JPH034483B2 - - Google Patents

Info

Publication number
JPH034483B2
JPH034483B2 JP57066036A JP6603682A JPH034483B2 JP H034483 B2 JPH034483 B2 JP H034483B2 JP 57066036 A JP57066036 A JP 57066036A JP 6603682 A JP6603682 A JP 6603682A JP H034483 B2 JPH034483 B2 JP H034483B2
Authority
JP
Japan
Prior art keywords
perborate
silicate
weight
powdered
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57066036A
Other languages
Japanese (ja)
Other versions
JPS58185406A (en
Inventor
Junichiro Sugano
Tomoyuki Yui
Jun Kokubu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP6603682A priority Critical patent/JPS58185406A/en
Publication of JPS58185406A publication Critical patent/JPS58185406A/en
Publication of JPH034483B2 publication Critical patent/JPH034483B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)

Description

【発明の詳細な説明】 本発明は、固結性が無く、水に対し良好な溶解
性を有しかつ洗剤配合安定性にすぐれた過硼酸
塩、特に過硼酸ソーダ、の製造方法に関する。 過硼酸塩は、一般に過炭酸ソーダの様な過炭酸
塩に比べ保存安定性にすぐれていると言われてい
る。しかしながら高温多湿下に保存した場合に
は、固結し易く、特に夏季において貯蔵中に固結
し、商品価値を著しく減じる。また洗剤に過硼酸
塩を配合した場合には、洗剤中に含まれる水分が
過硼酸塩の固結を促進するのみならず、過硼酸塩
の分解を引き起し、有効な活性酸素が低下する。
また過硼酸塩は一般に冷水に溶解し難いなど種々
の問題点を有している。 従来、保存安定性を改良する方法として、ポリ
エチレングリコールモノスチアリン酸エステルを
過硼酸ソーダの表面にコーテイングし、高温多湿
下における活性酸素の低下を抑制する試みがなさ
れているが、必ずしも十分でない。一方冷水に対
する溶解性の改良に関しては、これまで何んらの
報告も見当らない。 本発明者らは上記の諸点の欠点を改良すべき
種々検討の結果本発明を為した。 本発明の目的は、高温多湿下でも固結性を有せ
ず、洗剤に配合した場合にも固結、あるいは分解
せず保存安定性にすぐれており、かつ冷水に対す
る溶解性にもすぐれた過硼酸塩、特に過硼酸ソー
ダ、を提供するにある。 本発明者らは、従来、過炭酸ソーダの如き過炭
酸塩の安定化に使用されるある種の無機化合物、
たとえばりん酸、りん酸塩、硫酸マグネシウム、
等を粉末状過硼酸ソーダに添加し、湿式造粒を行
なうと粒子の表面に撥水性の被膜が形成され、こ
れにより粒子の耐湿性が賦与され保存安定性が向
上すると共に、固結性が著しく改良されることが
見出され、さらに水ガラスの如きケイ酸塩を添加
すると、造粒過程においてケイ酸塩がゲル化状態
となつて過硼酸ソーダの粒子に沈着するが、この
ゲル化速度の大小が、造粒し、乾燥された顆粒状
の過硼酸ソーダの冷水に対する溶解性に影響を及
ぼすことが判明すると共に、これら添加剤の種類
及び組合せが過硼酸塩の安定性、固結防止性など
の性質に極めて重要であることが見出された。 本発明は上記の如き知見にもとづいて為された
ものであり、粉末状の過硼酸塩にりん酸のアルカ
リ金属塩の少なくとも一種、及びマグネシウム塩
の少なくとも一種を添加、造粒し、次いで乾燥す
ることを特徴とし、さらには、りん酸化合物の少
なくとも一種、マグネシウム塩の少なくとも一種
及びケイ酸ヒドロゾルもしくはケイ酸塩の少なく
とも一種を添加、造粒し、次いで乾燥することを
特徴とする固結防止性及び溶解性にすぐれた過硼
酸塩の製造方法に係る。 本発明において使用されるりん酸のアルカリ金
属塩、マグネシウム塩及びケイ酸ヒドロゾルもし
くはケイ酸塩を以下「添加剤」と呼ぶことがあ
り、この場合「りん酸のアルカリ金属塩」を第一
群の添加剤、「マグネシウム塩」を第二群の添加
剤、及び「ケイ酸ヒドロゾルもしくはケイ酸塩」
を第三群の添加剤と呼ぶ。尚、本発明の過硼酸塩
を過硼酸ソーダについて説明する。 本発明において用いられる上記の第一群の添加
剤は、第一、第二及び第三りん酸ナトリウム、第
一、第二及び第三りん酸カリウム、トリポリりん
酸ナトリウム、ヘキサメタりん酸ナトリウムなど
のりん酸のアルカリ金属塩から選ばれる。 これら第一群の添加剤は、本発明の目的を十分
に達成させるには、通常、過硼酸ナトリウムに対
してりん酸換算(すなわちH3PO4として)0.1〜
2.0重量%が使用され、さらには、0.2〜1.0重量%
が好適である。また、これら第一群の添加剤は通
常5〜20%濃度の水溶液として使用される。上記
の第一群の添加剤のうち、第一りん酸ナトリウ
ム、第二りん酸ナトリウムが特に好適である。 また、本発明における上記第二群の添加剤であ
るマグネシウム塩としては、硫酸マグネシウム、
塩化マグネシウムの如きマグネシウム塩から選ば
れる。これら第二群の添加剤は、通常、過硼酸ナ
トリウムに対し0.05〜1.0重量%が使用され、さ
らには0.1〜0.5重量%が好適であり、これら第二
群に属する添加剤は、通常1〜10%濃度の水溶液
として使用される。上記第二群の添加剤のうち、
硫酸マグネシウム、塩化マグネシウムが特に好適
である。 これらの添加剤は造粒時に添加されるが、添加
方法は、二種の添加剤を、予め混合して、ないし
は個別の供給口から同時に添加することが大切で
ある。第一群の添加剤、第二群の添加剤を個別に
逐次添加すると、本発明の目的を十分に発揮し難
く、好ましくない。 さらに、本発明において、先に記述した第三群
の添加剤であるケイ酸ヒドロゾルもしくはケイ酸
塩を添加することができ、この第三群の添加剤を
少量添加することにより、粒子の耐湿性、保存安
定性、溶解性を向上させることができる。 第三群の添加剤であるケイ酸塩は、ケイ酸のア
ルカリ金属塩があげられ、市販の1号〜3号水ガ
ラス、ケイ酸カリウム、ケイ酸リチウム、粉末状
ケイ酸ナトリウムなどである。またケイ酸ヒドロ
ゾルはコロイダルシリカ、あるいはシリカゾルと
も呼ばれ、それ自体は公知であつて、粒径10〜
100mμの酸化ケイ素の水分散体である。市販品
としては、たとえば商品名「スノーテツクス」
(日産化学(株)製)がある。該ケイ酸塩のうち、1
号〜3号水ガラスは1〜25%濃度のものが使用さ
れ、その他のケイ酸塩は1〜20%濃度のものが使
用される。これらは過硼酸ナトリウムに対して、
SiO2として0.01〜0.5重量%の範囲で使用される。
またケイ酸ヒドロゾルは、1〜30%濃度のものが
使用され、過硼酸ナトリウムに対して、SiO2
して同様に0.01〜0.5重量%の範囲で使用される。 これら第三群の添加剤の使用量が上記の範囲外
である場合には、本発明の目的を十分に達成し顕
著な効果を発揮させることができない。 本発明において使用される粉末状の過硼酸ナト
