JPH0344916A - Electron beam irradiating apparatus - Google Patents

Electron beam irradiating apparatus

Info

Publication number
JPH0344916A
JPH0344916A JP18101789A JP18101789A JPH0344916A JP H0344916 A JPH0344916 A JP H0344916A JP 18101789 A JP18101789 A JP 18101789A JP 18101789 A JP18101789 A JP 18101789A JP H0344916 A JPH0344916 A JP H0344916A
Authority
JP
Japan
Prior art keywords
electron beam
lens
electromagnetic
electromagnetic deflection
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18101789A
Other languages
Japanese (ja)
Inventor
Taizo Iwami
泰造 石見
Masahiko Sakamoto
雅彦 阪本
Eishin Murakami
村上 英信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18101789A priority Critical patent/JPH0344916A/en
Publication of JPH0344916A publication Critical patent/JPH0344916A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To irradiate a target with an electron beam at a correct position accurately at a high speed by simulating an electron beam irradiating position error due to an eddy current by a correcting circuit, and correcting a current supplied to an electromagnetic deflection lens. CONSTITUTION:A correcting circuit 21 simulates an electron beam irradiating position error due to an eddy current generated in a structure, etc., near an electromagnetic deflection lens 3 by electromagnetic induction due to a current flowing to the lens 3 by an electric circuit and corrects it. A signal based on pattern data of a computer 9 is input to the circuit 21 through a digital controller 10, and a D/A converter 11, a corrected signal is supplied to the lens 3 through an electromagnetic deflection amplifier 4, and an electron beam 2 is deflected by the corrected magnetic field. Accordingly, a target 8 is irradiated with the beam 2 at a correct position.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電子ビームをターゲット上の所定位置に照
射する電子ビーム照射装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electron beam irradiation device that irradiates a predetermined position on a target with an electron beam.

〔従来の技術〕[Conventional technology]

第5図は例えば特開昭59−124719号公報に示さ
れた従来の電子ビーム照射装置の偏向系のブロック図で
あり、図において、(1〉は電子銃、(2)は電子銃(
1)から放射される電子ビーム、(3)は磁界を発生し
て電子ビーム(2)を大振幅で偏向する電磁偏向レンズ
、(4)は電磁偏向レンズ(3)に出力電流Iを供給す
る電磁偏向アンプで、電磁偏向レンズ(3)と共に電磁
偏向系を構成している。(6)は静電的に電子ビーム(
2)を偏向する広帯域偏向レンズ、(7A)。
FIG. 5 is a block diagram of a deflection system of a conventional electron beam irradiation device disclosed in, for example, Japanese Unexamined Patent Publication No. 59-124719. In the figure, (1> is an electron gun, and (2) is an electron gun (
Electron beam emitted from 1), (3) an electromagnetic deflection lens that generates a magnetic field and deflects the electron beam (2) with a large amplitude, and (4) supplies an output current I to the electromagnetic deflection lens (3). The electromagnetic deflection amplifier constitutes an electromagnetic deflection system together with an electromagnetic deflection lens (3). (6) electrostatically generates an electron beam (
2) broadband deflection lens, (7A).

