JPH0345149B2 - - Google Patents

Info

Publication number
JPH0345149B2
JPH0345149B2 JP63258171A JP25817188A JPH0345149B2 JP H0345149 B2 JPH0345149 B2 JP H0345149B2 JP 63258171 A JP63258171 A JP 63258171A JP 25817188 A JP25817188 A JP 25817188A JP H0345149 B2 JPH0345149 B2 JP H0345149B2
Authority
JP
Japan
Prior art keywords
pulp
cooking
raw material
mixture
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63258171A
Other languages
Japanese (ja)
Other versions
JPH02104788A (en
Inventor
Akio Onda
Akio Dobashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP25817188A priority Critical patent/JPH02104788A/en
Publication of JPH02104788A publication Critical patent/JPH02104788A/en
Publication of JPH0345149B2 publication Critical patent/JPH0345149B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は水を溶媒とする無塩素、無硫黄の蒸解
薬液を用い、常圧下での1段蒸解により、広く非
木材セルロース原料から白色度の高い化学パルプ
を迅速かつ高歩留りで製造する方法と装置に関す
るものである。 〔従来技術及びその問題点〕 非木材セルロース原料は、木材に比べ一般に組
織が粗く、柔かく、リグニン含有量も少ない。そ
のため蒸解薬液の浸透もよく蒸解も容易である。
木材パルプの製造と同様にAP法やKP法を適用す
れば木材に比べ10〜20℃低温(140〜160℃)で蒸
解が可能であるが、原料のセルロース含有量に比
べてパルプの収率が著しく低くなると言う欠点が
あり、その欠点を改良するため古くから多くの研
究がなされて来た。そのための方法の1つとし
て、木材パルプの高収率化におけると同様に、化
学的処理を軽度にますせ、後処理として、リフア
イナー又はビーター等による機械的解繊を行つて
高収率パルプを得るSCP、CGP、CTMP法等が
試みられ、麻類などリグニン含有量が少ない一部
の原料のパルプ化においては、古くから実用化さ
れている。また、その改良に関する研究報告等に
おいても、化学処理のみの条件が研究され、機械
的処理については、改良の余地がない程度にリフ
アイナーやビータの採用が常識化されていた。す
なわち、麻類のアルカリ蒸解後ビーター等で解繊
してパルプ化するのが常識となつている。 また楮、三椏等の靭皮パルプの高収率化を目的
とした研究において、高賀、高村、鮫島氏ら〔紙
パ技協誌34巻、10号、50頁(1980年)〕は、しゆ
う酸アンモニウムの水溶液を蒸解薬液として用い
常圧下での蒸解後ランペンミルで処理して解繊
し、高収率パルプを得るのに成功している。赤
松、上嶋、藤井、吉原氏らはマニラ麻(アバカ)
に対して白色腐朽菌による生化学的処理を行つた
のち、デイスクリフアイナーによる機械的解繊処
理法(bio−RMP法)で強度は低いが高収率でパ
ルプを得るのに成功している〔第29回リグニン討
論会要旨集79頁(1984年)〕。橘、磯田、野村氏ら
(特公昭41−4801号)は過酸化水素を主体として、
補助剤として水酸化ナトリウム及びケイ酸ナトリ
ウムを添加した混合液を蒸解薬液として用い、麻
類を60〜120℃で4時間蒸解を行い、次に次亜塩
素酸塩を用いて漂白することにより、高収率で麻
パルプを得ることに成功している。しかし、この
方法も追試して見ると、常圧下での蒸解を行つた
場合、後処理として機械的解繊を行わなければ漂
白工程に掛けられるような完全なパルプ化は可能
でないので、機械的解繊工程の使用は必須である
ことが分る。 なお、メカノケミカル法は、稲わら、麦わら、
バガス、麻殻等セルロースを含む農産廃棄物から
パルプを得る方法として知られている。この方法
は水に強力な渦流を起こさせ、その中にパルプや
古紙を投入すれば容易に離解しうるハイドロパル
パーのような高濃度離解機を用い、同機の中に水
の代りに高温、高濃度の水酸化ナトリウム水溶液
を張り、パルプ又は古紙の代りに上記のセルロー
ス原料を投入することにより、常圧下約100℃の
温度で約1時間処理することにより、直接未晒パ
ルプを60〜70%の高収率で得る簡便なパルプ化法
である。しかし、この方法では節の部分がパルプ
化せず、得られるパルプは、ごみが多く、白色度
は低く、漂白は可能であるが、リグニンが多いた
め漂白剤を大量に必要とする。そのため未晒パル
プのままで下級包装紙や板紙の原料として使われ
るに過ぎなかつた。 以上のように機械的解繊を伴うパルプ化はパル
プ収率の飛躍的な向上を可能とするが、一方では
用いるビーター、ランペンミル、又はリフアイナ
ー等の解繊装置を必要とし、加えるエネルギーは
半蒸解状態のセルロース原料の組織を壊す際にセ
ルロースの破壊にも使われ、著量の結束繊維や短
繊維を生む結果となる。そのため、このようなパ
ルプ化方式による高収率化は、著量の動力を必要
とするとともに、繊維の漂白は困難になり、漂白
剤の原単位を押し上げる。またこのことは、パル
プの劣化を招くことになるなどの不都合を生じ
る。 最近では、パルプの収率向上や蒸解促進等を目
的として蒸解薬液中にアルコール等の溶媒を加え
たり、フエノールなどの有機溶媒中でセルロース
原料を蒸解する研究等が発表されるようになつた
が、常圧下での短時間の蒸解で良品質のパルプを
高収率で得ることに成功した例はなかつた。 先に、本発明者らは過酸化水素のアルカリ溶液
に助剤としてキレート剤及びアントラキノン類等
を加えた混合液を蒸解薬液として用い、140〜170
℃で1時間処理するだけでまつたく機械的解繊工
程を経ずに広く非木材及び木材セルロース原料か
ら良品質のパルプを高収率で得ることに成功した
(PA法、特公昭59−9677号等)。 このPA法によれば従来のPA法やKP法等の化
学パルプの製法に比べ高収率でパルプが得られ、
パルプは色が白く、強度も大きく、漂白も容易で
あるなど多くの利点がある。しかし、SCP法や
CGP法に比べれば機械的解繊工程や装置は必要
としないものの、収率は未だ低く、ケミメカニカ
ル法や、前記の橘、磯田、野村氏らの方法に比べ
高温で蒸解するため耐圧性の蒸解釜を必要とする
などの欠点もあつた。 〔発明の課題〕 本発明は前記の過酸化水素のアルカリ性溶液を
蒸解薬液として用いる非木材セルロース原料のパ
ルプ化において、蒸解を著しく促進させることに
より、常圧化で短時間蒸解するだけで、独立した
機械的解繊工程を経ることなしに白色度の高い良
品質のパルプを高収率で得る方法及び装置を提供
することをその課題とする。 〔課題を解決するための手段〕 本発明者らは広く非木材パルプ及び木材パルプ
の製造方法を合理化するため長年にわたつて研究
を進めて来た。先に本発明者らは前記した新しい
PA法を開発したことにより、白色度が比較的高
い未晒パルプが得られるようになつた。さらに本
発明者らは、このPA法の長所であるまつたく機
械的な解繊工程と装置を必要としない長所を生か
したままで、高圧、高温での蒸解工程と、耐圧蒸
解装置を必要としない新しい方法が開発されれ
ば、パルプ工業が極めて合理化しうるものと着想
して、鋭意研究を続けて来た。そして、今回、常
圧下で加温したPA蒸解薬液中にアバカ及びバガ
ス等の非木材セルロース原料を投入すると、極め
て短時間で原料表面に極く薄いパルプ化された層
が生ずることを見い出した。このパルプ化された
層を拭い去ることにより次々と内部の新しい面が
現われてパルプ化し、原料の組織に機械的な破壊
を加えることなしに原料の殆どすべてが、常圧下
の沸点以下の温度で極めて短時間でパルプ化する
という事実を発見した。本発明はこの知見を基に
して完成されたものである。 すなわち、本発明によれば、水、過酸化水素又
は過酸化水素発生剤、水酸化アルカリ及び過酸化
水素安定剤からなる混合液又はこの混合液にアン
トラキノン類を加えたものを蒸解薬液とし、非木
材セルロース原料をパルプ原料として使用し、液
比2〜15/Kgになるよう蒸解薬液とパルプ原料
の両者を蒸解装置に供給し、常圧下で、かつ沸点
以下の温度で強制的に攪拌混合することにより高
速で1段蒸解し、得られた蒸解物から、磨砕も、
叩解も、離解もせずに、粕、塵等の夾雑物を除く
だけで精選パルプを得ることを特徴とする非木材
セルロース原料から白色度の高い未晒パルプを製
造する方法(以下、急速PA法:FPA法と略称)
が提供される。 また、このFPA法の実施装置として、パルプ
原料と蒸解薬液を低液比で供給した混合物を強制
的に攪拌混合しつつ常圧下で沸点又は沸点近い温
度に加熱及び/又は保温し得る機能を有する攪拌
機及び高濃度ポンプのうち少なくとも1つ以上を
備えた耐食性の容器からなる蒸解反応装置と、蒸
解物から粕及び塵等夾雑物と精選未晒パルプを分
離回収しうる装置との組合せからなることを特徴
とする装置(以下、FPA装置と略称)が提供さ
れる。 今回、発明者らは、パルプ原料としてアバカを
長さ30〜40mmに切断して蒸解に供した。この場合
後記の表1の(A)に示すように、原料に対し(以下
絶乾表示)、水酸化ナトリウム(Na2Oとして)
を15%、過酸化水素を7%、過酸化水素の安定剤
としてキレート剤(1−ヒドロキシエタン−1,
1−ジホスホン酸)0.3%、キノン類(t−ブチ
ルアントラキノン)0.1%及び水を用いて蒸解薬
液を調製した。この蒸解薬液を加熱及び保温可能
な攪拌器付き直径30cmの円筒型の20容のステン
レス製容器に入れ、90℃に加熱後アバカ1Kgを液
比10/Kgとなるように加え、常圧下で90℃に保
ち攪拌器を毎分150回転させ、原料の擦り合いに
よる表面のパルプ薄層の拭い去りが促せるように
攪拌混合を強制的に行つた。 以上の操作において、蒸解温度は従来のPA法
のそれと比べ極めて低いにも拘らず蒸解が急速に
進み、原料の原形は速やかに失われ、その結果、
結束繊維の存在も見られなくなつた。60分後に蒸
解を打ち切り、淡黄色のどろどろしたパルプ状の
蒸解物を取り出し、水で希釈し、12/1000カツト
のフラツトスクリーンで処理したところ、極めて
容易にこすことが出来、ハンター白色度が60.2%
と未晒のアバカパルプとしては極めて高いパルプ
(以下急速PA蒸解パルプ:FPAPと略称)が72.3
%と言う極めて高い収率(粕率3.2%、総収率
75.5%)で得ることが出来た。これは、後記の表
1−(B)に示すように従来のPA法が150℃で60分間
蒸解して全収率54.9%(精選収率48.5、粕率6.4
%)であるのに比べて、蒸解温度は60℃も低いに
も拘らず粕率は低く、精選収率及び総収率ともに
20%も向上した。得られる未晒パルプはカッパー
価は高かつたが、ハンター白色度はアバカの化学
パルプとしては白色度が高いとされてきたPAP
より20%以上も高いことを示す。 さらに本発明者らは研究を進めた結果、本発明
法は、アバカ、サイザルのような葉繊維ばかりで
なく、PA法におけると同様にバガス、稲わら等
のような桿茎、雁皮、三椏等のようなペクトセル
ロースを含む靭皮の他、ケナフやジユートのよう
に著量のリグニンを含む靭皮、コツトンリンタ
ー、カポツクのような種毛等の各種非木材セルロ
ース原料に対して適用できる上、未晒パルプとし
ては白色度が高いパルプを極めて高い収率で製造
し得ることが分かつた。またパルプの製造におい
て蒸解時間と蒸解薬品の節約と、パルプ化工程及