リウムは、一般に、メタ硼酸ナトリウム水溶液に
過酸化水素を作用させて水溶液から結晶を晶出さ
せる方法によつて得られる。晶出する結晶の粒度
があまり大きくなると造粒を行なうことが困難と
なるので、晶出する結晶の粒度を40〜150μの範
囲にとどめることが望ましく、このためには結晶
の反応器内における滞留時間を2時間以内、好ま
しくは0.5〜1.0時間とすることが望ましい。 本発明の方法において、過硼酸ナトリウムを造
粒するに当つては、湿式造粒法が適用され、造粒
に際して使用される造粒機は、湿式造粒に用いら
れるいかなる形式のものも使用できるが、混練、
〓和を十分に行なうことができる形式のものが好
適である。 造粒に際しては、過硼酸ナトリウムの含水率が
10〜15%程度となる様に所望に応じ水を添加して
混練、〓和される。 造粒機の例としては、たとえば、原料分、添加
剤等をバツチ式あるいは連続式のニーダー又は混
合器により混合、混練し、先端にスクリーンを設
けたスクリユー押出型のペレタイザーなどが用い
られる。 次いで、該造粒物は、35〜100℃の温度で、た
とえば熱風乾燥により流動状態で乾燥される。乾
燥温度によつて、得られる過硼酸ナトリウムの形
態、すなわち保有水は異なり、35〜50℃程度の温
度で乾燥した場合には、通常大部分がNaBO2
H2O2・3H2Oとなり、50〜70℃程度の温度で乾燥
した場合には、通常大部分がNaBO2・H2O2
H2Oとなり、100℃付近で乾燥させた場合には通
常大部分がNaBO2・H2O2となる。 造粒することにより、固結性、保存安定性さら
には溶解性などが改良されるが、これらの効果を
十分に発揮させるには、50℃以上の温度で乾燥す
ることが望ましく、特に50〜70℃程度の温度が好
適である。 本発明の方法によつて得られる過硼酸ナトリウ
ムは、耐湿性、耐固結性を有し、保存安定にすぐ
れておりさらに冷水に対する溶解性も改良され
る。 以上、過硼酸ナトリウムにより本発明を説明し
たが、他の過硼酸塩にも適用され同様な効果を示
すものである。 参考例(過硼酸ナトリウムの製造例) 作動液として過硼酸ナトリウム20%溶液を4
充填した反応器に60%H2O280.0c.c./g、10%メ
タ硼酸ナトリウム溶液10.8とを同時に連続的に
供給し、液温18〜20℃に保持し撹拌下に反応させ
た。反応器中における結晶の滞留時間は30分とし
た。生成した過硼酸ナトリウムの結晶は連続的に
反応器より取り出し、遠心分離機により分離し、
3.0Kg/Hrの過硼酸ナトリウムの結晶を得た。 得られた結晶の粒度は平均粒度110μであつた。 固結性 試料50gを広ビンに採り密栓して、45℃、12時
間、25℃、12時間のサイクルで恒温槽中に放置
し、次いで該試料を、開口角60度の円錐部及び内
径16mm、長さ200mmで下から100mmの個所にダンパ
ーを有する塩化ビニル樹脂製斗に充填し、ダン
パーを開放してから試料全量が流出し得るまでの
時間を測定する。この流出時間が短かい程固結し
ていないことを示す。 洗剤配合における安定性 過硼酸ナトリウム0.3gと洗剤2.7g(使用した
洗剤はABS20%、ポリオキシエチレンラウリル
エーテル7%、トリポリりん酸20%、芒硝30%を
主成分とする)とを配合し、35℃、80%RH、7
日間開放下で放置し、放置前と放置後の有効酸素
量を求め、次式に従つて分解率を求め保存安定性
を測定した。 分解率(%)=(放置前有効酸素量)−(放置
後有効酸素量)/放置前有効酸素量×100 溶解性 1のビーカーに25℃の純水1を入れ、高さ
40mm、巾25mmの撹拌羽根を有する撹拌棒を
250rpmで回し、5gの試料を投入し粒子が完全
に消失した時間を測定して行なつた。 実施例 参考例で得た過硼酸ナトリウムをシグマ型の双
腕ニーダーに充填し、これに第一群、第二群及び
第三群の添加剤を同時に添加し、〓和後の含水率
が10〜13%になる様に純水を加え、約30分間十分
に混練した。次いで0.7mmのスクリーンを有する
押出型造粒機(ペレタイザー)により造粒したの
ち、50℃の熱風温度で流動乾燥した。 尚、比較として、添加剤を加えないで造粒乾燥
したものを用いた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing perborates, particularly sodium perborate, which is non-caking, has good solubility in water, and has excellent detergent formulation stability. Perborates are generally said to have better storage stability than percarbonates such as sodium percarbonate. However, when stored under high temperature and humidity, it tends to solidify, especially during storage in summer, which significantly reduces its commercial value. Furthermore, when perborate is added to a detergent, the water contained in the detergent not only promotes the caking of the perborate, but also causes the decomposition of the perborate, reducing the amount of active oxygen available. .
Additionally, perborates generally have various problems such as being difficult to dissolve in cold water. Conventionally, as a method for improving storage stability, attempts have been made to coat the surface of sodium perborate with polyethylene glycol monostearate to suppress the decrease in active oxygen under high temperature and high humidity conditions, but this is not always sufficient. On the other hand, no reports have been found regarding improvement of solubility in cold water. The present inventors have completed the present invention as a result of various studies to improve the above-mentioned drawbacks. The object of the present invention is to provide a superfluid that does not clump even under high temperature and high humidity, does not clump or decompose when added to a detergent, has excellent storage stability, and has excellent solubility in cold water. Borate salts, especially sodium perborate, are provided. The present inventors have discovered that certain inorganic compounds conventionally used to stabilize percarbonates, such as sodium percarbonate,
