JPH0345050A - Transmission control system for data - Google Patents

Transmission control system for data

Info

Publication number
JPH0345050A
JPH0345050A JP1181283A JP18128389A JPH0345050A JP H0345050 A JPH0345050 A JP H0345050A JP 1181283 A JP1181283 A JP 1181283A JP 18128389 A JP18128389 A JP 18128389A JP H0345050 A JPH0345050 A JP H0345050A
Authority
JP
Japan
Prior art keywords
transmission
transmission interval
data
value
received data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1181283A
Other languages
Japanese (ja)
Inventor
Teruo Udagawa
宇田川 照夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1181283A priority Critical patent/JPH0345050A/en
Publication of JPH0345050A publication Critical patent/JPH0345050A/en
Pending legal-status Critical Current

Links

Landscapes

  • Communication Control (AREA)

Abstract

PURPOSE:To avoid missing of information by controlling dynamically the transmission interval in response to a reception data number per unit time and increasing transmission information quantity of one transmission when lots of transmission data are generated. CONSTITUTION:A reception data inputted asynchronously to a counter means 101 is counted for reception data number per unit time and fed to a transmission interval decision means 102. The transmission interval decision means 102 calculates the value of a load state and decides the transmission interval of the reception data by a transmission means 103 depending whether or not the value is a prescribed value or over. When the load state value is a prescribed value or over, plural reception data inputted during the transmission interval is stored tentatively in the transmission means 103 and plural reception data are sent altogether after the elapse of the transmission interval. Thus, the loss of information when the reception data per unit time is much or deterioration of relay performance is avoided.

Description

【発明の詳細な説明】 (概要) 階層型分散システムの中継サイトにおいて下位サイトか
らの受信データを上位勺イ]・へ送信する・データ送信
ti111!11方式に関し、単僚時間当りの受信デー
タが多い時の情報紛失や中継性能劣化を回避することを
目的とし、互いに非同期で入力される複数の受信データ
を順次送信するデータの送信制御方式において、単位時
間毎に受信データ数を31数する4数手段と、該計数手
段の計数値が供給され、(単位時間当りの受信データ数
〉/(予め設定された単僚時間当りの最大受信データ数
゛〉で表わされる負荷状態の値が、所定値以上のときは
送信間隔を(基本待ち時間)×(負荷状態の値)とし、
前記所定値未満のときは送信間隔をゼロとする送信間隔
決定手段と、該送信間隔決定手段で決定された該送信間
隔で前記入力受信データを送信する送信手段とより構成
する。
[Detailed Description of the Invention] (Summary) Regarding the data transmission ti111!11 method of transmitting received data from a lower site to a higher level site at a relay site in a hierarchical distributed system, the received data per unit time is In a data transmission control method that sequentially transmits multiple pieces of received data that are input asynchronously to each other, with the aim of avoiding information loss and relay performance deterioration when there is a large amount of data, the number of pieces of received data is counted by 31 per unit time. The counting means and the count value of the counting means are supplied, and the value of the load state expressed as (number of received data per unit time)/(maximum number of received data per preset unit time) is set to a predetermined value. When the value is greater than the value, the transmission interval is (basic waiting time) x (load status value),
It is comprised of a transmission interval determining means that sets the transmission interval to zero when it is less than the predetermined value, and a transmitting means that transmits the input received data at the transmission interval determined by the transmission interval determining means.

〔産業上の利用分野〕[Industrial application field]

本発明はデータの送信制御方式に係り、特に階層型分散
システムの中継サイトにおいて下位サイトからの受信デ
ータを上位ザイトヘ送信するデータ送信制御方式に関す
る。
The present invention relates to a data transmission control system, and more particularly to a data transmission control system for transmitting received data from a lower site to a higher level site at a relay site in a hierarchical distributed system.