(7B)は広帯域偏向レンズ(6)に電圧を供給する広
帯域偏向アンプで、広帯域偏向レンズ(6)と共に広帯
域偏向系を構成している。(8)は電子ビーム(2)が
照射されるターゲットである。(9)は電子ビーム(2
)を偏向してターゲット(8)上に所望のパターンを描
くためのパターンデータが格納されたコンピュータ、α
Qはコンピュータ(9〉に接続されたデジタル制御回路
(以下、DCTと称す)、αυはDCTα0からのパタ
ーンデータをデジタル値からアナログ値に変換するデジ
タルアナログ変換器(以下、DACと称す)、OはDA
CQυからのアナログパターンデータを増幅して電磁偏
向信号DIを電磁偏向アンブ(4)へ出力するアンプ、
0はアンプ@に接続されて電磁偏向信号D1を反転した
基準信号を出す反転アンプ、04は電磁偏向レンズ(3
〉とグランドとの間に挿入された出力モニタ抵抗で、出
力電流Iを検出するようになっている。(至)は反転ア
ンプOからの基準信号と出力モニタ抵抗α尋からの出力
電流Iの信号とを比較する加算アンプであり、比較結果
を誤差信号e1として出力している。αGは加算アンプ
(至)からの誤差信号e!を反転した誤差信号e2を出
力する反転アンプであり、誤差信号e1.e2はそれぞ
れ抵抗器を介して広帯域偏向アンプ(7A) 。
(7B) is a broadband deflection amplifier that supplies voltage to the broadband deflection lens (6), and together with the broadband deflection lens (6) constitutes a broadband deflection system. (8) is a target to which the electron beam (2) is irradiated. (9) is an electron beam (2
) a computer storing pattern data for drawing a desired pattern on the target (8);
Q is a digital control circuit (hereinafter referred to as DCT) connected to the computer (9〉), αυ is a digital-to-analog converter (hereinafter referred to as DAC) that converts the pattern data from DCTα0 from digital values to analog values, O is DA
an amplifier that amplifies the analog pattern data from CQυ and outputs the electromagnetic deflection signal DI to the electromagnetic deflection amplifier (4);
0 is an inverting amplifier that is connected to the amplifier @ and outputs a reference signal that is an inversion of the electromagnetic deflection signal D1, and 04 is an electromagnetic deflection lens (3
The output current I is detected by an output monitor resistor inserted between the (to) is an addition amplifier that compares the reference signal from the inverting amplifier O and the signal of the output current I from the output monitor resistor α, and outputs the comparison result as an error signal e1. αG is the error signal e! from the summing amplifier (to). This is an inverting amplifier that outputs an error signal e2 which is an inversion of the error signal e1. e2 is connected to a wideband deflection amplifier (7A) through a resistor.

(7B)に入力されている。α力はコンピュータ(9)
に接続されたDCTl(18A)、 (18B)はDC
T(ロ)に接続されたDAC,(19A)、(19B)
はそれぞれDAC(18A)、(18B)に接続されて
広帯域偏向信号D2A、 D2Bを出力するアンプであ
り、広帯域偏向信号D2A、D2Bはそれぞれ抵抗器を
介して広帯域偏向アンプ(7A)、(7B)に入力され
ている。
(7B) is input. Alpha power is a computer (9)
DCTl (18A) and (18B) connected to
DAC connected to T (b), (19A), (19B)
are amplifiers that are connected to the DACs (18A) and (18B) and output wideband deflection signals D2A and D2B, respectively, and the wideband deflection signals D2A and D2B are connected to the wideband deflection amplifiers (7A) and (7B) through resistors, respectively. has been entered.

次に動作について説明する。電子銃(1)から放射され
た電子ビーム(2)は集束レンズ(図示せず)によりタ
ーゲット(8)上に集束される。同時に、コンピュータ
(9)からのパターンデータに基づく電磁偏向信号D1
および広帯域偏向信号D2A、 D2Bが生成されて、
それぞれ電磁偏向アンプ(4)、広帯域偏向アンプ(7
A)、(7B)に入力される。電磁偏向アンプ(4)は
電磁偏向レンズ(3)を駆動し、電子ビーム(2)をタ
ーゲット(8)上の全偏向領域(例えば、大きさ5Il
lIn×5InI11)内の所望の小区画領域(例えば
、100μmX100μm)(共に図示せず)に位置決
めする。一方、広帯域偏向アンプ(7A)、 (7B)
  は広帯域偏向レンズ(6)を駆動し、電子ビーム(
2)を上記小区画領域内で走査して高精度なパターンを
描く。
Next, the operation will be explained. An electron beam (2) emitted from the electron gun (1) is focused onto a target (8) by a focusing lens (not shown). At the same time, an electromagnetic deflection signal D1 based on pattern data from the computer (9)
and broadband deflection signals D2A, D2B are generated,
Electromagnetic deflection amplifier (4) and broadband deflection amplifier (7), respectively.
A) and (7B). The electromagnetic deflection amplifier (4) drives the electromagnetic deflection lens (3) and directs the electron beam (2) to the entire deflection area (for example, size 5Il) on the target (8).
It is positioned in a desired subdivision area (for example, 100 μm×100 μm) (both not shown) within the 1In×5InI11). On the other hand, wideband deflection amplifier (7A), (7B)
drives the broadband deflection lens (6), and the electron beam (
2) is scanned within the small section area to draw a highly accurate pattern.