For example, phosphoric acid, phosphate, magnesium sulfate,
When added to powdered sodium perborate and subjected to wet granulation, a water-repellent film is formed on the surface of the particles, which imparts moisture resistance to the particles, improves storage stability, and improves caking properties. It was found that the addition of a silicate such as water glass significantly improved the rate of gelation, in which the silicate becomes a gel during the granulation process and is deposited on the particles of sodium perborate. It has been found that the size of the additives affects the solubility of granulated and dried granular sodium perborate in cold water, and the types and combinations of these additives also affect the stability of perborate and the prevention of caking. It was found that it is extremely important for properties such as sex. The present invention was made based on the above findings, and involves adding at least one kind of alkali metal salt of phosphoric acid and at least one kind of magnesium salt to powdered perborate, granulating it, and then drying it. An anti-caking property characterized by the addition of at least one phosphoric acid compound, at least one magnesium salt, and at least one silicate hydrosol or silicate, granulated, and then dried. and a method for producing a perborate with excellent solubility. The alkali metal salts of phosphoric acid, magnesium salts, and silicate hydrosols or silicates used in the present invention may be referred to as "additives" hereinafter, and in this case, the "alkali metal salts of phosphoric acid" are referred to as the first group. Additives, "magnesium salts" as additives of the second group, and "silicic acid hydrosols or silicates"
are called the third group of additives. Incidentally, the perborate of the present invention will be explained with reference to sodium perborate. The above first group of additives used in the present invention include primary, secondary and tertiary sodium phosphates, primary, secondary and tertiary potassium phosphates, sodium tripolyphosphate, sodium hexametaphosphate, etc. Selected from alkali metal salts of phosphoric acid. These first group of additives are usually used in a range of 0.1 to 0.1 to 0.1 to 0.1 (i.e., as H 3 PO 4 ) to sodium perborate in order to fully achieve the purpose of the present invention.
2.0% by weight is used, and even 0.2-1.0% by weight
is suitable. Further, these first group additives are usually used as an aqueous solution with a concentration of 5 to 20%. Among the above-mentioned first group of additives, primary sodium phosphate and dibasic sodium phosphate are particularly preferred. In addition, as the magnesium salt which is the additive of the second group in the present invention, magnesium sulfate,
Selected from magnesium salts such as magnesium chloride. These second group additives are usually used in an amount of 0.05 to 1.0% by weight, more preferably 0.1 to 0.5% by weight, based on sodium perborate. Used as a 10% aqueous solution. Among the additives of the second group above,