〔従来の技術〕[Conventional technology]

従来より第5図に示す如き階層型分散システムが知られ
ている。この階層型分散システムは下位サイト111〜
11m、中継ザイト12及び上位ザイト131〜13y
+からなり、下位サイト11+〜11Tl+の各々が互
いに独立して事象発生環14の事象を検出して得た情報
(a)〜(C)を中継サイト12に夫々送信し、中継サ
イト12がこの情報(a)〜(C)をすべての上位ザイ
ト131〜13nに夫々送信する構成である。
Hierarchical distributed systems as shown in FIG. 5 have been known. This hierarchical distributed system consists of lower sites 111~
11m, relay sight 12 and upper sight 131-13y
Each of the lower sites 11+ to 11Tl+ independently detects the event of the event occurrence ring 14 and transmits the information (a) to (C) obtained from the relay site 12 to the relay site 12. The configuration is such that information (a) to (C) is transmitted to all the upper sites 131 to 13n, respectively.

なお、上位サイト131〜13Tlはリング状に接続さ
れているのではなく、中継サイト12から共通に情報(
a)〜(C)を伝送されるものであるから、トークンリ
ング方式ではない。
Note that the upper sites 131 to 13Tl are not connected in a ring, but share information (
Since a) to (C) are transmitted, it is not a token ring method.

このような階層型分散システムにおいて、中継サイト1
2は従来、下位サイト11+〜11mから情報を受信す
る毎に上位サイト13+〜13Tlへその受信情報(デ
ータ)を送信している。従って、中継サイト12での処
理時間は下記となる。
In such a hierarchical distributed system, relay site 1
Conventionally, every time information is received from the lower sites 11+ to 11m, the mobile terminal 2 transmits the received information (data) to the upper sites 13+ to 13Tl. Therefore, the processing time at the relay site 12 is as follows.

中継サイトの処理時間=(基本送信時間)×(上位サイ
ト数) 〔発明が解決しようとする課題〕 しかるに、従来は下位サイト111〜1171+から送
られてくる各情報は通常は上記の中継サイト12の処理
時間より長い時間間隔で発生するので問題はないが、ピ
ーク時に中継サイト12の処理時間より短い時間で発生
することがあり、渋滞が発生する。
Processing time of relay site = (basic transmission time) x (number of upper-level sites) [Problem to be solved by the invention] However, in the past, each piece of information sent from lower-level sites 111 to 1171+ was usually sent to the above-mentioned relay site 12. This is not a problem because it occurs at a time interval longer than the processing time of the relay site 12, but it may occur at a time shorter than the processing time of the relay site 12 during peak hours, resulting in traffic congestion.

すなわち、第6図(D)に示す事象発生(ハイレベルで
示す)により下位サイト111から情報(a)が送られ
てきた中継サイト12が、その情報(a)を同図(A)
にハイレベルで示す期間上位ザイト131〜13Tlへ
送信するが、その送信期間中に同図(E)に示す如く発
生した事象に基づく情報(b)を下位サイト112から
受信した場合は、情報(a)の送信終了後に同図(B)
に示す如く情報(b)を送信する。
That is, the relay site 12, which has received information (a) from the lower site 111 due to the occurrence of the event shown in FIG. 6(D) (indicated by a high level), transmits that information (a) to
However, if information (b) based on an event that occurred as shown in (E) in the same figure is received from the lower site 112 during the transmission period, the information ( After the transmission of a) is completed, the same figure (B)
The information (b) is transmitted as shown in FIG.

同様に、中継勺イト12が情報(b)の送信期間中に第
6図(F)に示す如く情報(C)を下位サイト11mか
ら受信した場合は、同図(C)に示す如く情報(b)の
送信終了を持ってから情報(c)を送信する。
Similarly, if the relay site 12 receives information (C) from the lower site 11m as shown in FIG. 6(F) during the transmission period of information (b), the information (C) as shown in FIG. Information (c) is transmitted after the transmission of b) is completed.

従って、上記のピーク時には情報中継性能が劣化し、ピ
ーク発生期間が長く続く場合は、中継サイト12が送信
する情報データを一時記憶するメモリの容量不足から情
報を紛失したり、中継サイト12の中央処理装置(CP
U)の負荷増大でシステムダウンとなることがあった。
Therefore, information relay performance deteriorates during the above-mentioned peak hours, and if the peak period continues for a long time, information may be lost due to insufficient memory capacity to temporarily store the information data transmitted by the relay site 12, or Processing equipment (CP
The system sometimes went down due to an increase in the load on U).

