JPH0345314B2 - - Google Patents

Info

Publication number
JPH0345314B2
JPH0345314B2 JP15375885A JP15375885A JPH0345314B2 JP H0345314 B2 JPH0345314 B2 JP H0345314B2 JP 15375885 A JP15375885 A JP 15375885A JP 15375885 A JP15375885 A JP 15375885A JP H0345314 B2 JPH0345314 B2 JP H0345314B2
Authority
JP
Japan
Prior art keywords
fluidized bed
particles
heat transfer
cooling device
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15375885A
Other languages
Japanese (ja)
Other versions
JPS6213990A (en
Inventor
Sadahiko Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP15375885A priority Critical patent/JPS6213990A/en
Publication of JPS6213990A publication Critical patent/JPS6213990A/en
Publication of JPH0345314B2 publication Critical patent/JPH0345314B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は流動床式冷却装置に係り、特に伝熱チ
ユーブから周囲への伝熱特性の優れた流動床式冷
却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fluidized bed cooling device, and more particularly to a fluidized bed cooling device with excellent heat transfer characteristics from a heat transfer tube to the surroundings.

[従来の技術] 液体や気体の冷却装置として、流体を伝熱チユ
ーブ内に通し、この伝熱チユーブの外側に空気を
通過させて空冷するようにしたタイプのものが周
知である。このタイプの冷却装置においては、伝
熱チユーブに放熱フインを設けたり、チユーブ材
質を熱伝導率の高いものとする等の対策をとるこ
とが多い。
[Prior Art] As a liquid or gas cooling device, a type in which a fluid is passed through a heat transfer tube and air is passed outside the heat transfer tube for air cooling is well known. In this type of cooling device, measures are often taken such as providing heat radiation fins in the heat transfer tube or making the tube material high in thermal conductivity.

しかしながら、このような従来の伝熱チユーブ
を採用した冷却装置においては、伝熱チユーブに
接触する流体が空気だけであるので、フインの設
置やチユーブ材質の改良を行つても、放熱量には
自ずから上限があつた。
However, in cooling systems that employ such conventional heat transfer tubes, the only fluid that comes into contact with the heat transfer tubes is air, so even if fins are installed or the tube material is improved, the amount of heat dissipated will still be affected. The upper limit has been reached.

本発明は、上記従来の問題点を解決し、チユー
ブから周囲への伝熱量が大幅に増加する冷却装置
を提供することにある。
The present invention solves the above conventional problems and provides a cooling device in which the amount of heat transferred from the tube to the surroundings is significantly increased.

[問題点を解決するための手段] 本発明の流動床式冷却装置は分散板によつて内
部が上下の室に区画されている流動床容器内の該
上側の室内に伝熱チユーブを配設すると共に、こ
の上側の室に流動化媒体を、流動時に該伝熱チユ
ーブの少くとも一部を埋没する流動床高さとなる
量、充填したものである。本発明では、流動化媒
体は中空であり、かつ粒子内外を連通する孔を有
している。
[Means for Solving the Problems] The fluidized bed cooling device of the present invention has a heat transfer tube disposed in the upper chamber of a fluidized bed container whose interior is divided into upper and lower chambers by a dispersion plate. At the same time, this upper chamber is filled with a fluidizing medium in an amount such that the height of the fluidized bed is such that at least a portion of the heat transfer tube is buried during fluidization. In the present invention, the fluidizing medium is hollow and has pores that communicate between the inside and outside of the particles.

[作用] 本発明の流動床式冷却装置においては、伝熱チ
ユーブに、空気等の気体のみならず、この気体に
よつて流動化されている媒体も接触する。そのた
め伝熱チユーブ表面から熱エネルギーが空気等の
気体のみならず熱容量の大きな固体媒体にも伝熱
されるようになり、伝熱チユーブから周囲へ伝え
られる熱量が大幅に増大し、効率のよい冷却を行
うことが可能とされる。本発明では、中空で且つ
粒子内外を連通する孔を有した流動化媒体を用い
ているのであるが、この流動化媒体は軽量である
と共に、音が孔から流動化媒体内部に入り消音さ
れる。
[Function] In the fluidized bed cooling device of the present invention, not only a gas such as air but also a medium fluidized by this gas comes into contact with the heat transfer tube. Therefore, thermal energy is transferred from the surface of the heat transfer tube not only to gases such as air but also to solid media with large heat capacity, and the amount of heat transferred from the heat transfer tube to the surroundings increases significantly, resulting in efficient cooling. It is possible to do so. The present invention uses a fluidizing medium that is hollow and has holes that communicate between the inside and outside of the particles, and this fluidizing medium is lightweight, and sound enters the inside of the fluidizing medium through the holes and is muffled. .