Especially preferred are magnesium sulfate and magnesium chloride. These additives are added during granulation, and it is important to mix the two types of additives in advance or add them simultaneously from separate supply ports. If the additives of the first group and the additives of the second group are added individually and sequentially, it is difficult to fully achieve the object of the present invention, which is not preferable. Furthermore, in the present invention, silicic acid hydrosol or silicate, which is an additive of the third group described above, can be added, and by adding a small amount of this third group additive, the moisture resistance of the particles can be improved. , storage stability, and solubility can be improved. Silicates, which are additives in the third group, include alkali metal salts of silicic acid, such as commercially available No. 1 to No. 3 water glass, potassium silicate, lithium silicate, and powdered sodium silicate. Silicic acid hydrosol is also called colloidal silica or silica sol, which itself is well known and has a particle size of 10 to
It is an aqueous dispersion of silicon oxide with a diameter of 100 mμ. As a commercially available product, for example, the product name is ``Snowtex''.
(manufactured by Nissan Chemical Co., Ltd.). Among the silicates, 1
Water glasses No. 3 to No. 3 are used in concentrations of 1 to 25%, and other silicates are used in concentrations of 1 to 20%. These are for sodium perborate,
It is used in the range of 0.01-0.5% by weight as SiO2 .
Furthermore, the silicate hydrosol is used in a concentration of 1 to 30%, and is similarly used in a range of 0.01 to 0.5% by weight as SiO 2 based on sodium perborate. If the amount of these third group additives is outside the above-mentioned range, the objects of the present invention cannot be fully achieved and significant effects cannot be exhibited. The powdered sodium perborate used in the present invention is generally obtained by a method in which an aqueous solution of sodium metaborate is reacted with hydrogen peroxide to crystallize crystals from the aqueous solution. If the particle size of the crystals that crystallize becomes too large, it becomes difficult to perform granulation, so it is desirable to keep the particle size of the crystals that crystallize within the range of 40 to 150μ. It is desirable that the time be within 2 hours, preferably 0.5 to 1.0 hours. In the method of the present invention, a wet granulation method is applied to granulate sodium perborate, and any type of granulator used for wet granulation can be used for the granulation. However, kneading
A format that allows sufficient summation is preferred. During granulation, the water content of sodium perborate should be
Water is added as desired to give a concentration of about 10 to 15%, and the mixture is kneaded and mixed. Examples of the granulator include a screw extrusion type pelletizer, which mixes and kneads raw materials, additives, etc. using a batch or continuous kneader or mixer, and has a screen at its tip. The granules are then dried in a fluidized state at a temperature of 35 to 100°C, for example by hot air drying. Depending on the drying temperature, the form of the obtained sodium perborate, that is, the water content, differs; when drying at a temperature of about 35 to 50°C, most of it is usually NaBO2 .