本発明は以上の点に鑑みてなされたもので、単位時間当
りの受信データが多い時の情報紛失や中継性能劣化を回
避し得るデータ送信iI1111M1方式を提供するこ
とを目的とする。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a data transmission iI1111M1 method that can avoid information loss and relay performance deterioration when there is a large amount of received data per unit time.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理ブロック図を示す。同図中、10
1は計数手段で、単位時間毎の受信データ数を計数する
。また、102は送信間隔決定手段で、上記の受信デー
タ数を予め設定した単位時間当りの最大受信データ数で
除算して得られる負荷状態の値が所定値以上のときは送
信間隔を(基本待ち時間)×(負荷状態の値)とし、所
定値未満のときは送信間隔をゼロとする。
FIG. 1 shows a block diagram of the principle of the present invention. In the same figure, 10
1 is a counting means that counts the number of received data per unit time. Reference numeral 102 denotes a transmission interval determining means, which determines the transmission interval (basic waiting time) x (value of load state), and when it is less than a predetermined value, the transmission interval is set to zero.

更に103は送信手段で、上記送信間隔で前記入力受信
データを送信する。
Furthermore, 103 is a transmitting means, which transmits the input received data at the above-mentioned transmission interval.

〔作用〕[Effect]

互いに弁開用で計数手段101に入力された受信データ
は、ここで単位時間当りの受信データ数を計数されて送
信間隔決定手段102に供給される。
The received data input to the counting means 101 for opening the valves are counted here to the number of received data per unit time, and are supplied to the transmission interval determining means 102.

送信間隔決定手段102は前記負荷状態の値を算出し、
その値が所定値以上か否かに応じて送信手段103によ
る受信データの送信間隔を決定する。
The transmission interval determining means 102 calculates the value of the load state,
The transmission interval of the received data by the transmitting means 103 is determined depending on whether the value is greater than or equal to a predetermined value.

いま、前記負荷状態の値が所定値以上であるものとする
と、送信間隔が負荷状態の値に応じて長くなるため、そ
の送信間隔中に入力される複数の受信データが送信手段
103内に一時記憶され、送信間隔格納領域それら複数
の受信データがまとめて送信される。すなわち、負荷状
態の値が所定値以上のときは、1回の受信データ送信Φ
が大きくなり、従来1つの受信データが送信される期間
で、複数の受信データが送信される。
Now, assuming that the value of the load state is greater than or equal to a predetermined value, the transmission interval becomes longer according to the value of the load state, so that a plurality of pieces of received data input during the transmission interval are temporarily stored in the transmitting means 103. The received data is stored in the transmission interval storage area and transmitted together. In other words, when the value of the load state is greater than or equal to a predetermined value, one received data transmission Φ
becomes large, and a plurality of pieces of received data are transmitted in a period in which conventionally one piece of received data is transmitted.

また、本発明では送信手段103で一時記憶されて持ち
行列を構成している複数の受信データを一度に送信する
ため、送信のためのCPU負荷が低下し、−時記憶する
領域の獲得時間を短くすることができる。
Furthermore, in the present invention, since a plurality of pieces of received data that are temporarily stored in the transmitting means 103 and constitute a holding queue are transmitted at once, the CPU load for transmission is reduced, and the time required to acquire the storage area is reduced. Can be shortened.

一方、前記負荷状態の値が所定値未満のときは、単位時
間当りの受信データ数が少ない通常の場合であり、この
ときは送信間隔がピロとされるため、受信データ入力毎
に送信するという従来と同じ方式で送信が行なわれる。
On the other hand, when the value of the load state is less than the predetermined value, it is a normal case where the number of received data per unit time is small, and in this case, the transmission interval is assumed to be zero, so transmission is performed every time received data is input. Transmission is performed in the same manner as before.

〔実施例〕〔Example〕

第2図は本発明の一実施例の構成図を示し、第1図と同
一構成部分には同一符号を付しである。
FIG. 2 shows a configuration diagram of an embodiment of the present invention, and the same components as in FIG. 1 are given the same reference numerals.