び設備の簡略化に大きく寄与しうるものであるこ
とを知つた。 本発明でパルプ原料として用いる非木材セルロ
ース原料は、5〜150mm程度の長さで蒸解装置に
供給される。非木材セルロース原料が長大の時に
はあらかじめ5〜150mm程度に切断し、短小な時
にはそのまま使用する。 蒸解に先立つて長い非木材セルロース原料を切
断するのは、蒸解中に行う攪拌混合の際に非木材
セルロース原料どうしが長すぎて強固にからみ合
わないようにするためである。一方あまり短かく
切り過ぎれば、パルプを構成する繊維の形状やパ
ルプの性質を著しく損ね、引裂き強さ等のパルプ
強度の低下を招くので好ましくない。そのため5
〜150mmの切断するのが好ましいが、FPA法にお
ける原料の最適の長さは原料植物の種類によつて
異なる。一般に種毛では短かく、5〜20mmに切断
するのが好ましい。麻類及び靭皮はそれより長
く、25〜80mmに切断するのが好ましい。また桿茎
類は更に長く50〜150mmに切断するのが望ましい。
なおこの工程はパルプ工場の内部で行うことも、
また工場に運び込む前に行うことも可能である。
原料を切断するための装置は、稲わらや桑等の切
断機のように柔軟で長い原料を切断する装置が使
用可能である。 蒸解薬液としては従来高圧高温でPA蒸解を行
つて来たときのPA蒸解薬液とまつたく同等のも
のが使用可能であるのはもとより、低温での蒸解
が可能となつたためPA法で過酸化水素の安定剤
として使用された来たキレート剤の一部又は全部
を水ガラスよりなる安定剤に置き換えることも可
能となつた。パルプ原料の表面に生成する薄いパ
ルプ層を拭い去るための混合攪拌可能な液比が、
パルプ原料の長さ及び原料植物の種類によつてか
なり異なるので、薬品使用量を濃度で表わすのは
妥当でないものと考え、以下対絶乾原料に対する
重量%で表示すると、過酸化水素は1〜20%、好
ましくは3〜10%、水酸化アルカリ(水酸化ナト
リウムや水酸化カリウム等)は、M2O(M:Na
又はK)換算で6〜40%、好ましくは10〜25%、
過酸化水素の安定剤は水ガラスであれば0.5〜15
%、好ましくは2〜8%であり、キレート剤であ
れば0.1〜2%、好ましくは0.2〜1%である。キ
レート剤としては、例えば、EDTA、DTPA、
1−ヒドロキシエタン−1,1−ジホスホン酸等
が使用できるが、1−ヒドロキシエタン−1,1
−ジホスホン酸は白色度の高い未晒パルプを得る
のに好ましい。キノン類は0.02〜1%、好ましく
は0.05〜0.5%である。キノン類としては、アン
トラキノン、テトラヒドロアントラキノンの他、
t−ブチルアントラキノン等アルキルアントラキ
ノンの使用が可能で、特にt−ブチルアントラキ
ノン及びアミルアントラキノン等は収率向上のた
めにその使用は好ましい。 本発明のFPA法蒸解では、高濃度低液比での
強制的な攪拌混合によつて蒸解は促進される。す
なわち、可溶化する原料表面でのペクチン及びリ
グニン等の非セルロース物質は拡散されるととも
に、濃厚な状態で蒸解薬液が常に原料表面に接触
し、生成するパルプの薄層を遊離させ、遠ざけ、
内部の反応不充分な面を次々と表面に露出させる
ため、さらに促進され、蒸解に必要な温度をPA
法より一挙に50〜70℃も引き下げることを可能と
する。麻類(アバカ)のパルプ化では後記表1に
示すようにPA法の常圧下、90℃における表−1
(C)の蒸解時間の1/4の蒸解時間で殆ど完全にパル
プ化することを可能とする。FPA法の蒸解条件
のうち、圧力、温度及び時間は、常圧下で50℃〜
沸点、0.5〜3時間で、望ましくは90±10℃、1
±0.5時間である。 蒸解反応装置としては、高濃度の蒸解薬液と切
断した非木材セルロース原料との低液比(2〜15
/kg)の混合物を強制的に混合攪拌すること
が可能な耐食性の攪拌機または高濃度ポンプのう
ち、少なくとも1つ以上を有し、常圧下で沸点ま
たはそれに近い温度に加熱保温が可能な耐食性の
容器が使用しうる。この際高濃度ポンプを付属す
るものは蒸解後パルプを精選工程に移送するのに
も便利である。 精選装置は、粕及び塵等の夾雑物と精選パルプ
とを分離する機能を有するもので、細長い孔隙や
丸い孔隙を有するフラツトスクリーン等各種篩及
び各種の液体サイクロン等の分離機が有効に使用
し得る。 〔発明の効果〕 本発明の適用範囲は広く、本発明使用によるパ
ルプ製造の合理化の効果は大きい。すなわち、パ
ルプ原料としては、セルロース繊維を主成分と
し、ヘミセルロースと少量のリグニン/又はペク
チンを含むアバカ、サイザル等の葉繊維、バガ
ス、稲わら等の桿茎、ジユート、ケナフ等の靭皮
及びコツトンリンター等の種毛、摩屑等の各種非
木材植物原料に広く適用できる。 本発明によれば従来のパルプ化技術をもつてし
ては容易に相像出来ない程PA蒸解が促進される
ため、常圧下沸点以下の温度で1時間程度の蒸解
でパルプ化が可能で、白色度が極めて大きい未晒
パルプ(UFPAP)がUPAPよりもさらに高収率
で得られるようになつた。そのため蒸解薬品の原
単位を大幅に引き下げることが可能で、パルプ工
業の省資源化に役立つことが分つた。 次に本発明の実施に伴う工程及び設備の簡略化
について述べる。先ず本発明では高い白色度で極
めて高収率で未晒パルプを得るのに常圧下で蒸解
するだけですむので、高圧蒸解釜を一切必要とし
ない。また蒸解後解繊工程がないのでリフアイナ
ー、ビーターやランペンミル等をパルプ製造に際
して必要としない。UFPAPは未晒パルプとして
は白色度が高く漂白も容易で、過酸化水素1段漂
白でハンター白色度80%以上の高白色度にもなる
ので無漂白又は1段晒パルプのための設備しか通
常必要としない。 また常圧での短時間の蒸解でパルプ化が行われ
るため、昇温時間は短かくてすみ、ブローする前
の降圧時間は取らなくてすむので生産性は大きく
向上する。また蒸解温度は低く、離解機を使わな
くてもすむため省エネルギー効果も期待できる。 〔実施例〕 本発明を以下実施例をもつてさらに詳細に説明
する。 実施例 1 フイリツピン産アバカを長さ30〜40mmに切断
し、絶乾量として1Kgと蒸解薬液(NaOH:
Na2Oとして150g、H2O2:70g、t−ブチルア
ントラキノン:3g、キレート剤:10g及び水)
を液比9/Kgとなるよう攪拌機つき20容ステ
ンレス製反応容器に入れ、90℃に保ちながら60分
間強制的に混合攪拌しながら反応を行つた。反応
後直ちに脱汁水洗し、12/1000カツトのフラツト
スクリーンを用いて総収率(以下すべて絶乾収得
物対絶乾原料表示)77.5%、うち精選収率72.3
%、粕率3.2%でパルプを得た。なお精選パルプ
は未晒のパルプは未晒の状態でハンター白色度
60.2%であつた。 実施例 2 沖縄産バガス(長さ40〜70mm)絶乾量で1Kgを
取り、これに対し液比6/Kgとなるよう蒸解薬
液(NaOH:Na2Oとして180g、H2O2:20g、
アントラキノン:3g、キレート剤:3g及び
水)を実施例1と同様攪拌機つき反応容器に入
れ、92℃に保ちながら90分間強制的に混合攪拌し
ながら反応を行つた。反応後直ちに脱汁水洗し、
6/1000カツトのフラツトスクリーンを用いて総収
率62.1%、うち精選収率58.2%、粕率3.9%でパル
プを得た。なお精選パルプのハンター白色度は
58.1%であつた。 実施例 3 繊維長2〜4mmのコツトンリンターを絶乾量で
1Kgを取り、液比9/Kgとなるよう蒸解薬液
(NaOH:Na2Oとして120g/、H2O3:30g、
テトラヒドロアントラキノン:3g、キレート
剤:3g及び水)を実施例1と同様攪拌機つき反
応容器に入れ90℃に保ちながら40分間強制的に混
合攪拌して反応を行つた。反応後直ちに脱汁水洗
してハンター白色度62.8%のコツトンリンターパ
ルプを全収率84.1%で得た。 実施例 4 バングラデツシユ産ジユートを長さ40〜60mmに
切断し、絶乾量で1Kgを取り、液比8/Kgにな
るよう蒸解薬液(NaOH:Na2Oとして170g、
H2O240g、t−ブチルアントラキノン:2g、
キレート剤:3g及び水)を実施例1と同様攪拌
機つき反応容器に入れ91℃に保ちながら60分間強
制的に混合攪拌して反応を行つた。 反応後直ちに脱汁水洗して12/1000メツシユの
フラツトスクリーンを用いて総収率68.1%、うち
精選収率65.9%、粕率2.2%でパルプを得た。な
お精選パルプのハンター白色度は58.2%であつ
た。 以上の結果を表−1にまとめて示す。 【表】
[Detailed Description of the Invention] [Technical Field] The present invention uses a chlorine-free, sulfur-free cooking chemical solution using water as a solvent, and uses a single-stage cooking method under normal pressure to produce a chemical with high whiteness from a wide range of non-wood cellulose raw materials. The present invention relates to a method and apparatus for producing pulp quickly and with high yield. [Prior art and its problems] Non-wood cellulose raw materials generally have coarser and softer structures than wood, and have a lower lignin content. Therefore, cooking chemicals penetrate well and cooking is easy.
Similar to the production of wood pulp, if the AP method or KP method is applied, it is possible to digest at a temperature 10 to 20 degrees Celsius lower (140 to 160 degrees Celsius) than wood, but the yield of pulp is lower than the cellulose content of the raw material. It has the disadvantage of being extremely low, and much research has been carried out for a long time to improve this disadvantage. One of the methods for this purpose is to perform a light chemical treatment and perform mechanical defibration using a refiner or beater as a post-treatment, as in the case of increasing the yield of wood pulp, to obtain a high-yield pulp. SCP, CGP, and CTMP methods have been tried and used for pulping some raw materials with low lignin content, such as hemp, for a long time. Furthermore, in research reports on improvements, only the conditions for chemical treatment were studied, and for mechanical treatment, the use of refiners and beaters was common knowledge to the extent that there was no room for improvement. That is, it is common knowledge that hemp is digested with an alkali and then defibrated using a beater or the like to form pulp. In addition, in research aimed at increasing the yield of bast pulp from kozo, mitsumata, etc., Takaga, Takamura, Samejima et al. Using an aqueous solution of ammonium oxalate as the cooking chemical, the pulp was cooked under normal pressure and then treated in a lumpen mill for defibration, successfully producing high-yield pulp. Akamatsu, Ueshima, Fujii, Yoshiwara et al. Manila hemp (abaca)