ところで、大きな偏向領域を持つ電磁偏向レンズ(3〉
を駆動する電磁偏向アンプ(4〉は誘導性負荷のため周
波数帯域が狭く、過渡特性が悪い。第6図は、何ら補正
が行なわれないと仮想して第5図の電磁偏向アンプ(4
)へステップ状の入力をしたときの出力電流Iを説明す
るための波形図で、出力電流■が設定値に達して落ちつ
くまでに長い時間tlを要することを示す。そこで、こ
れを改善するために、以下のように補正が行われている
。まず、電磁偏向レンズ(3)の電流Iを出力モニタ抵
抗α◆で検出し、これを加算アンプ(至)により、反転
アンプ0の出力として得られる基準信号と比較して誤差
信号elを取り出す。誤差信号e1およびこれを反転し
た誤差信号e2はそれぞれ広帯域偏向アンプ(7A)、
 (7B)に入力される。広帯域偏向アンプ(7A)、
 (7B)は広帯域偏向信号D2A、 D2Bにそれぞ
れ誤差信号e1. e2が加算された信号により広帯域
偏向レンズ(6)を駆動する。こうして、電磁偏向系の
過渡特性の悪さに起因する電子ビーム(2)のターゲッ
ト(8)への照射位置誤差を補正し、位置設定に要する
時間tlを短かくしている。
By the way, an electromagnetic deflection lens (3) with a large deflection area
The electromagnetic deflection amplifier (4) that drives the inductive load has a narrow frequency band and poor transient characteristics. Figure 6 shows the electromagnetic deflection amplifier (4) in Figure 5 hypothetically assuming that no correction is performed.
) is a waveform diagram for explaining the output current I when a stepwise input is made to . Therefore, in order to improve this, the following corrections have been made. First, the current I of the electromagnetic deflection lens (3) is detected by the output monitor resistor α♦, and this is compared with the reference signal obtained as the output of the inverting amplifier 0 using the summing amplifier (to) to extract the error signal el. The error signal e1 and the error signal e2 obtained by inverting the error signal e1 are each transmitted through a wideband deflection amplifier (7A),
(7B). Wideband deflection amplifier (7A),
(7B) shows error signals e1. A broadband deflection lens (6) is driven by the signal with e2 added thereto. In this way, the error in the irradiation position of the electron beam (2) on the target (8) due to poor transient characteristics of the electromagnetic deflection system is corrected, and the time tl required for position setting is shortened.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の電子ビーム照射装置は以上のように構成されてい
るので、電磁偏向レンズの電流に現われる誤差は補正で
きるが、それ以降の現象、即ち、電流によって生じる磁
界については誤差を補正できない。電磁偏向レンズ自体
や他のレンズ、あるいは真空保持用の筒などの構造体に
導電体が用いられており、電磁偏向レンズに電流が流れ
るとこれら近辺の構造体などに電磁誘導で過渡的に渦電
流が流れる。この渦電流による磁界は、電子ビームを偏
向する磁界の誤差となり、ターゲット上の電子ビーム照
射位置の誤差となる。
Since the conventional electron beam irradiation device is configured as described above, it is possible to correct the error appearing in the current of the electromagnetic deflection lens, but it is not possible to correct the error in the subsequent phenomenon, that is, the magnetic field generated by the current. Electrical conductors are used in structures such as the electromagnetic deflection lens itself, other lenses, and tubes for vacuum maintenance, and when current flows through the electromagnetic deflection lens, transient vortices are generated in nearby structures due to electromagnetic induction. Current flows. The magnetic field caused by this eddy current causes an error in the magnetic field that deflects the electron beam, resulting in an error in the electron beam irradiation position on the target.