本実施例は前記した階層型分散システムにおける中継勺
イト21を示している。第2図において、22は下位サ
イトデータ受信処理部で、下位サイトからの受信データ
を受信処理する。例えば、この受信データはパケットデ
ータであり、下位サイトデータ受信処理部22はパケッ
トが入力される毎に受信データカウンタ23を1fつイ
ンクリメントし、かつ、そのパケットデータをデータ配
信処理部24へ伝送する。
This embodiment shows a relay station 21 in the above-described hierarchical distributed system. In FIG. 2, 22 is a lower site data reception processing section which receives and processes received data from lower sites. For example, this received data is packet data, and the lower site data reception processing unit 22 increments the reception data counter 23 by 1f every time a packet is input, and transmits the packet data to the data distribution processing unit 24. .

また、25はタイマ、26は送信間隔決定処理部、27
は送信間隔格納領域で、これらは前記した送信間隔決定
手段102を構成している。すなわち、タイマ25によ
り単位時間毎に送信間隔決定処理部26が起動され、こ
れにより送信間隔決定処理部26は受信データカウンタ
23の計数値を参照し、この計数値(これは単位時間当
りの受信パケット数を示している〉を、予め設定されて
いる単位時間当りの最大受信パケット数で除算して負荷
状態値を算出し、更にその負荷状態値に応じて送信間隔
を決定し、その餡を送信間隔格納領域27に設定すると
共に、受信データカウンタ23をピロクリアする。
Further, 25 is a timer, 26 is a transmission interval determination processing unit, and 27
is a transmission interval storage area, which constitutes the transmission interval determining means 102 described above. That is, the timer 25 activates the transmission interval determination processing unit 26 every unit time, and the transmission interval determination processing unit 26 thereby refers to the count value of the reception data counter 23, and this count value (this is the number of receptions per unit time). The load status value is calculated by dividing the number of packets (indicating the number of packets) by the preset maximum number of packets received per unit time, and the transmission interval is determined according to the load status value. The data is set in the transmission interval storage area 27, and the received data counter 23 is cleared.

ここで、上記の送信間隔は上記負荷状態値が所定値(例
えばr2.l>以上のときは 送信間隔=200(復5ec) x (負荷状態値)な
る式で算出された値とされる。上式中、200m5ec
は基本待ち時間で、これは適用されるシステムの規模な
どを勘案して経験則で設定される。
Here, the above-mentioned transmission interval is a value calculated by the formula: transmission interval = 200 (5 ec) x (load state value) when the load state value is greater than or equal to a predetermined value (for example, r2.l>). During the above ceremony, 200m5ec
is the basic waiting time, which is set based on empirical rules taking into account the scale of the system to which it is applied.

一方、上記の負荷状a、mが所定値未満のときは送信間
隔はぜ口とされる。ここで、上記所定値は例えば「2」
であり、よって送信間隔が399m5ecとなるような
場合は一律的に0IISeCとされる。
On the other hand, when the load states a and m are less than the predetermined values, the transmission interval is determined to be a gap. Here, the predetermined value is, for example, "2".
Therefore, when the transmission interval is 399m5ec, it is uniformly set to 0IISeC.

更に、2’3+へ28t+はメモリ、291〜29tは
nilの上位サイト対応に設けられたデータ送信処理部
であり、これらはデータ配信処理部24と共に前記送信
手段103を構成している。データ配信処理部24はそ
の受信パケットデータが入力される毎にそれをメモリ2
8+〜28T+に各々供給して書き込ませる。これによ
り、メモリ281・〜28r+各々にはデータの待ち行
列が形成される。
Furthermore, 28t+ to 2'3+ is a memory, and 291 to 29t are data transmission processing units provided for nil higher-level sites, and these constitute the transmission means 103 together with the data distribution processing unit 24. Each time the received packet data is input, the data distribution processing unit 24 stores it in the memory 2.
8+ to 28T+ are respectively supplied and written. As a result, data queues are formed in each of the memories 281 to 28r+.