H 2 O 2・3H 2 O, and when dried at a temperature of about 50 to 70℃, most of it is usually NaBO 2・H 2 O 2
H 2 O, and when dried at around 100°C, most of it usually becomes NaBO 2 H 2 O 2 . Granulation improves caking properties, storage stability, and solubility, but in order to fully demonstrate these effects, it is desirable to dry at a temperature of 50°C or higher, especially at 50°C or higher. A temperature of about 70°C is suitable. Sodium perborate obtained by the method of the present invention has moisture resistance, caking resistance, excellent storage stability, and improved solubility in cold water. Although the present invention has been explained above using sodium perborate, it can also be applied to other perborates and exhibits similar effects. Reference example (manufacturing example of sodium perborate) A 20% solution of sodium perborate was used as the working fluid.
80.0 cc/g of 60% H 2 O 2 and 10.8 cc/g of 10% sodium metaborate solution were simultaneously and continuously supplied to the filled reactor, and the reaction was carried out while maintaining the liquid temperature at 18 to 20° C. and stirring. The residence time of the crystals in the reactor was 30 minutes. The generated sodium perborate crystals are continuously taken out from the reactor and separated using a centrifuge.
3.0Kg/Hr of sodium perborate crystals were obtained. The average particle size of the obtained crystals was 110μ. Consolidation: Take 50g of the sample into a wide bottle, seal it tightly, and leave it in a constant temperature bath for 12 hours at 45℃ and 12 hours at 25℃. Fill a PVC resin funnel with a length of 200 mm and a damper 100 mm from the bottom, and measure the time from when the damper is opened until the entire amount of the sample can flow out. The shorter the run-off time, the less solidification. Stability in detergent formulation 0.3g of sodium perborate and 2.7g of detergent (the detergent used is mainly composed of 20% ABS, 7% polyoxyethylene lauryl ether, 20% tripolyphosphoric acid, and 30% Glauber's salt), 35℃, 80%RH, 7
The sample was left open for several days, the amount of effective oxygen was determined before and after being left, and the decomposition rate was determined according to the following formula to measure storage stability. Decomposition rate (%) = (Amount of effective oxygen before standing) - (Amount of effective oxygen after standing) / Amount of effective oxygen before standing × 100 Solubility: Put pure water 1 at 25°C in a beaker of 1, and
A stirring rod with a stirring blade of 40 mm and a width of 25 mm is used.
The test was performed by rotating at 250 rpm, adding 5 g of sample, and measuring the time it took for the particles to completely disappear. Example The sodium perborate obtained in the reference example was filled into a Sigma-type double-arm kneader, and the additives of the first group, the second group, and the third group were added at the same time, and the water content after mixing was 10. Pure water was added to give a concentration of ~13%, and the mixture was thoroughly kneaded for about 30 minutes. Next, the mixture was granulated using an extrusion type granulator (pelletizer) having a 0.7 mm screen, and then fluidized and dried at a hot air temperature of 50°C. For comparison, granulation and drying without adding any additives was used. 【table】