第7図は電子ビーム照射位置の時間変化の一例を示すグ
ラフであり、誤差がオーバーシュートとして現われる場
合を示す。上記渦電流による磁界で電子ビームが偏向さ
れ、−旦、設定位置を通り過ぎた後、渦電流の減衰につ
れて、徐々に設定位置に戻る場合を示し、従来の電子ビ
ーム照射装置では、このような誤差は補正できなかった
。更に渦電流による磁界の過渡特性は、電磁偏向系など
の電気的な応答の遅れよりも時定数が大きい場合が多く
、そのため誤差量は長い時間、減衰しないなど、高速か
つ高精度を要する加工や露光に用いられる電子ビーム照
射装置にとって、重大な問題点があった。
FIG. 7 is a graph showing an example of a temporal change in the electron beam irradiation position, and shows a case where an error appears as an overshoot. The electron beam is deflected by the magnetic field caused by the eddy current, passes the set position, and then gradually returns to the set position as the eddy current attenuates. Conventional electron beam irradiation equipment does not allow for such errors. could not be corrected. Furthermore, the transient characteristics of the magnetic field caused by eddy currents often have a time constant that is larger than the electrical response delay of electromagnetic deflection systems, etc., so the amount of error does not decay for a long time, making it difficult to perform machining that requires high speed and high precision. There were serious problems with the electron beam irradiation equipment used for exposure.

この発明は、上記のような問題点を解消するためになさ
れたもので、渦電流に起因する誤差を補正して、高速か
つ高精度にターゲット上に電子ビーム照射位置を定める
ことができる電子ビーム原波 射装置を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and it is an electron beam that can correct errors caused by eddy currents and determine the electron beam irradiation position on a target at high speed and with high precision. The purpose is to obtain a source radiation device.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る電子ビーム照射装置は、電磁偏向レンズ
の電流により電磁誘導で電磁偏向レンズ近辺の導電体に
過渡的に生じる渦電流に起因する電子ビーム照射位置誤
差を電気回路で模擬する補正回路を設け、この補正回路
により電磁偏向レンズに供給される電流を補正するよう
にしたものである。
The electron beam irradiation device according to the present invention includes a correction circuit that uses an electric circuit to simulate an error in the electron beam irradiation position caused by an eddy current transiently generated in a conductor near the electromagnetic deflection lens by electromagnetic induction due to the current of the electromagnetic deflection lens. The correction circuit corrects the current supplied to the electromagnetic deflection lens.

〔作 用〕[For production]

この発明における電子ビーム照射装置は、パターンデー
タなどに基づいて本来、電磁偏向レンズに流すべき電流
に、渦電流による磁界が電子ビームの偏向に及ぼす効果
を打ち消す電流を付加して電磁偏向レンズに流すよう、
補正回路により補正する。つまり、電磁偏向レンズに流
された電流と渦電流の両者により生じる磁界で偏向され
た電子ト上の正しい位置に照射される。
The electron beam irradiation device according to the present invention adds a current to the current that should originally be passed through the electromagnetic deflection lens based on pattern data, etc. to cancel the effect of the magnetic field caused by the eddy current on the deflection of the electron beam, and then passes the added current to the electromagnetic deflection lens. Yo,
Corrected by a correction circuit. In other words, the beam is irradiated onto the correct position on the electron beam, which is deflected by the magnetic field generated by both the current flowing through the electromagnetic deflection lens and the eddy current.

ビームはターゲラ 〔発明の実施例〕 以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例による電子ビーム照射装置の偏
向系のブロック図であり、図において、(1)〜04は
第5図の場合と同様であるので説明を省略する。(ハ)
は補正回路で、電磁偏光レンズ(3)に流れる電流によ
り電磁誘導でその近辺の構造体(図示せず)などに生じ
る渦電流に起因する電子ビーム照射位置誤差を電気回路
で模擬して補正するためのものであり、コンピュータ(
9〉のパターンデータに基づく信号ViをDCT Ql
 、 DACQl)を介して受け、上記補正を加えた信
号Voを電磁偏向アンプ(4)へ出力している。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a block diagram of a deflection system of an electron beam irradiation apparatus according to an embodiment of the present invention. In the figure, (1) to 04 are the same as in the case of FIG. 5, and their explanations will be omitted. (c)
is a correction circuit that uses an electric circuit to simulate and correct electron beam irradiation position errors caused by eddy currents generated in nearby structures (not shown) due to electromagnetic induction caused by current flowing through the electromagnetic polarizing lens (3). It is intended for computers (
DCT Ql of the signal Vi based on the pattern data of
, DACQl), and outputs the signal Vo to which the above correction has been added to the electromagnetic deflection amplifier (4).