また、データ配信処理部24はデータ送信処理部291
〜29nを順次に起動する。データ送信処理部291〜
29Tlはその起動によりまず送信間隔格納領域27を
参照し、送信間隔がゼロのときは直ちに対応するメモリ
281〜28TIからデータを読み出してバケツ1〜に
編集して送信する。
The data distribution processing unit 24 also includes a data transmission processing unit 291.
~29n are activated in sequence. Data transmission processing unit 291~
Upon activation, 29Tl first refers to the transmission interval storage area 27, and when the transmission interval is zero, it immediately reads data from the corresponding memories 281-28TI, edits them into buckets 1- and transmits them.

一方、上記の参照の結果、送信間隔がピロ以外の成る値
であるときは、その値〈時間)だけスリーブする(送信
を停止する)。このスリーブ中に送信データの待ち行列
が増加することを期待するためである。
On the other hand, as a result of the above reference, if the transmission interval is a value other than pyro, it is sleeved (transmission is stopped) for that value (time). This is because it is expected that the queue of transmission data will increase during this sleeve.

そして、上記の送信間隔経過すると、すなわちタイムア
ウト時はデータ送信処理部291〜29Tlはメモリ2
81〜28TIの持ち行列にある送信データをすべて取
り出し、1パケツトに編集して送信する。これにより、
従来に比べて持ち行列の先頭のデータについては上位サ
イトへの到達時間は長くなるが、待ち行列のデータが一
度に送信されるため、全体の到達時間は短くなる。
Then, when the above-mentioned transmission interval has elapsed, that is, at the time of timeout, the data transmission processing units 291 to 29Tl are transferred to the memory 2.
All the transmission data in the holding matrix of 81 to 28 TI is taken out, edited into one packet, and transmitted. This results in
Compared to the past, it takes longer for data at the head of the queue to reach the higher-ranking site, but because the data in the queue is sent at once, the overall arrival time is shorter.

例えば最大受信パケット数が1秒間当り1事象、場事象
が1秒間当り5事象、単位時間を1秒とし、また従来方
式で1つのデータの送信に40On+secかかるもの
とすると、5つのデータを全部送信するのに従来方式で
は2000m5ec (= 400m5ec x 5 
)かかる。これに対し、本実施例によれば、前記送信間
隔が1000100O< = 200m5ec x 5
 / 1 )であるから、1000100Oスリーブし
た後に400m5ecで5つのデータをすべて送信する
ことになる。従って、本実施例によれば、5つのデータ
を全部送信するのに、最初の事象発生時点より1400
 (= 1000+ 400)lsecかかることとな
り、従来に比べて600ssec早くデータを送信でき
、中継性能を向上できると共に、システムダウン及び情
報の紛失を回避することができる。
For example, if the maximum number of received packets is 1 event per second, the field event is 5 events per second, and the unit time is 1 second, and it takes 40On+sec to send one data using the conventional method, all five data will be sent. However, the conventional method requires 2000m5ec (= 400m5ec x 5
) It takes. On the other hand, according to this embodiment, the transmission interval is 1000100O<=200m5ec x 5
/1), all five pieces of data will be sent in 400m5ec after 1000100O sleeves. Therefore, according to this embodiment, it takes 1400 seconds from the time of the first event to transmit all five pieces of data.
(=1000+400)lsec, data can be transmitted 600ssec faster than before, relay performance can be improved, and system downtime and loss of information can be avoided.

第3図は本発明方式が適用されるシステムの構成図を示
す。同図中、31は前記中継サイト21に相当するター
ミナル・ステーション・コントローラ(−r S C)
で、また321〜32司は下位サイトに相当するターミ
ナル・ステーション(TS)、33+はメイン・コント
ロール・ステーション(MC3)で7フイルサーバであ
り、332〜33Tlはマン・マシン・ステーション(
VMS)であり、これら33+〜33Tlは前記上位サ
イトに相当する。更に、34は空調機、35は温度計で
ある。
FIG. 3 shows a configuration diagram of a system to which the method of the present invention is applied. In the figure, 31 is a terminal station controller (-r SC) corresponding to the relay site 21.
In addition, 321-32Tl are terminal stations (TS) corresponding to lower sites, 33+ is a main control station (MC3) with 7 file servers, and 332-33Tl are man-machine stations (TS).
VMS), and these 33+ to 33Tl correspond to the above-mentioned upper site. Furthermore, 34 is an air conditioner, and 35 is a thermometer.

