JPH0344836A - Optical head device - Google Patents

Optical head device

Info

Publication number
JPH0344836A
JPH0344836A JP1179412A JP17941289A JPH0344836A JP H0344836 A JPH0344836 A JP H0344836A JP 1179412 A JP1179412 A JP 1179412A JP 17941289 A JP17941289 A JP 17941289A JP H0344836 A JPH0344836 A JP H0344836A
Authority
JP
Japan
Prior art keywords
transparent member
transparent material
intensity
refractive index
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1179412A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Tsujioka
強 辻岡
Shigeaki Yamamoto
重朗 山本
Fumio Tatsuzono
史生 立園
Minoru Kume
久米 実
Kotaro Matsuura
松浦 宏太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1179412A priority Critical patent/JPH0344836A/en
Priority to US07/419,021 priority patent/US5272689A/en
Priority to CA002000416A priority patent/CA2000416A1/en
Priority to KR1019890014551A priority patent/KR900006919A/en
Priority to DE68924120T priority patent/DE68924120T2/en
Priority to EP89118992A priority patent/EP0363966B1/en
Publication of JPH0344836A publication Critical patent/JPH0344836A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)

Abstract

PURPOSE:To eliminate the need of controlling focusing by obtaining a used beam whose intensity is high at a central part and whose intensity is low at the surrounding part and also forming a transparent member of a non-linear optical material whose refractive index changes corresponding to the intensity of the beam. CONSTITUTION:The transparent member 14 made of the non-linear material is loaded on the hole of a rotary drum 1, and a substance whose outgoing beam has Gaussian intensity distribution is used as a semiconductor laser 601'. When the laser beam having the Gaussian intensity distribution is made incident on the transparent member 14 after the laser beam is converted to the collimated beam of light by a collimator lens 603, the refractive index of the transparent member 14 becomes large distribution at the central part of a beam incident part and becomes small distribution at the surrounding part of the beam incident part. Then, lens effect is generated in the transparent member 14 and the, the beam is focused and also the reflected beam goes in the opposite direction in the transparent member 14 in the state of being converged. Thus, the need of controlling the focusing can be eliminated.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は光ヘッド装置に係り、特に光テープ装置に組込
まれた光ヘッド装置に用いて好適なものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an optical head device, and is particularly suitable for use in an optical head device incorporated in an optical tape device.

(ロ)従来の技術 光テープ装置に適用される光ヘッド装置として例えば特
開昭62−149036号公報(611B 7 / 0
85 )に開示されたものがある。此種光ヘッド装置を
第7図に示す。図において(1)は有底円筒上の回転ド
ラム、(2)は回転ドラム(1)を駆動するモーフ、(
3)は回転ドラム(1)の回転軸に固定された反射プリ
ズム。(4)は反射プリズム(3)の反射面に対向して
回転ドラム(1)の側壁に形成された孔、(5)はこの
孔(4)内に装着された対物レンズ、(6)は回転ドラ
ム(1)の上方に配され、且つ回転ドラム(1)の回転
軸に沿ってビームを出射するピックアップ、(7)は回
転ドラム(1)の外周に斜めに巻きツけられた光テープ
である。
(b) Conventional technology As an optical head device applied to an optical tape device, for example, Japanese Patent Application Laid-open No. 149036/1983 (611B 7/0
85). This type of optical head device is shown in FIG. In the figure, (1) is a rotating drum on a bottomed cylinder, (2) is a morph that drives the rotating drum (1), and (
3) is a reflecting prism fixed to the rotating shaft of the rotating drum (1). (4) is a hole formed in the side wall of the rotating drum (1) facing the reflective surface of the reflective prism (3), (5) is an objective lens mounted in this hole (4), and (6) is A pickup is placed above the rotating drum (1) and emits a beam along the rotation axis of the rotating drum (1), and (7) is an optical tape wound diagonally around the outer circumference of the rotating drum (1). It is.

尚、ピンクアンプ(6)は半導体レーザ(601)と、
ビームスプリ・/夕(602)と、コリメータレンズ(
603)と、光検出器(604)とよりなる。
In addition, the pink amplifier (6) is a semiconductor laser (601),
Beam splitter/event (602) and collimator lens (
603) and a photodetector (604).

半導体レーザ(601)から出射されたビームはコノメ
ータレンズ(6413)により平行ビームにされた後反
射プリズム(3)により側方に反射され、対物レンズ(
5)により光テープ(7)上に収束される。
The beam emitted from the semiconductor laser (601) is made into a parallel beam by the conometer lens (6413), then reflected laterally by the reflection prism (3), and then passed through the objective lens (6413).
5) on the optical tape (7).