[実施例] 以下図面を参照して実施例について説明する。[Example] Examples will be described below with reference to the drawings.

第1図は本発明の実施例に係る流動床式冷却装
置の構成を示す縦断面図である。第1図において
符号1は流動床容器であつて、その内部の下方部
分には略水平方向に空気分散板2が設置され、こ
れによつて流動床容器1内が上側の室(流動室)
3と、下側の室(空気受入室)4とに区画されて
いる。流動室3内には伝熱チユーブ5が配設さ
れ、その一端5aから被冷却流体が導入れ、他端
5bから冷却された流体が取り出されるよう構成
されている。また、流動室3内には流動化媒体6
が充填されている。流動化媒体6としては、粒子
内外を連通する孔を有した中空状の粒子を用い
る。この流動化媒体6の充填量は流動時に伝熱チ
ユーブ5の少くとも一部が埋没される流動床高さ
となる量である。なお、好ましくは流動時に伝熱
チユーブ5の全てが流動床内に埋没する充填量と
する。
FIG. 1 is a longitudinal sectional view showing the configuration of a fluidized bed cooling device according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a fluidized bed container, and an air dispersion plate 2 is installed in the lower part of the interior thereof in a substantially horizontal direction, so that the interior of the fluidized bed container 1 becomes an upper chamber (fluidized chamber).
3 and a lower chamber (air receiving chamber) 4. A heat transfer tube 5 is disposed within the flow chamber 3, and is configured such that a fluid to be cooled is introduced from one end 5a and a cooled fluid is taken out from the other end 5b. In addition, a fluidizing medium 6 is provided in the fluidizing chamber 3.
is filled. As the fluidizing medium 6, hollow particles having holes that communicate between the inside and outside of the particles are used. The filling amount of the fluidizing medium 6 is such that the height of the fluidized bed is such that at least a portion of the heat transfer tube 5 is buried during fluidization. Preferably, the filling amount is such that all of the heat transfer tubes 5 are buried in the fluidized bed during fluidization.

空気分散板2としては、流動化媒体6が空気受
入室4に落下しない構成のものであればよい。図
示の実施例装置においては、多数の開口2aが開
設された分散板本体2bの該開口2a上側に短い
筒状部材2cを立設し、この筒状部材2cの上端
開口に対向して屋根状部材2dを設置したものが
用いられている。
The air distribution plate 2 may be of any construction as long as it does not allow the fluidized medium 6 to fall into the air receiving chamber 4. In the illustrated embodiment, a short cylindrical member 2c is erected above the openings 2a of a dispersion plate main body 2b in which a large number of openings 2a are opened, and a roof-shaped member 2c is provided opposite to the upper end opening of the cylindrical member 2c. One in which a member 2d is installed is used.

また、本実施例装置においては、流動室3の上
方部分にはルーバダンパ7が設置されており、流
動床容器1内を通過する気体の流量を調整し得る
よう構成されている。また、流動化媒体6が上へ
飛出すのを防止する役目ももつている。なお、符
号7aはルーバダンパを枢支する軸部材である。
また、ルーバダンパ7の上方位置には衝突板8が
設置されており、流動室3から抜け出した流動化
媒体6があつた場合に、その流動化媒体6を跳ね
返して流動室3内部に落下させる作用をなしてい
る。
Further, in the apparatus of this embodiment, a louver damper 7 is installed in the upper part of the fluidized bed chamber 3, and is configured to be able to adjust the flow rate of gas passing through the fluidized bed container 1. It also has the role of preventing the fluidizing medium 6 from flying upward. Note that the reference numeral 7a is a shaft member that pivotally supports the louver damper.
Further, a collision plate 8 is installed above the louver damper 7, and when the fluidized medium 6 that has escaped from the flow chamber 3 hits, it bounces the fluidized medium 6 and causes it to fall into the inside of the flow chamber 3. is doing.