このシステムはビル管理システムで、18321〜32
mは空調機34のオン/オフ情報、温度計35の温度情
報等、所定の管理対象の情報を収集し、それをハイレベ
ル・データ・リンク制神手順(口DLC)でrsc31
へ伝送する。
This system is a building management system, 18321-32
m collects information on predetermined management targets, such as on/off information of the air conditioner 34 and temperature information of the thermometer 35, and transmits it to the rsc31 using the high-level data link control procedure (mouth DLC).
Transmit to.

TSC31はM CS 33 + 、 M M S 3
32〜33πと共にローカル・エリア・ネットワーク(
LAN)を構成している。TSC31はTS32+〜3
2mから非同期で送信されたビル内設備の管理情報を受
信し、これを第2図に示した構成で順次M CS 33
 、 M M S 332〜33 r+へ送信する。従
って、TSC31は上記の管理情報が単位時間内に集中
するときは、送信I!!!陽をとって、タイムアウト時
に一度に送信することにより、中継性能の向上を図って
いる。
TSC31 is MCS33+, MMS3
32-33π together with the local area network (
LAN). TSC31 is TS32+~3
The management information of the equipment in the building is received asynchronously from 2m and is sent to the MCS 33 in sequence using the configuration shown in Figure 2.
, MMS 332-33 r+. Therefore, when the above management information is concentrated within a unit time, the TSC 31 transmits I! ! ! The relay performance is improved by sending the data all at once upon timeout.

第4図は本実施例のピーク時における処理動作を示す。FIG. 4 shows the processing operation at peak times in this embodiment.

同図(A)はTS32+〜32和からTSC31へのデ
ータ入力を示し、丸数字は受信データの到着順を示し、
ここでは100m5ec間隔で受信データが入力される
ものとする。これにより、TSC31ではM CS 3
3 +及びM M S 332〜33Tlのn台の上位
サイトのうち1番目の上位サイト#1へ送信すべきデー
タは第4図(B)に模式的に示す如く持ち行列ができ、
2番目の上位サイト#2へ送信すべきデータは同図(D
)に模式的に示す如く持ち行列ができる。なお、第4図
(B)、(D)中、自四角は持ち行列のターミナルを示
す。
Figure (A) shows data input from TS32+ to 32 sum to TSC31, and the circled numbers indicate the order of arrival of received data.
Here, it is assumed that received data is input at intervals of 100 m5ec. As a result, in TSC31, M CS 3
The data to be transmitted to the first high-rank site #1 among the n high-rank sites of 3+ and MMS 332 to 33Tl is arranged in a matrix as schematically shown in FIG. 4(B).
The data to be sent to the second higher level site #2 is shown in the same figure (D
), a holding matrix is formed as schematically shown in (). Note that in FIGS. 4(B) and 4(D), squares indicate terminals of the holding matrix.

ここで、前記負荷状Mlaが2゛′で、従って前記送信
間隔が4001!1SeCであり、またデータ送信に4
00m5ecかかるものとすると、TSC31は第4図
(C)に模式的に示すように、400m5ec経過した
時点で、そのときの待ち行列を構成している■〜■のデ
ータを上位サイト#1へ400m5eC内で順次送信す
る。
Here, the load state Mla is 2', therefore the transmission interval is 4001!1SeC, and the data transmission is 4001!1SeC.
Assuming that it takes 00m5ec, as schematically shown in Fig. 4(C), after 400m5ec has elapsed, the TSC31 sends the data of ■ to ■ that constitute the queue at that time to the upper site #1 for 400m5ec. Send sequentially within.