Claims (1)

【特許請求の範囲】 1 粉末状の過硼酸塩に、りん酸のアルカリ金属
塩の少なくとも一種を過硼酸塩に対してH3PO4
として0.1〜2.0重量%の量とマグネシウム塩の少
なくとも一種を過硼酸塩に対して0.05〜1.0重量
%の量とを同時に添加し、且つ、含水率が10〜15
重量%となるように水分含量を調整して造粒し、
次いで乾燥することを特徴とする固結防止性及び
溶解性に優れた過硼酸塩の製造方法。 2 乾燥を流動下35〜100℃の温度で行う特許請
求の範囲第1項記載の製造方法。 3 粉末状の過硼酸塩の粒度が40〜150μである
特許請求の範囲第1項記載の製造方法。 4 粉末状の過硼酸塩に、りん酸のアルカリ金属
塩の少なくとも一種を過硼酸塩に対してH3PO4
として0.1〜2.0重量%の量とマグネシウム塩の少
なくとも一種を過硼酸塩に対して0.05〜1.0重量
%の量とケイ酸ヒドロゾルもしくはケイ酸塩の少
なくとも一種を過硼酸塩に対してSiO2として0.01
〜0.5重量%の量とを同時に添加し、且つ、含水
率が10〜15重量%となるように水分含量を調整し
て造粒し、次いで乾燥することを特徴とする固結
防止性及び溶解性に優れた過硼酸塩の製造方法。 5 ケイ酸塩が1号乃至3号の水ガラス、ケイ酸
カリウム、ケイ酸リチウム、粉末状ケイ酸ナトリ
ウム、ケイ酸マグネシウムから選ばれる特許請求
の範囲第4項記載の製造方法。 6 乾燥を流動下35〜100℃の温度で行う特許請
求の範囲第4項記載の製造方法。 7 粉末状の過硼酸塩の粒度が40〜150μである
特許請求の範囲第4項記載の製造方法。
[Scope of Claims] 1. At least one alkali metal salt of phosphoric acid is added to a powdered perborate to form a mixture of H 3 PO 4 and perborate.
and at least one magnesium salt in an amount of 0.05 to 1.0% by weight relative to the perborate, and the water content is 10 to 15% by weight.
The water content is adjusted to % by weight and granulated.
A method for producing a perborate having excellent anti-caking properties and solubility, the method comprising then drying. 2. The manufacturing method according to claim 1, wherein drying is carried out at a temperature of 35 to 100°C under flowing conditions. 3. The manufacturing method according to claim 1, wherein the powdered perborate has a particle size of 40 to 150μ. 4 Add at least one alkali metal salt of phosphoric acid to the powdered perborate and add H 3 PO 4 to the perborate.
at least one magnesium salt in an amount of 0.1 to 2.0% by weight relative to the perborate and at least one silicate hydrosol or silicate in an amount of 0.05 to 1.0% by weight relative to the perborate as SiO 2
- 0.5% by weight at the same time, and the water content is adjusted to 10 to 15% by weight, granulated, and then dried. A method for producing perborate with excellent properties. 5. The manufacturing method according to claim 4, wherein the silicate is selected from water glass No. 1 to No. 3, potassium silicate, lithium silicate, powdered sodium silicate, and magnesium silicate. 6. The manufacturing method according to claim 4, wherein drying is carried out at a temperature of 35 to 100° C. under flowing conditions. 7. The manufacturing method according to claim 4, wherein the powdered perborate has a particle size of 40 to 150μ.
JP6603682A 1982-04-20 1982-04-20 Preparation of perboric acid salt Granted JPS58185406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6603682A JPS58185406A (en) 1982-04-20 1982-04-20 Preparation of perboric acid salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6603682A JPS58185406A (en) 1982-04-20 1982-04-20 Preparation of perboric acid salt