After biochemical treatment using white-rot fungi, mechanical defibration treatment (bio-RMP method) using Disccliff Iner was used to successfully obtain pulp with low strength but high yield. [29th Lignin Symposium Abstracts, p. 79 (1984)]. Mr. Tachibana, Mr. Isoda, Mr. Nomura et al. (Special Publication No. 41-4801) mainly used hydrogen peroxide,
By using a mixture of sodium hydroxide and sodium silicate as an auxiliary agent as a cooking chemical, hemp is cooked at 60 to 120°C for 4 hours, and then bleached with hypochlorite. Hemp pulp has been successfully obtained in high yield. However, when we tried this method again, we found that when cooking under normal pressure, complete pulping that can be applied to the bleaching process is not possible without mechanical defibration as a post-treatment. It turns out that the use of a defibration step is essential. In addition, the mechanochemical method uses rice straw, wheat straw,
It is known as a method for obtaining pulp from agricultural waste containing cellulose such as bagasse and hemp husks. This method uses a high-concentration disintegrating machine such as a hydropulper, which can easily disintegrate pulp or waste paper by creating a strong vortex in water. By applying a concentrated aqueous sodium hydroxide solution and adding the above-mentioned cellulose raw material instead of pulp or waste paper, the unbleached pulp can be directly converted to 60-70% by treating it at a temperature of about 100°C under normal pressure for about 1 hour. This is a simple pulping method that provides high yields. However, with this method, the knots are not pulped, and the resulting pulp has a lot of dirt and low whiteness.Although bleaching is possible, it contains a lot of lignin and requires a large amount of bleaching agent. For this reason, the unbleached pulp was only used as a raw material for lower-grade wrapping paper and paperboard. As mentioned above, pulping with mechanical defibration can dramatically improve the pulp yield, but on the other hand, it requires a defibration device such as a beater, a lumpen mill, or a refiner, and the energy applied is half-digested. It is also used to break down cellulose when breaking down the structure of cellulosic raw materials in the state, resulting in the production of a significant amount of bound fibers and short fibers. Therefore, increasing the yield by such a pulping method requires a significant amount of power, and bleaching the fibers becomes difficult, which increases the basic unit of bleaching agent. This also causes inconveniences such as deterioration of the pulp. Recently, research has been published on adding solvents such as alcohol to cooking chemicals and cooking cellulose raw materials in organic solvents such as phenol in order to improve pulp yield and accelerate cooking. However, there has been no example of success in obtaining high-quality pulp in high yield through short-time cooking under normal pressure. Previously, the present inventors used a mixture of an alkaline solution of hydrogen peroxide and a chelating agent, anthraquinones, etc. as auxiliaries as a cooking chemical solution.
We succeeded in obtaining high-quality pulp from a wide variety of non-wood and wood cellulose raw materials at high yields by treating it at ℃ for just 1 hour without going through the mechanical defibration process (PA method, Japanese Patent Publication No. 59-9677). No. etc.). According to this PA method, pulp can be obtained at a higher yield than conventional chemical pulp manufacturing methods such as PA method and KP method.
Pulp has many advantages, including being white in color, strong, and easily bleached. However, the SCP method
Although it does not require a mechanical defibration process or equipment compared to the CGP method, the yield is still low, and the pressure resistance is lower than that of the chemical mechanical method or the method of Tachibana, Isoda, and Nomura because it cooks at a higher temperature. It also had drawbacks, such as the need for a digester. [Problems to be solved by the invention] The present invention significantly accelerates cooking in the pulping of non-wood cellulose raw materials using the above-mentioned alkaline solution of hydrogen peroxide as a cooking chemical. The object of the present invention is to provide a method and apparatus for obtaining high-quality pulp with high whiteness at a high yield without undergoing a mechanical defibration step. [Means for Solving the Problems] The present inventors have been conducting research for many years in order to rationalize a wide range of methods for producing non-wood pulp and wood pulp. First, the present inventors developed the new