上記の上位サイト#1へのデータ送信期間中は、TSC
31は内部のCPUの上位サイト#2に対する実行獲得
持ち時間であり、上位サイト#1へのデータ送信終了後
引続いて上付サイト#2へ第4図(E)に模式的に示す
如くデータを400m5QC内で送信する。この上位サ
イト#2へのデータ送信開始時点では上位サイト#2へ
のデータの持ち行列が第4図(D)に示す如く■〜■あ
るので、TSC31は■〜■のデータを上位サイト#2
へ順次送信する。
During the period of data transmission to the upper site #1 above, TSC
31 is the execution acquisition time for the internal CPU to the upper site #2, and after the data transmission to the upper site #1 is completed, the data is subsequently sent to the superordinate site #2 as schematically shown in FIG. 4(E). is transmitted within 400m5QC. At the time of starting the data transmission to the upper site #2, the queue of data to the upper site #2 is from ■ to ■ as shown in FIG.
Send to sequentially.

以下、他の上位サイトに対しても同様にTSC31はデ
ータの送信を行なう。なお、ngR目の上位サイト#n
へ送信されるデータ数は最も多いが、その場合でも待ち
行列を構成しているすべてのデ−タは400111Se
C程度で送信される。
Thereafter, the TSC 31 transmits data to other higher-level sites as well. In addition, ngR top site #n
400111Se is the largest number of data sent to
Sent at about C.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明によれば、単位時間当りの受信デー
タ数に応じて送信間隔を動的に制御し、大量の送信デー
タ発生時は1回の送信情報量を多くしたので、全体の送
信時間を短くでき、よってピーク時の中継性能を従来に
比べ向上でき、また、大量の送信データ発生時は1回の
送信情報量を多くしてCPUの負荷を低下させたので、
CPUダウンによるシステムダウンや情報紛失を回避す
ることができ、更に入力受信データが少ない通常の場合
は受信データ入力毎に送信するという従来方式と同じ方
式で送信するため、通常時の送信性能は従来と同等に維
持することができる等の特長を有するものである。
As described above, according to the present invention, the transmission interval is dynamically controlled according to the number of received data per unit time, and when a large amount of transmitted data is generated, the amount of information transmitted at one time is increased, so that the overall transmission This reduces the time required, which improves relay performance during peak times compared to conventional methods. Also, when a large amount of data is transmitted, the amount of information transmitted at one time is increased to reduce the load on the CPU.
It is possible to avoid system failure and information loss due to CPU failure, and in normal cases when there is little input received data, transmission is performed using the same method as the conventional method of transmitting every time received data is input, so the transmission performance in normal times is the same as before. It has the advantage that it can be maintained at the same level as the previous one.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理ブロック図、 第2図は本発明の一実施例の構成図、 第3図は本発明方式が適用されるシステムの構成図、 第4図は本発明の一実施例の処理動作説明図、第5図は
階層型分数システムの構成図、第6図は従来方式の課題
説明用タイムチャートである。 図において、 23は受信データカウンタ、 24はデータ配信処理部、 25はタイマ、 26は送信間隔決定処理部、 27は送信間隔格納領域、 101は計数手段、 102は送信間隔決定手段、 103は送信手段 を示す。 杢砲絹の原理ブロック図 第1図 第3図 ザ参号哩2牧システ乙の柿しボA羽 第 図
Fig. 1 is a block diagram of the principle of the present invention, Fig. 2 is a block diagram of an embodiment of the present invention, Fig. 3 is a block diagram of a system to which the method of the present invention is applied, and Fig. 4 is an implementation of the present invention. FIG. 5 is a block diagram of the hierarchical fraction system, and FIG. 6 is a time chart for explaining the problem of the conventional system. In the figure, 23 is a reception data counter, 24 is a data distribution processing section, 25 is a timer, 26 is a transmission interval determination processing section, 27 is a transmission interval storage area, 101 is a counting means, 102 is a transmission interval determination means, 103 is a transmission Show the means. Block diagram of the principle of heather gun silk Fig. 1 Fig. 3

Claims (1)