電子ビーム(2)の実際の偏向応答特性は、上述のよう
に渦電流の影響を受けるので、電磁偏向レンズ(3)近
辺の構造物などの材質、形状0位置で大きく異る。@2
図は、もし補正がなければ第7図のようなオーバーシュ
ートの誤差が生じる場合に用いる補正回路の一例を示す
回路図で、第3図は第2図の回路図における各信号の波
形図である。第3図(4)に示すような波高値Vのステ
ップ状電圧の入力信号Viが補正回路に入力されると、
抵抗R3゜R4,R・、コンデンサCにより演算増幅器
@の+(プラス)入力端には誤差の模擬信号Ve  が
生じる。
The actual deflection response characteristics of the electron beam (2) are affected by eddy currents as described above, and therefore vary greatly depending on the material, shape, and zero position of the structures near the electromagnetic deflection lens (3). @2
The figure is a circuit diagram showing an example of a correction circuit used when an overshoot error like that shown in Fig. 7 occurs if no correction is made, and Fig. 3 is a waveform diagram of each signal in the circuit diagram of Fig. 2. be. When an input signal Vi of a step voltage with a peak value V as shown in FIG. 3 (4) is input to the correction circuit,
A simulated error signal Ve is generated at the + (plus) input terminal of the operational amplifier @ by the resistors R3, R4, R. and the capacitor C.

(以下、抵抗R1〜R5,コンデンサCそれぞれの抵抗
11d、容量値もR1〜R,、Cで表わす。)こ\で、
R3,R4>>R5とし、入力信号Viが入力されてか
らの時間をtとすると、Veは次のようになる。
(Hereinafter, the resistors R1 to R5, the respective resistances 11d of the capacitor C, and the capacitance values are also expressed as R1 to R,,C.) Here,
Assuming that R3, R4>>R5 and the time from the input of the input signal Vi to t, Ve is as follows.

これを図示すると、Veは第3図[F])のように、そ
の波高値の入力信号Viの波高値Vに対する比PがR5
/ (R3+R6)であって、時定数τがC/(1/R
3+1/R4)で減衰する波形となる。演算増幅器@は
VeとViの1Ve−Viに基づいて出力するので、出
力信号は第3図(C)のようにアンダーシュート波形に
なる。(なお、演算期雇器のは反転増幅器として使用し
ているため符号が反軽するが、同図では符どにより変わ
る補正なしのときの電子ビーム照射位置誤差、例えば第
7図のような波形を予め握把し、その波高値と時定数に
合せて誤差の模擬信号のP、τを決めて補正回路(財)
を構成しておく。第3図供給し、過渡的に発生する渦電
流による磁界を補正した磁界で電子ビーム(2)を偏向
する。従って、電子ビーム(2)はターゲット(8)上
の正しい位置に照射される。第2図の実施例では波高値
0.14%9時定数1.1msのオーバーシュートを打
ち消すことができる。
To illustrate this, as shown in FIG. 3 [F], the ratio P of the peak value of Ve to the peak value V of the input signal Vi is R5.
/ (R3+R6), and the time constant τ is C/(1/R
3+1/R4). Since the operational amplifier @ outputs an output based on 1Ve-Vi of Ve and Vi, the output signal has an undershoot waveform as shown in FIG. 3(C). (Note that the sign of the arithmetic converter is different because it is used as an inverting amplifier, but the figure shows the electron beam irradiation position error without correction, which varies depending on the sign, for example, the waveform shown in Figure 7. is determined in advance, P and τ of the error simulated signal are determined according to the peak value and time constant, and a correction circuit (goods) is created.
Configure. In FIG. 3, the electron beam (2) is deflected using a magnetic field that corrects the magnetic field caused by transiently generated eddy currents. Therefore, the electron beam (2) is irradiated to the correct position on the target (8). In the embodiment shown in FIG. 2, it is possible to cancel the overshoot of the peak value of 0.14% and the time constant of 1.1 ms.