The development of the PA method has made it possible to obtain unbleached pulp with relatively high whiteness. Furthermore, the present inventors have made use of the advantages of this PA method, which do not require a mechanical defibration process and equipment, and do not require a high-pressure, high-temperature cooking process or pressure-resistant cooking equipment. I have continued my research with the idea that if a new method were developed, the pulp industry could be greatly streamlined. We have now discovered that when non-wood cellulose raw materials such as abaca and bagasse are added to a PA cooking chemical solution heated under normal pressure, an extremely thin pulped layer forms on the surface of the raw materials in an extremely short period of time. By wiping off this pulped layer, new internal surfaces are revealed one after another and pulped, and almost all of the raw material is heated at a temperature below the boiling point under normal pressure without mechanically destroying the raw material structure. We discovered that it can be turned into pulp in an extremely short time. The present invention was completed based on this knowledge. That is, according to the present invention, a mixture consisting of water, hydrogen peroxide, a hydrogen peroxide generator, an alkali hydroxide, and a hydrogen peroxide stabilizer, or a mixture containing anthraquinones is used as a cooking chemical liquid, Wood cellulose raw material is used as pulp raw material, and both the cooking chemicals and pulp raw material are supplied to the digester at a liquid ratio of 2 to 15/Kg, and the mixture is forcibly stirred under normal pressure and at a temperature below the boiling point. By doing so, one stage of high-speed cooking is performed, and the resulting digested product is ground.
A method for producing unbleached pulp with high whiteness from non-wood cellulose raw materials (hereinafter referred to as rapid PA method), which is characterized by obtaining selected pulp only by removing impurities such as lees and dust without beating or disintegrating. :FPA Act)
is provided. In addition, the FPA method implementation equipment has the function of forcibly stirring and mixing a mixture of pulp raw materials and cooking chemicals supplied at a low liquid ratio while heating and/or keeping the mixture at or near the boiling point under normal pressure. Consists of a combination of a cooking reaction device consisting of a corrosion-resistant container equipped with at least one of an agitator and a high concentration pump, and a device capable of separating and recovering impurities such as lees and dust from the cooked product and selected unbleached pulp. A device (hereinafter abbreviated as FPA device) is provided. This time, the inventors used abaca as a pulp raw material by cutting it into lengths of 30 to 40 mm and using it for cooking. In this case, as shown in (A) of Table 1 below, sodium hydroxide (as Na 2 O) is added to the raw materials (hereinafter expressed as bone dry).
15%, hydrogen peroxide 7%, and a chelating agent (1-hydroxyethane-1,
A cooking chemical solution was prepared using 0.3% of 1-diphosphonic acid), 0.1% of quinones (t-butylanthraquinone), and water. This cooking chemical solution was placed in a 20-volume stainless steel container with a diameter of 30 cm and equipped with a stirrer that can be heated and kept warm. After heating to 90°C, 1 kg of abaca was added at a liquid ratio of 10/Kg. The mixture was kept at ℃ and the stirrer was rotated at 150 revolutions per minute to forcibly stir and mix the raw materials so that the raw materials rubbed against each other to facilitate wiping off the thin pulp layer on the surface. In the above operation, although the cooking temperature is extremely low compared to that of the conventional PA method, the cooking progresses rapidly, and the original shape of the raw material is quickly lost.
The presence of bound fibers was also no longer observed. After 60 minutes, the cooking was stopped, and the pale yellow, mushy, pulpy digestate was taken out, diluted with water, and treated with a 12/1000 cut flat screen. 60.2%
72.3, which is extremely high for unbleached abaca pulp (hereinafter referred to as rapid PA cooking pulp: FPAP).
% (3.2% lees rate, total yield
75.5%). As shown in Table 1-(B) below, the conventional PA method requires cooking at 150°C for 60 minutes, resulting in a total yield of 54.9% (picked yield 48.5, lees ratio 6.4).
%), although the cooking temperature is 60°C lower, the lees ratio is low, and both the selective yield and total yield are low.
It improved by 20%. The resulting unbleached pulp had a high kappa number, but the Hunter whiteness was PAP, which has been considered to have a high whiteness for abaca chemical pulp.