【特許請求の範囲】 互いに非同期で入力される複数の受信データを順次送信
するデータの送信制御方式において、単位時間毎に受信
データ数を計数する計数手段(101)と、 該計数手段(101)の計数値が供給され、(単位時間
当りの受信データ数)/(予め設定された単位時間当り
の最大受信データ数)で表わされる負荷状態の値が、所
定値以上のときは送信間隔を(基本待ち時間)×(負荷
状態の値)とし、前記所定値未満のときは送信間隔をゼ
ロとする送信間隔決定手段(102)と、 該送信間隔決定手段(102)で決定された該送信間隔
で前記入力受信データを送信する送信手段(103)と
、 より構成したことを特徴とするデータの送信制御方式。
[Scope of Claims] A data transmission control method for sequentially transmitting a plurality of received data input asynchronously with each other, comprising: a counting means (101) for counting the number of received data for each unit time; is supplied, and when the load status value expressed by (number of received data per unit time)/(maximum number of received data per unit time set in advance) is greater than or equal to a predetermined value, the transmission interval is changed to ( a transmission interval determining means (102) that sets the transmission interval to zero when the basic waiting time) x (load state value) is less than the predetermined value; and the transmission interval determined by the transmission interval determination means (102). A data transmission control method comprising: a transmitting means (103) for transmitting the input received data.
JP1181283A 1989-07-13 1989-07-13 Transmission control system for data Pending JPH0345050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1181283A JPH0345050A (en) 1989-07-13 1989-07-13 Transmission control system for data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1181283A JPH0345050A (en) 1989-07-13 1989-07-13 Transmission control system for data

Publications (1)

Publication Number Publication Date
JPH0345050A true JPH0345050A (en) 1991-02-26

Family

ID=16097985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1181283A Pending JPH0345050A (en) 1989-07-13 1989-07-13 Transmission control system for data

Country Status (1)

Country Link
JP (1) JPH0345050A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135201A (en) * 1995-11-08 1997-05-20 Nec Corp Radio terminal communication system
US7240107B2 (en) 2002-10-15 2007-07-03 International Business Machines Corporation Self replicating installation method for operating system clusters
CN111903096A (en) * 2018-03-27 2020-11-06 株式会社自动网络技术研究所 Communication system, receiving apparatus, transmission interval changing method, and computer program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135201A (en) * 1995-11-08 1997-05-20 Nec Corp Radio terminal communication system
US7240107B2 (en) 2002-10-15 2007-07-03 International Business Machines Corporation Self replicating installation method for operating system clusters
CN111903096A (en) * 2018-03-27 2020-11-06 株式会社自动网络技术研究所 Communication system, receiving apparatus, transmission interval changing method, and computer program

Similar Documents

Publication Publication Date Title
Zhao et al. Virtual time CSMA protocols for hard real-time communication
US4901277A (en) Network data flow control technique
US6519330B2 (en) Traffic data collection technique
JPH07135512A (en) Router
US6181700B1 (en) Data transfer device having retransmission control function
JPH0345050A (en) Transmission control system for data
JP3248692B2 (en) Adaptive route selection control method
CA2353532A1 (en) Queue management in packet switched networks
Cidon et al. On packet loss processes in high-speed networks
EP1361709B1 (en) Using shadow Mcast/Bcast/Dlf counter and free pointer counter to balance unicast and Mcast/Bcast/Dlf frame ratio
Zukerman et al. The effect of eliminating the standby state on DQDB performance under overload
Towsley et al. Congestion avoidance in high-speed interconnection systems
JP3134662B2 (en) Server device
JP2683566B2 (en) Packet transmission system
JP3988039B2 (en) Link switching method and link interface
Höfig et al. Analysis of flow control techniques on hop and network access level in computer communication networks
EP0509068A4 (en) Dynamic association of rf radio data communication system in a pre-existing computer controlled network
Alijani et al. An evaluation of IEEE 802 protocols and FDDI in real-time distributed systems
KR100259439B1 (en) Radio frequency-specific overload controlling method in paging system
KR100264057B1 (en) Method for transmitting statistical data of cdma mobile communication system
JP3141877B2 (en) Packet switching system
Lee et al. Perturbation analysis of a token bus protocol for network performance management
JPH04345244A (en) Congestion control system for packet exchange
Rege et al. An analytical model for buffer and trunk sizing and severe congestion avoidance in LAPD frame-relay networks
JPH06244897A (en) Packet passing control system