なお、上記実施例では、電子ビーム照射位置の誤差がオ
ーバーシュートの場合を示したが、誤差がアンダーシュ
ートの場合でも、例えば第4図の補正回路の回路図に示
すように誤差の模擬信号Veを演算増幅器の−(マイナ
ス)入力端に入力し、模擬信号と入力信号を加算するこ
とにより、電子ビーム照射位置誤差を補正することがで
きる。
In the above embodiment, the error in the electron beam irradiation position is an overshoot, but even if the error is an undershoot, for example, as shown in the circuit diagram of the correction circuit in FIG. By inputting the signal to the − (minus) input terminal of the operational amplifier and adding the simulated signal and the input signal, it is possible to correct the electron beam irradiation position error.

また、上記実施例では補正回路Qυを独立して設けたが
、電磁偏向アンプ(4)と共通に設けるなど、偏向系の
他の位置に設けるようにしても同様の効果がある。更に
、渦電流の発生箇所が複数箇所あって、電子ビーム照射
位置に、複数の渦電流特性が合成された誤差を生じる場
合は、それぞれの渦電流に対応する複数の模擬信号の演
算を行って補正するようにしてもよい。
Further, in the above embodiment, the correction circuit Qυ is provided independently, but the same effect can be obtained even if it is provided at another position in the deflection system, such as by providing it in common with the electromagnetic deflection amplifier (4). Furthermore, if there are multiple locations where eddy currents are generated, and multiple eddy current characteristics result in errors that are synthesized at the electron beam irradiation position, multiple simulated signals corresponding to each eddy current may be calculated. It may be corrected.