図中1a,1bは流動床容器1の底部及び頂部
に設けられた空気の導入口及び排出口である。本
実施例において、導入口1aにはフアン9が設置
され、モータ10によつて駆動され空気受入室4
内に空気を送り込むよう構成されている。
In the figure, 1a and 1b are air inlets and outlets provided at the bottom and top of the fluidized bed container 1. In this embodiment, a fan 9 is installed at the inlet 1a, and is driven by a motor 10 to
It is designed to blow air inside.

このように構成された流動床式冷却装置におい
て、モータ10を作動させてフアン9を回転させ
ると、空気受入室4内に空気が導入され、この空
気は空気分散板2の開口2aを通つて流動室3内
に入り、流動化媒体6を流動化させる。空気及び
流動化媒体6は、伝熱チユーブ5と接触し、該伝
熱チユーブ5内を通過されている高温の流体から
熱を奪い流動室3内を更に上昇する。流動化媒体
6の大部分は流動床を形成するが、一部の流動化
媒体6は空気に同伴されて流動室3内を上昇し、
更にその一部は衝突板8で跳ね返され流動室3内
部に落下し、再び流動床を形成する。流動化媒体
6が粒子である場合に、ほんの一部の粒子は、空
気と共に排出口1bから流動床容器1外に抜き出
されることがあるが、それはサイクロン等の粒子
捕集装置に送られる。なお、その場合、捕集した
粒子は、通常、流動床容器1内に返送される。
In the fluidized bed cooling device configured as described above, when the motor 10 is operated to rotate the fan 9, air is introduced into the air receiving chamber 4, and this air passes through the opening 2a of the air distribution plate 2. It enters the fluidization chamber 3 and fluidizes the fluidization medium 6. The air and fluidizing medium 6 come into contact with the heat transfer tube 5 and rise further within the flow chamber 3, taking away heat from the hot fluid that is being passed through the heat transfer tube 5. Most of the fluidized medium 6 forms a fluidized bed, but some of the fluidized medium 6 is entrained by air and rises inside the fluidized chamber 3,
Furthermore, a part of it is bounced off the collision plate 8 and falls into the fluidization chamber 3, forming a fluidized bed again. When the fluidizing medium 6 is particles, a small portion of the particles may be drawn out of the fluidized bed container 1 from the outlet 1b along with air, but they are sent to a particle collection device such as a cyclone. In this case, the collected particles are usually returned to the fluidized bed container 1.

しかし、伝熱チユーブ5の表面には、空気のみ
ならず固体の流動化媒体6も接触するので、伝熱
チユーブ5に被冷却流体から伝えられた熱エネル
ギーは、空気及び流動化媒体6の双方によつて奪
い取られるようになり、効率のよい冷却を行うこ
とが可能とされる。
However, since not only air but also the solid fluidizing medium 6 comes into contact with the surface of the heat transfer tube 5, the thermal energy transferred from the fluid to be cooled to the heat transfer tube 5 is transferred to both the air and the fluidizing medium 6. This makes it possible to perform efficient cooling.

なお、流動化媒体6としては、前記したよう
に、第2図に示すように中空であつて、且つ粒子
内外を連通する孔11aを有する粒子11を用い
ているので、 粒子が軽量であるので、流動床の圧損が小さ
くなり、モータ10の容量を小さくできる。
As described above, as the fluidizing medium 6, as shown in FIG. 2, particles 11 which are hollow and have holes 11a communicating between the inside and outside of the particles are used, so that the particles are lightweight. , the pressure loss of the fluidized bed is reduced, and the capacity of the motor 10 can be reduced.

流動床容器1内で発生する音が、孔11aを
通つて粒子11内に入り込んで減衰するように
なり、消音作用が奏される。
The sound generated in the fluidized bed container 1 enters the particles 11 through the holes 11a and is attenuated, thereby producing a sound-deadening effect.

