistance. A 40X4X3fi sample was subjected to a three-point bending test.

結果を第2表に示した。The results are shown in Table 2.

第  2  表 本発明例の炭素繊維強化複合材料は、耐酸化性及び曲げ
強度とも優れていることが判る。
Table 2 It can be seen that the carbon fiber reinforced composite materials of the examples of the present invention are excellent in both oxidation resistance and bending strength.

実施例2 実施例1と同様に作成した試料を、予め1300Cに保
った炉内に入れて急加熱し、この温度に5分間保持した
後、液体窒素に投入して急冷するという熱サイクルを三
回繰り返し、その後実施例1と同様に曲げ強度を測定し
た。
Example 2 A sample prepared in the same manner as in Example 1 was placed in a furnace previously maintained at 1300C, heated rapidly, held at this temperature for 5 minutes, and then placed in liquid nitrogen for rapid cooling. This was repeated twice, and then the bending strength was measured in the same manner as in Example 1.

上記熱サイクル後の曲げ強度は、本発明例の試料1が2
11、試料2がlO4、試料3が102、試料4が21
2 MPaであり、マトリックスが0−8i(!無傾斜
組成の試料2は熱亀裂により強度が極度に低下したこと
が判る。
The bending strength after the above thermal cycle was 2 for Sample 1 of the present invention example.
11, sample 2 is lO4, sample 3 is 102, sample 4 is 21
2 MPa, and the matrix was 0-8i (!) It can be seen that the strength of sample 2 with an ungraded composition was extremely reduced due to thermal cracking.

実施例3 セラミックスとしてTtCを用いた以外は実施例1と同
様の方法により、積層順によるTiOとCのマ) IJ
ツクス成分組組成第3表のようにした炭素繊維強化複合
材料を製造した。
Example 3 The same method as Example 1 was used except that TtC was used as the ceramic, and TiO and C were stacked in the order of lamination.
A carbon fiber reinforced composite material having the composition shown in Table 3 was produced.

第  3  表 5※ 100−80−60−40−20−0 (OZoo)−
20−40−60−80−1006100−100−0
−0−0−0−0−0−0−100−1007全てTi
O100 次に1 各試料を耐酸化試験用の25X25X3m111K と
曲げ試験用の40X4X3−に切断し、予め1000 
C’に保った炉内に入れて急加熱し、この温度に10時
間保持した後、液体窒素に投入して急冷した。
3rd Table 5* 100-80-60-40-20-0 (OZoo)-
20-40-60-80-1006100-100-0
-0-0-0-0-0-0-100-1007 All Ti
O100 Next, each sample was cut into 25X25X3m111K for oxidation resistance test and 40X4X3- for bending test.
It was placed in a furnace maintained at C' and rapidly heated, held at this temperature for 10 hours, and then placed in liquid nitrogen to be rapidly cooled.

その後、各試料について酸化重量減少と3点曲げ強度を
測定し、結果を第4表に示した。
Thereafter, the oxidation weight loss and three-point bending strength of each sample were measured, and the results are shown in Table 4.

第  4  表 〔発明の効果〕 本発明によれば、比強度及び比剛性に優れると同時に、
耐熱性、耐酸化性及び耐熱衝撃性を兼ね備えた炭素繊維
強化複合材料を提供することができる。
Table 4 [Effects of the Invention] According to the present invention, the specific strength and specific stiffness are excellent, and at the same time,
A carbon fiber reinforced composite material that has heat resistance, oxidation resistance, and thermal shock resistance can be provided.

この炭素繊維強化複合材料は高温での断熱性に優れ、超
音速航空機や宇宙往還機などの機体壁用断熱材として特
に有効である。
This carbon fiber-reinforced composite material has excellent heat insulation properties at high temperatures and is particularly effective as a heat insulating material for the walls of supersonic aircraft and spacecraft.