また、上記実施例では偏向系として電磁偏向系のみを備
えた例を示したが、従来例と同様の広帯域偏向系を併用
し、これにより小区画領域内の描画を行うものにも適用
できる。
Furthermore, although the above-mentioned embodiment has shown an example in which only an electromagnetic deflection system is provided as a deflection system, it is also possible to use a broadband deflection system similar to the conventional example in combination, thereby drawing images within a small section area.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば補正回路を設けて、こ
れにより渦電流に起因する電子ビーム照射位置誤差を模
擬して、電磁偏向レンズに供給される電流を補正するよ
う構成したので、上記電子ビーム照射位置誤差が補正さ
れ、高速かつ高精度にターゲット上に電子ビーム照射位
置を定めることができる効果がある。
As described above, according to the present invention, the correction circuit is provided to simulate the electron beam irradiation position error caused by eddy current and correct the current supplied to the electromagnetic deflection lens. This has the effect that the electron beam irradiation position error is corrected and the electron beam irradiation position on the target can be determined at high speed and with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による電子ビーム照射装置
の偏向系のブロック図、第2図は第1図の電子ビーム、
照射装置の偏向系に用いられる補正回路の回路図、第3
図は第2図の回路図における各信号の波形図、第4図は
この発明の他の実施例による電子ビーム照射装置に用い
られる補正回路の回路図、第5図は従来の電子ビーム照
射装置の偏向系のブロック図、第6図は第5図の電子ビ
ーム照射装置において補正なしと仮想したときの電磁偏
向アンプの出力電流の波形図、第7図は従来の電子ビー
ム照射装置における電子ビーム照射位置の時間変化を示
すグラフである。 図において、(2)はぼ子ビーム、(3)は電磁偏向レ
ンズ、(4)は電磁偏向アンプ、(8)はターゲット、
QDは補正回路である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a block diagram of a deflection system of an electron beam irradiation device according to an embodiment of the present invention, and FIG. 2 shows the electron beam of FIG.
Circuit diagram of the correction circuit used in the deflection system of the irradiation device, Part 3
2 is a waveform diagram of each signal in the circuit diagram of FIG. 2, FIG. 4 is a circuit diagram of a correction circuit used in an electron beam irradiation device according to another embodiment of the present invention, and FIG. 5 is a conventional electron beam irradiation device. 6 is a waveform diagram of the output current of the electromagnetic deflection amplifier when no correction is assumed in the electron beam irradiation device shown in FIG. 5, and FIG. 7 is a block diagram of the electron beam in the conventional electron beam irradiation device. It is a graph showing the time change of the irradiation position. In the figure, (2) is a boko beam, (3) is an electromagnetic deflection lens, (4) is an electromagnetic deflection amplifier, (8) is a target,
QD is a correction circuit. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 電子ビームを、電磁偏向レンズに供給される電流により
生じる磁界で偏向して、ターゲット上の所定の位置に照
射するものにおいて、上記電流により電磁誘導で上記電
磁偏向レンズ近辺に生じる渦電流に起因する電子ビーム
照射位置誤差を電気回路で模擬する補正回路を設け、こ
の補正回路により上記電磁偏向レンズに供給される電流
を補正するようにしたことを特徴とする電子ビーム照射
装置。
In devices in which an electron beam is deflected by a magnetic field generated by a current supplied to an electromagnetic deflection lens and irradiated to a predetermined position on a target, eddy currents are generated near the electromagnetic deflection lens due to electromagnetic induction caused by the current. An electron beam irradiation device characterized in that a correction circuit for simulating an electron beam irradiation position error using an electric circuit is provided, and the current supplied to the electromagnetic deflection lens is corrected by the correction circuit.
JP18101789A 1989-07-12 1989-07-12 Electron beam irradiating apparatus Pending JPH0344916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18101789A JPH0344916A (en) 1989-07-12 1989-07-12 Electron beam irradiating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18101789A JPH0344916A (en) 1989-07-12 1989-07-12 Electron beam irradiating apparatus

Publications (1)

Publication Number Publication Date
JPH0344916A true JPH0344916A (en) 1991-02-26

Family

ID=16093299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18101789A Pending JPH0344916A (en) 1989-07-12 1989-07-12 Electron beam irradiating apparatus

Country Status (1)

Country Link
JP (1) JPH0344916A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260570A (en) * 2001-03-05 2002-09-13 Hitachi Ltd Charged particle beam scanning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260570A (en) * 2001-03-05 2002-09-13 Hitachi Ltd Charged particle beam scanning device

Similar Documents

Publication Publication Date Title
JPS61241720A (en) Beam positioner
JPS59124719A (en) Electron beam exposing apparatus
US4380703A (en) Method and device for the regulation of a magnetic deflection system
KR0142431B1 (en) Compensated scan wave form generator for ion tmplantation equipment
US3746912A (en) Method of and means for recording line drawings on the screen of a cathode ray tube under computer control
US20030089858A1 (en) Electron beam lithography system and method
US3422306A (en) Distortion correction circuitry
EP0097016A2 (en) Electron beam exposure apparatus
JPH0344916A (en) Electron beam irradiating apparatus
JPS6111020B2 (en)
JPH0567563A (en) Electron beam lithography apparatus
US4039899A (en) Geometry and focus correction circuit
JP3372356B2 (en) Electron beam deflection method and electron beam writing apparatus
JP2003109886A (en) Electronic beam exposure system
JPH0883740A (en) Electron beam drawing device
JP3679885B2 (en) Offset adjustment method and charged beam drawing apparatus
JPS6341186B2 (en)
JPH09161715A (en) Electron beam plotter
JPS60173834A (en) Multi-charged beam exposure device
JPH02102519A (en) Position correcting device of beam lithography device
JPH10289841A (en) Charged particle beam exposure method and device therefor
JPS634697B2 (en)
SU840916A2 (en) Digital machine for control of electron-beam microprocessing
JP3321838B2 (en) Electron beam drawing equipment
JPH06204127A (en) Determining method of heat compensation current in charged particle beam aligner