This shows that it is more than 20% higher than the previous year. Furthermore, as a result of our research, the present invention method can be applied not only to leaf fibers such as abaca and sisal, but also to fibers such as bagasse, rods such as rice straw, gampi, mitsumata, etc., as in the PA method. It can be applied to various non-wood cellulose raw materials such as bast containing pectocellulose such as bast containing pectocellulose, bast containing a significant amount of lignin such as kenaf and juute, seed wool such as cotton linters and kapoku. It has been found that unbleached pulp with high whiteness can be produced at an extremely high yield. It has also been found that the present invention can greatly contribute to saving cooking time and cooking chemicals in pulp production, and to simplifying the pulping process and equipment. The non-wood cellulose raw material used as a pulp raw material in the present invention is supplied to the digester in a length of about 5 to 150 mm. When the non-wood cellulose raw material is long, it is cut into pieces of about 5 to 150 mm in advance, and when it is short, it is used as is. The reason why long non-wood cellulose raw materials are cut prior to cooking is to prevent non-wood cellulose raw materials from being too long and tightly intertwined with each other during stirring and mixing during cooking. On the other hand, if the fibers are cut too short, the shape of the fibers constituting the pulp and the properties of the pulp will be significantly impaired, leading to a decrease in pulp strength such as tear strength, which is not preferable. Therefore 5
It is preferable to cut ~150 mm, but the optimal length of the raw material in the FPA method varies depending on the type of raw material plant. In general, seed hair is short, preferably cut into 5-20 mm pieces. Hemp and bast are longer, preferably cut into 25-80 mm pieces. It is also desirable to cut rods into longer lengths of 50 to 150 mm.
This process can also be carried out inside the pulp mill.
It is also possible to do this before transporting it to the factory.
As the device for cutting the raw material, a device capable of cutting flexible and long raw materials such as a cutting machine for rice straw, mulberry, etc. can be used. As the cooking chemical, it is possible to use the same PA cooking chemical as conventionally used for PA cooking at high pressure and high temperature, and since it has become possible to cook at low temperatures, hydrogen peroxide can be used in the PA method. It has become possible to replace part or all of the conventional chelating agent used as a stabilizer with a stabilizer made of water glass. The ratio of liquids that can be mixed and stirred to wipe away the thin pulp layer that forms on the surface of pulp raw materials is
Because it varies considerably depending on the length of the pulp raw material and the type of raw material plant, we believe that it is inappropriate to express the amount of chemicals used in terms of concentration.Hereafter, when expressed as a weight% of the absolute dry raw material, hydrogen peroxide is 1 to 1. 20%, preferably 3-10%, alkali hydroxide (sodium hydroxide, potassium hydroxide, etc.) is M 2 O (M:Na
or K) 6 to 40%, preferably 10 to 25%,
The stabilizer for hydrogen peroxide is 0.5 to 15 if it is water glass.
%, preferably 2 to 8%, and in the case of a chelating agent, 0.1 to 2%, preferably 0.2 to 1%. Examples of chelating agents include EDTA, DTPA,
1-hydroxyethane-1,1-diphosphonic acid etc. can be used, but 1-hydroxyethane-1,1
-Diphosphonic acid is preferred for obtaining unbleached pulp with high whiteness. The amount of quinones is 0.02-1%, preferably 0.05-0.5%. Quinones include anthraquinone, tetrahydroanthraquinone,
Alkyl anthraquinones such as t-butylanthraquinone can be used, and t-butylanthraquinone and amyl anthraquinone are particularly preferred in order to improve the yield. In the FPA cooking method of the present invention, cooking is promoted by forced stirring and mixing at a high concentration and low liquid ratio. That is, non-cellulosic substances such as pectin and lignin on the surface of the raw material to be solubilized are diffused, and the cooking chemicals are constantly in contact with the surface of the raw material in a concentrated state, liberating the thin layer of pulp that is produced and moving it away.
By exposing the insufficiently reacted internal surfaces one after another to the surface, the temperature required for cooking is further accelerated and the PA
This makes it possible to lower the temperature by 50 to 70 degrees Celsius in one fell swoop. In pulping hemp (abaca), as shown in Table 1 below, Table 1 at 90°C under normal pressure using the PA method
It is possible to achieve almost complete pulping in a cooking time that is 1/4 of the cooking time of (C). Among the cooking conditions for FPA method, pressure, temperature and time are 50℃ ~ 50℃ under normal pressure.
Boiling point, 0.5 to 3 hours, preferably 90±10℃, 1
±0.5 hours. As a cooking reactor, a low liquid ratio (2 to 15