などの効果がある。このような粒子11として酸
化アルミニウム(アルミナ)や酸化マグネシウ
ム、炭化珪素等セラミツクス製のものや、ステン
レス、銅などの金属製の中空粒子を用いることが
できる。また、粒子の粒径は例えば約1〜2mm程
度が好適であり、粒子の殻の厚さおよび孔11a
のきさは約0.1〜0.3mm程度のものが好適である。
このような中空粒子は、例えば約150〜300mm程度
の流動床層高となるように流動床容器1内に充填
される。
There are effects such as As such particles 11, those made of ceramics such as aluminum oxide (alumina), magnesium oxide, and silicon carbide, and hollow particles made of metals such as stainless steel and copper can be used. Further, the particle size of the particles is preferably about 1 to 2 mm, and the thickness of the particle shell and the pores 11a
The suitable size is about 0.1 to 0.3 mm.
Such hollow particles are filled into the fluidized bed container 1 so that the height of the fluidized bed layer is, for example, about 150 to 300 mm.

なお、発明者らが中空アルミナ粒子(平均粒径
約1.5mm、殻の厚さ0.2mm)のものを、流動床容器
1内に流動床層高が約200mm程度となるように充
填して種々実験を行つたところ、伝熱チユーブ5
表面における総括伝熱係数は空気のみを流通させ
る場合に比べ約3倍になることが認められた。
In addition, the inventors filled the fluidized bed container 1 with hollow alumina particles (average particle size of about 1.5 mm, shell thickness of 0.2 mm) so that the height of the fluidized bed was about 200 mm. When we conducted an experiment, we found that heat transfer tube 5
It was observed that the overall heat transfer coefficient on the surface was approximately three times that of the case where only air was allowed to flow.

本発明の流動床式冷却装置は、各種流体の冷却
装置として用いることができるのであるが、上述
のように中空の流動化媒体を用いることにより、
消音作用をも奏し得るので、ガスタービンやデイ
ーゼルエンジンの排気ガスの熱回収装置等に用い
ることができる。
The fluidized bed cooling device of the present invention can be used as a cooling device for various fluids, but as described above, by using a hollow fluidizing medium,
Since it can also have a silencing effect, it can be used in heat recovery devices for exhaust gas from gas turbines and diesel engines.

なお上記説明は冷却用気体が空気である場合に
ついて主としてなされているが、本発明の流動床
式冷却装置は空気以外の気体をも冷却用気体とし
て用い得ることは明らかである。
Although the above description has mainly been made regarding the case where the cooling gas is air, it is clear that the fluidized bed cooling apparatus of the present invention can also use gases other than air as the cooling gas.

[効果] 以上詳述した通り、本発明の流動床の冷却装置
においては、伝熱チユーブ表面に気体のみならず
熱容量の大きな固体の流動化媒体も接触し、極め
て効率のよい冷却を行うことが可能とされる。
[Effects] As detailed above, in the fluidized bed cooling device of the present invention, not only gas but also a solid fluidizing medium with a large heat capacity comes into contact with the surface of the heat transfer tube, making it possible to perform extremely efficient cooling. It is considered possible.

なお、流動化媒体として中空であつて、かつ粒
子内外を連通する孔を有する粒子を用いているの
で、 粒子が軽量であるので、流動床の圧損が小さ
くなり、流動床に流体を供給する流体流通用装
置の駆動源(例えばモータ)の容量を小さくで
きる。
In addition, since particles that are hollow and have holes that communicate between the inside and outside of the particles are used as the fluidizing medium, the particles are lightweight, so the pressure drop in the fluidized bed is small, and the fluid that supplies the fluid to the fluidized bed is The capacity of the drive source (for example, motor) of the distribution device can be reduced.

流動床容器内で発生する音が、粒子の孔を通
つて粒子内に入り込んで減衰するようになり、
消音作用が奏される。
The sound generated in the fluidized bed container enters the particles through the pores of the particles and is attenuated.
A silencing effect is produced.

などの効果が奏される。Effects such as this are produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る流動床の冷却装
置の構成を示す縦断面図、第2図は中空粒子11
の概略形状を示す拡大断面図である。 1……流動床容器、2……空気分散板、5……
伝熱チユーブ、6……流動化媒体、7……ルーバ
ダンパ、8……衝突板、9……フアン、11……
中空粒子。
FIG. 1 is a longitudinal cross-sectional view showing the configuration of a fluidized bed cooling device according to an embodiment of the present invention, and FIG.
FIG. 1...Fluidized bed container, 2...Air distribution plate, 5...
Heat transfer tube, 6... Fluidization medium, 7... Louver damper, 8... Collision plate, 9... Fan, 11...
hollow particles.