Publications (2)

Publication Number Publication Date
JPS58185406A JPS58185406A (en) 1983-10-29
JPH034483B2 true JPH034483B2 (en) 1991-01-23

Family

ID=13304250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6603682A Granted JPS58185406A (en) 1982-04-20 1982-04-20 Preparation of perboric acid salt

Country Status (1)

Country Link
JP (1) JPS58185406A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965072A (en) * 1988-11-03 1990-10-23 Miles Inc. Granulating composition and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039753A (en) * 1973-08-15 1975-04-12
JPS5212159A (en) * 1975-07-16 1977-01-29 Gist Brocades Nv Novel androstanic steroid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039753A (en) * 1973-08-15 1975-04-12
JPS5212159A (en) * 1975-07-16 1977-01-29 Gist Brocades Nv Novel androstanic steroid

Also Published As

Publication number Publication date
JPS58185406A (en) 1983-10-29

Similar Documents

Publication Publication Date Title
US5478488A (en) Detergent composition containing alkali metal peroxysalt stabilized with alkali metal sulfate and chloride
US4179394A (en) Process for improving the storage stability of alkali persalts
US5547603A (en) Silicate composition
US2706178A (en) Preparation of hydrated perborate products
US4992079A (en) Process for preparing a nonphosphate laundry detergent
JPH08508707A (en) Coated sodium peroxycarbonate particles, process for their preparation and detergent-, detergent- and bleach compositions containing said compounds
JP2002517371A (en) Coated sodium percarbonate particles, their preparation, their use in detergent compositions and detergent compositions containing them
JPH04501129A (en) Method for producing surfactant-containing granules
CH633581A5 (en) FREE FLOWABLE, GRINNY, HIGH-PERFORMANCE WASHING AND CLEANING AGENT FOR COARSE, WHITE AND COLORED LAUNDRY.
JPH06340403A (en) Sodium percarbonate particle coated with coating material and preparation thereof
SE442210B (en) WANT TO DELAY OR PREVENT THE APPLICATION OF A WATER-BICYCARBONATE-CARBONATE-SILICATE-INHALING SUSPENSION FOR USE IN A NONNONIC DETERGENT COMPOSITION
US4289643A (en) Stabilization of anhydrous sodium metasilicate
JPH08504740A (en) Method for stabilizing alkaline percarbonate particles, particles obtained thereby and cleaning and / or bleaching compositions containing same
DE4117032A1 (en) SILICONE-CONTAINING DECORATIVE GRANULATE
US3630928A (en) Particles containing mixtures of polyphosphates and silicates
JPH034483B2 (en)
JPH0139962B2 (en)
JPH0437119B2 (en)
JP3192470B2 (en) Method for producing granular composition containing nonionic activator
US3257325A (en) Stable, alkali-rich, sodium silicates
US3157649A (en) Examine
US5744639A (en) Granular alkali metal nitrilotriacetate
US3620972A (en) Method of agglomerating finely divided inorganic phosphates using an orthophosphate agglomerating aid
JP2850422B2 (en) Safe sodium percarbonate granules
JP3314526B2 (en) Method for producing stabilized sodium percarbonate particles