A corrosion-resistant stirrer or a high-concentration pump capable of forcibly mixing and stirring a mixture of Containers can be used. At this time, a device equipped with a high concentration pump is convenient for transporting the pulp after cooking to the screening process. The screening device has the function of separating impurities such as lees and dust from the selected pulp, and various sieves such as flat screens with long and narrow pores or round pores and separators such as various liquid cyclones can be used effectively. It is possible. [Effects of the Invention] The scope of application of the present invention is wide, and the effect of streamlining pulp production by use of the present invention is significant. In other words, pulp raw materials include leaf fibers such as abaca and sisal, which are mainly composed of cellulose fibers and contain hemicellulose and a small amount of lignin/or pectin, rods such as bagasse and rice straw, bast and husk such as juute and kenaf. It can be widely applied to various non-wood plant materials such as seed hair of Tonrintar, etc., and shavings. According to the present invention, PA cooking is promoted to such an extent that phase contrast cannot be easily formed using conventional pulping technology, so pulping is possible in about one hour at a temperature below the boiling point under normal pressure, and a white pulp is produced. Unbleached pulp (UFPAP) with extremely high strength can now be obtained at even higher yields than UPAP. As a result, it was found that the basic unit consumption of cooking chemicals could be significantly reduced, which would help conserve resources in the pulp industry. Next, the simplification of processes and equipment accompanying the implementation of the present invention will be described. First, in the present invention, in order to obtain unbleached pulp with high whiteness and extremely high yield, it is sufficient to cook the pulp under normal pressure, so that no high-pressure digester is required. Furthermore, since there is no defibration step after cooking, a refiner, beater, lumpen mill, etc. are not required during pulp production. UFPAP has a high degree of whiteness as an unbleached pulp and is easy to bleach.One-step bleaching with hydrogen peroxide can achieve a high whiteness of 80% or more, so equipment for unbleached or one-step bleached pulp is usually the only option. do not need. In addition, since pulping is performed by short-time cooking at normal pressure, the time required to raise the temperature is short, and there is no need to take time to lower the pressure before blowing, which greatly improves productivity. Additionally, since the cooking temperature is low and there is no need to use a disintegrator, energy savings can be expected. [Example] The present invention will be explained in more detail with reference to Examples below. Example 1 Abaca produced in the Philippines was cut into lengths of 30 to 40 mm, and 1 kg of absolute dry weight and cooking chemicals (NaOH:
150g as Na 2 O, 70g H 2 O 2 , 3g t-butylanthraquinone, 10g chelating agent and water)
The mixture was placed in a 20-volume stainless steel reaction vessel equipped with a stirrer so that the liquid ratio was 9/Kg, and the reaction was carried out with forced mixing and stirring for 60 minutes while maintaining the temperature at 90°C. Immediately after the reaction, the juice was removed and washed with water, and a 12/1000 cut flat screen was used to obtain a total yield of 77.5% (all below are absolute dry harvested materials vs. absolute dry raw materials), of which the selected yield was 72.3.
%, pulp was obtained with a lees ratio of 3.2%. Selected pulp is unbleached, and unbleached pulp has Hunter whiteness.
It was 60.2%. Example 2 Take 1 kg of Okinawa bagasse (length 40 to 70 mm) on an absolute dry basis, and add cooking chemicals (NaOH: 180 g as Na 2 O, H 2 O 2 : 20 g,
Anthraquinone: 3 g, chelating agent: 3 g, and water) were placed in a reaction vessel equipped with a stirrer in the same manner as in Example 1, and the reaction was carried out with forced mixing and stirring for 90 minutes while maintaining the temperature at 92°C. Immediately after the reaction, remove the juice and wash with water.
Using a 6/1000 cut flat screen, pulp was obtained with a total yield of 62.1%, of which a selective yield was 58.2% and a lees ratio was 3.9%. The Hunter whiteness of carefully selected pulp is
It was 58.1%. Example 3 Take 1 kg of absolute dry weight of cotton linters with a fiber length of 2 to 4 mm, and add cooking chemicals (NaOH: 120 g as Na 2 O, H 2 O 3 : 30 g,
Tetrahydroanthraquinone (3 g, chelating agent: 3 g, and water) were placed in a reaction vessel equipped with a stirrer in the same manner as in Example 1, and the mixture was forcibly mixed and stirred for 40 minutes while being maintained at 90° C. to conduct a reaction. Immediately after the reaction, the pulp was dehydrated and washed with water to obtain Kotsuton linter pulp with a Hunter whiteness of 62.8% and a total yield of 84.1%. Example 4 Juute from Bangladesh was cut into lengths of 40 to 60 mm, 1 kg of absolute dry weight was taken, and cooking chemicals (170 g as NaOH:Na 2 O,
H2O2 40g , t-butylanthraquinone: 2g,
Chelating agent: 3 g and water) were placed in a reaction vessel equipped with a stirrer in the same manner as in Example 1, and the reaction was carried out by forcefully mixing and stirring for 60 minutes while maintaining the temperature at 91°C. Immediately after the reaction, the pulp was dehydrated and washed with water, and a 12/1000 mesh flat screen was used to obtain pulp with a total yield of 68.1%, including a selective yield of 65.9% and a lees ratio of 2.2%. The Hunter whiteness of the selected pulp was 58.2%. The above results are summarized in Table-1. 【table】