手続補正書(自発) 1゜ 事件の表示 平成 年 特 許 願 第182314 号 2発明の名称 炭素繊維強化複合材料 3、 補正をする者 事件との関係Procedural amendment (voluntary) 1゜ Display of incidents Heisei Year Special permission wish No. 182314 issue 2. Name of the invention Carbon fiber reinforced composite material 3. Person making the amendment Relationship with the incident

Claims (1)

【特許請求の範囲】[Claims] (1)炭素とセラミツクスの複合物からなる板状のマト
リツクスと、マトリツクス中に強化材として含まれる炭
素繊維とからなり、当該マトリツクスの両側の表面部分
が耐酸化性セラミツクスからなり、両側の表面部分に対
する中心部分が炭素であつて、中心部分から両側の表面
部分までの組成が炭素から耐酸化性セラミツクスまでほ
ぼ連続的に変化していることを特徴とする炭素繊維強化
複合材料。
(1) It consists of a plate-shaped matrix made of a composite of carbon and ceramics, and carbon fibers contained in the matrix as a reinforcing material, and the surface portions on both sides of the matrix are made of oxidation-resistant ceramics, and the surface portions on both sides A carbon fiber-reinforced composite material characterized in that a central portion thereof is carbon, and the composition from the central portion to both surface portions changes almost continuously from carbon to oxidation-resistant ceramics.
JP1182314A 1989-07-14 1989-07-14 Carbon fiber reinforced composite material Pending JPH0345568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1182314A JPH0345568A (en) 1989-07-14 1989-07-14 Carbon fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1182314A JPH0345568A (en) 1989-07-14 1989-07-14 Carbon fiber reinforced composite material

Publications (1)

Publication Number Publication Date
JPH0345568A true JPH0345568A (en) 1991-02-27

Family

ID=16116139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1182314A Pending JPH0345568A (en) 1989-07-14 1989-07-14 Carbon fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JPH0345568A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05104506A (en) * 1991-10-17 1993-04-27 Toda Constr Co Ltd Manufacture of carbon fiber reinforced inorganic composite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05104506A (en) * 1991-10-17 1993-04-27 Toda Constr Co Ltd Manufacture of carbon fiber reinforced inorganic composite

Similar Documents

Publication Publication Date Title
US5254397A (en) Carbon fiber-reinforced composite material having a gradient carbide coating
Cairo et al. Functionally gradient ceramic coating for carbon–carbon antioxidation protection
Zhang et al. AC/SiC gradient oxidation protective coating for carbon/carbon composites
Zhou et al. Oxidation protective SiC-Si coating for carbon/carbon composites by gaseous silicon infiltration and pack cementation: a comparative investigation
US5569427A (en) High temperature coating on ceramic substrate and non-firing process for obtaining same
Lewinsohn et al. Silicon carbide-based materials for joining silicon carbide composites for fusion energy applications
Wang et al. Microstructure and oxidation resistance of C-AlPO4–mullite coating prepared by hydrothermal electrophoretic deposition for SiC-C/C composites
JPH0551268A (en) Fiber-reinforced functionally gradient material
Qian-Gang et al. A Si–SiC oxidation protective coating for carbon/carbon composites prepared by a two-step pack cementation
Li et al. Oxidation pre-treatment and electrophoretic deposition of SiC nanowires to improve the thermal shock resistance of SiC coating for C/C composites
Li et al. High strength retention and improved oxidation resistance of C/C composites by utilizing a layered SiC ceramic coating
Feng et al. Influence of Cr content on the microstructure and anti-oxidation property of MoSi2–CrSi2–Si multi-composition coating for SiC coated carbon/carbon composites
Li et al. The preparation and mechanical properties of carbon–carbon/lithium–aluminum–silicate composite joints
Peters et al. Mechanical characterisation of mullite-based ceramic matrix composites at test temperatures up to 1200° C
Hao et al. An AlPO4–SiC–MoSi2/SiC oxidation protective coating on carbon/carbon composites by pulse arc discharge deposition
EP0435039B1 (en) Carbon fiber-reinforced composite material
JPH0345568A (en) Carbon fiber reinforced composite material
Zhang et al. A glass coating prepared by pulse arc discharge deposition for oxidation protection of carbon/carbon composites
Zou et al. Fabrication of high performance silicon oxynitride fibers reinforced boron nitride composites via borazine precursor infiltration and heating
Rudolph Composition and application of coatings based on boron nitride
Sun et al. Thermal shock resistance of the porous boron nitride/silicon oxynitride ceramic composites
JPH0380172A (en) Coated carbon fiber reinforced composite material
Rice et al. Refractory‐Ceramic‐Fiber Composites: Progress, Needs, and Opportunities
Ke-Zhi et al. Oxidation protection of carbon/carbon composites with SiC/indialite coating for intermediate temperatures
Han et al. A simple way to prepare silicon carbide reinforced graphite composite lubricating materials