Claims (1)

【特許請求の範囲】 1 分散板によつて内部が上下の室に区画されて
いる流動床容器と、該容器内上側の室に配設され
ており、その内部に被冷却流体が通される伝熱チ
ユーブと、流動時に該伝熱チユーブの少くとも一
部を埋没する流動床高さとなる量、該上側の質に
充填された流動化媒体と、を有してなり、該流動
化媒体は中空であり且つ粒子内外を連通する孔を
有していることを特徴とする流動床式冷却装置。 2 前記流動化媒体はセラミツクス製又は金属製
の中空粒子である特許請求の範囲第1項記載の流
動床式冷却装置。 3 粒子の粒径は1〜2mmであり、粒子の殻の厚
さは0.1〜0.3mmである特許請求の範囲第2項記載
の流動床式冷却装置。 4 粒子が中空アルミナ粒子である特許請求の範
囲第3項記載の流動床式冷却装置。
[Claims] 1. A fluidized bed container whose interior is divided into upper and lower chambers by a dispersion plate, and a fluidized bed container disposed in the upper chamber of the container, through which a fluid to be cooled is passed. a heat transfer tube, and a fluidizing medium filled in the upper layer in an amount such that the height of the fluidized bed buries at least a portion of the heat transfer tube when flowing, the fluidizing medium being A fluidized bed cooling device characterized by being hollow and having holes that communicate between inside and outside of particles. 2. The fluidized bed cooling device according to claim 1, wherein the fluidizing medium is hollow particles made of ceramic or metal. 3. The fluidized bed cooling device according to claim 2, wherein the particles have a diameter of 1 to 2 mm and a shell thickness of the particles of 0.1 to 0.3 mm. 4. The fluidized bed cooling device according to claim 3, wherein the particles are hollow alumina particles.
JP15375885A 1985-07-12 1985-07-12 Cooling tower of fluidized-bed type Granted JPS6213990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15375885A JPS6213990A (en) 1985-07-12 1985-07-12 Cooling tower of fluidized-bed type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15375885A JPS6213990A (en) 1985-07-12 1985-07-12 Cooling tower of fluidized-bed type

Publications (2)

Publication Number Publication Date
JPS6213990A JPS6213990A (en) 1987-01-22
JPH0345314B2 true JPH0345314B2 (en) 1991-07-10

Family

ID=15569484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15375885A Granted JPS6213990A (en) 1985-07-12 1985-07-12 Cooling tower of fluidized-bed type

Country Status (1)

Country Link
JP (1) JPS6213990A (en)

Also Published As

Publication number Publication date
JPS6213990A (en) 1987-01-22

Similar Documents

Publication Publication Date Title
US4461651A (en) Sonic cleaning device and method
EA200100913A1 (en) OBTAINING A GAS HYDRAULIC SUSPENSION WITH THE HELP OF A HEAT EXCHANGER WITH A BURNED LAYER
GB2172222A (en) Water-cooled cyclone separator
WO1981000059A1 (en) Low residence time solid-gas separation device and system
US5322116A (en) Very high temperature heat exchanger
JPS61250489A (en) Fluidized-bed heat exchanger
JPH0345314B2 (en)
US9089829B2 (en) Method and device for enhancing a process involving a solid object and a gas
JPS58148305A (en) Fluidized bed combustion apparatus
JP2729339B2 (en) Particle flow heat exchanger
JP2952407B2 (en) Fluidized bed reactor for hydrogen storage alloy
JP2690172B2 (en) Heat exchange device for powdery particles
EP0441816A1 (en) Method and arrangement for an enforced heat transmission between bodies and gases
JP2659850B2 (en) Fine powder cooling device
JPH0880431A (en) Moving bed device
GB2065493A (en) Reducing particle loss from fluidised beds
JPS6222781Y2 (en)
JPS6312236B2 (en)
JPH07136734A (en) Vibration cooling device of high temp. particle
JP2754305B2 (en) Particle flow heat exchanger
JP2672011B2 (en) Fluidized bed
JPS6176882A (en) Heat exchange device
Konrad et al. Heat transfer between very shallow fluidized beds and an immersed horizontal tube
CA1056334A (en) Cyclone separator vortex finder complex with exterior heat fins
JPS58196861U (en) Carbon dioxide laser device