Claims (1)

【特許請求の範囲】 1 水、過酸化水素又は過酸化水素発生剤、水酸
化アルカリ及び過酸化水素安定剤からなる混合液
又はこの混合液にアントラキノン類を加えたもの
を蒸解薬液とし、非木材セルロース原料をパルプ
原料として使用し、液比2〜15/Kgになるよう
蒸解薬液とパルプ原料の両者を蒸解装置に供給
し、常圧下で、かつ沸点以下の温度で強制的に撹
拌混合することにより高速で1段蒸解し、得られ
た蒸解物から、磨砕も、叩解も、離解もせずに、
粕、塵等の夾雑物を除くだけで精選パルプを得る
ことを特徴とする非木材セルロース原料から白色
度の高い未晒パルプを製造する方法。 2 パルプ原料と蒸解薬液を低液比で供給した混
合物を強制的に撹拌混合しつつ常圧下で沸点又は
沸点近い温度に加熱及び/又は保温し得る機能を
有する撹拌機及び高濃度ポンプのうち少なくとも
1つ以上を備えた耐食性の容器からなる蒸解反応
装置と、蒸解物から粕及び塵等夾雑物と精選未晒
パルプを分離回収しうる装置との組合せからなる
ことを特徴とする請求項1を実施するための装
置。
[Claims] 1. A cooking chemical liquid consisting of water, hydrogen peroxide, a hydrogen peroxide generator, an alkali hydroxide, and a hydrogen peroxide stabilizer, or a mixture containing anthraquinones, Cellulose raw material is used as pulp raw material, and both the cooking chemical solution and pulp raw material are supplied to the digester so that the liquid ratio is 2 to 15/Kg, and the mixture is forcibly stirred under normal pressure and at a temperature below the boiling point. One-stage cooking is performed at high speed, and from the resulting digestate, without grinding, beating, or disintegration,
A method for producing unbleached pulp with a high degree of whiteness from a non-wood cellulose raw material, which is characterized in that selected pulp is obtained by simply removing impurities such as lees and dust. 2 At least an agitator and a high concentration pump that have the function of forcibly stirring and mixing a mixture of pulp raw materials and cooking chemicals supplied at a low liquid ratio and heating and/or keeping the mixture at or near the boiling point under normal pressure. Claim 1 comprising a combination of a cooking reaction apparatus comprising one or more corrosion-resistant containers and an apparatus capable of separating and recovering impurities such as lees and dust from the cooked product and selected unbleached pulp. Equipment for implementation.
JP25817188A 1988-10-12 1988-10-12 Production of unbleached pulp with high whiteness from nonwood cellulosic raw material and apparatus therefor Granted JPH02104788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25817188A JPH02104788A (en) 1988-10-12 1988-10-12 Production of unbleached pulp with high whiteness from nonwood cellulosic raw material and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25817188A JPH02104788A (en) 1988-10-12 1988-10-12 Production of unbleached pulp with high whiteness from nonwood cellulosic raw material and apparatus therefor

Publications (2)

Publication Number Publication Date
JPH02104788A JPH02104788A (en) 1990-04-17
JPH0345149B2 true JPH0345149B2 (en) 1991-07-10

Family

ID=17316512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25817188A Granted JPH02104788A (en) 1988-10-12 1988-10-12 Production of unbleached pulp with high whiteness from nonwood cellulosic raw material and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH02104788A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999024666A1 (en) * 1997-11-07 1999-05-20 Akio Mita Laminate comprising transparent pulp paper

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6485598A (en) * 1996-12-11 1998-07-03 Akio Mita Method for storing and transporting cellulosic and process for manufacturing pulp
BRPI0810975B1 (en) * 2007-05-23 2018-12-26 Alberta Res Council Method for Removing Hemicellulose from Cellulosic Fibers Using Ammonia and Hydrogen Peroxide Solution

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5668178A (en) * 1979-11-02 1981-06-08 Kogyo Gijutsuin Pulp producing method
JPS57199888A (en) * 1981-05-27 1982-12-07 Kogyo Gijutsuin Increasing of hydrogen peroxide-alkali pulp yield
JPS61138790A (en) * 1984-12-05 1986-06-26 工業技術院長 Production of high whiteness bleached pulp from needle-leaf tree digested material
JPS6350589A (en) * 1986-08-21 1988-03-03 工業技術院長 Production of chemical pulp

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5668178A (en) * 1979-11-02 1981-06-08 Kogyo Gijutsuin Pulp producing method
JPS57199888A (en) * 1981-05-27 1982-12-07 Kogyo Gijutsuin Increasing of hydrogen peroxide-alkali pulp yield
JPS61138790A (en) * 1984-12-05 1986-06-26 工業技術院長 Production of high whiteness bleached pulp from needle-leaf tree digested material
JPS6350589A (en) * 1986-08-21 1988-03-03 工業技術院長 Production of chemical pulp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999024666A1 (en) * 1997-11-07 1999-05-20 Akio Mita Laminate comprising transparent pulp paper

Also Published As

Publication number Publication date
JPH02104788A (en) 1990-04-17

Similar Documents

Publication Publication Date Title
US4248662A (en) Oxygen pulping with recycled liquor
JP5491687B2 (en) Method and apparatus for pulping lignocellulosic material.
US20140205777A1 (en) Articles of manufacture made from pulp composition
US20140174680A1 (en) Pulping processes
JP2004503683A (en) Method for producing pulp from corn stalk
JP2004503683A5 (en)
US20150041085A1 (en) Pulp composition
CN106638085A (en) Production method of paper pulp of sanitation, culture and medical paper
US4106979A (en) Preparation of paper pulps from dicotyledonous plants
CA1164704A (en) Method for improving the washing of cellulose pulps
CN101451313B (en) Method for preparing bleached chemical pulp by using grass type plants as raw materials
EP2761082A1 (en) Method for preparing nonwood fiber paper
US3919041A (en) Multi-stage chlorine dioxide delignification of wood pulp
US3829357A (en) Oxidative manufacture of pulp with chlorine dioxide
US2708160A (en) Process for pulping
RU2287035C1 (en) Cellulose production process
JPH0345149B2 (en)
US3013931A (en) Printing paper and process of making the same
US3013932A (en) Printing paper and process of making the same
JP2003147690A (en) Method for producing non-wood mechanical pulp having high whiteness
US4773965A (en) Strong and clean sulfite pulp and method of making same
JPH09273092A (en) Pretreatment in forming pulp from oil palm stalk
JPH0995815A (en) Production of paper yarn
JPH0114357B2 (en)
Byrd et al. A simplified pulping & bleaching process for pith-containing nonwoods: trials on whole corn stalks

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term