又、光テープく7)がらの反射ビームは同一の光路で逆
行してビームスプリッタ(602)に入射され、ここで
反射されて光検出B(604)に導かれる。反射ビーム
は光テープ(7)上に記録されている情報により変調さ
れる。従って光検出器(604)がら出力される電気信
号は光テープ(7)上の情報に応じた信号となる。
Further, the reflected beam from the optical tape 7) travels backward along the same optical path and enters the beam splitter (602), where it is reflected and guided to the photodetector B (604). The reflected beam is modulated by information recorded on the optical tape (7). Therefore, the electrical signal output from the photodetector (604) corresponds to the information on the optical tape (7).

当該実施例では、光テープ(7)上に塵埃が付着してい
ると、読取りビームがこの塵埃により遮ぎられ、このた
め反射ビームに不要な変調が重畳されてしまう。このた
め、光検出5(604)から出力される読取り信号にビ
ットエラー等が生じる慣れがある。
In this embodiment, if dust adheres to the optical tape (7), the reading beam will be blocked by the dust, and therefore unnecessary modulation will be superimposed on the reflected beam. For this reason, it is common for bit errors and the like to occur in the read signal output from the photodetector 5 (604).

この様な不都合を解消する新規な光ヘッド装置として出
願人は先に特願昭63−25675.7号を出願した。
The applicant previously filed Japanese Patent Application No. 63-25675.7 for a new optical head device that eliminates such inconveniences.

当該出願に係る発明は、前記対物レンズ(5)と光テー
プ(7)の間に光テープ(7)に摺接する透明材を配し
、斯かる透明材の摺接により光テープ(7)上の塵埃を
飛散するものである。
The invention according to the application includes a transparent material that slides on the optical tape (7) between the objective lens (5) and the optical tape (7), and a transparent material that slides on the optical tape (7) due to the sliding contact of the transparent material. It scatters dust.

その具体的Ill戊を第8図に示す。尚、同図は第7図
の孔(4)の付近のみを拡大して示している。
A concrete example of this is shown in FIG. Note that this figure shows only the vicinity of the hole (4) in FIG. 7 in an enlarged manner.

図において、(8)が透明材であり、対物レンズ(5)
により収束されたビームはこの透明材(8)を透過して
光テープ(7)の記録層上に収束される。
In the figure, (8) is a transparent material, and objective lens (5)
The beam focused by the transparent material (8) passes through the transparent material (8) and is focused onto the recording layer of the optical tape (7).

又、対物レンズ(5)はアクチュエータ(主)により支
持されており、フォーカスサーボ回路(10)及びトラ
ッキングサーボ回路(11)がらの信号により駆動され
る圧電素子(12)(13)によってフォーカス方向及
びトラッキング方向に駆動される。
The objective lens (5) is supported by an actuator (main), and is controlled in the focus direction and direction by piezoelectric elements (12) and (13) driven by signals from the focus servo circuit (10) and the tracking servo circuit (11). Driven in the tracking direction.

上記第8図に示す光ヘッド装置では、対物レンズ(5)
をフォーカス制御するための手段(圧電素子(12)と
フォーカスサーボ回路(10)よりなる)が準備されて
いる。上記の如く透明材(8)を用いた場合、透明材(
8)と光テープ(7)が摺接するため、対物レンズ(5
)と光テープ(7)の間の距離が略固定され、従って、
レーザビームの焦点深度が大きければ、この焦点深度に
より光テープ上のビームのフォーカスずれを略吸収でき
る。然し乍ら、例えば記録モードと再生モードにおいて
使用されるビームの波長が異なる等の場合には、レンズ
の色収差によって各波長のビームの焦点距離が変化する
ため、それに応じて対物レンズを変位させる必要があり
、このため上述したフォーカス制御手段が必要になる。
In the optical head device shown in FIG. 8 above, the objective lens (5)
Means for focus control (consisting of a piezoelectric element (12) and a focus servo circuit (10)) is prepared. When the transparent material (8) is used as described above, the transparent material (
8) and the optical tape (7), the objective lens (5) is in sliding contact with the optical tape (7).
) and the optical tape (7) is approximately fixed, so that
If the depth of focus of the laser beam is large, this depth of focus can substantially absorb the defocus of the beam on the optical tape. However, if, for example, the wavelengths of the beams used in the recording mode and the reproduction mode are different, the focal length of the beam of each wavelength changes due to the chromatic aberration of the lens, so it is necessary to displace the objective lens accordingly. , Therefore, the above-mentioned focus control means is required.

(ハ)発明が解決しようとする課題 本発明はフォーカス制御が不要な光ヘッド装置を提供せ
んとするものである。
(c) Problems to be Solved by the Invention The present invention aims to provide an optical head device that does not require focus control.

(ニ)課題を解決するための手段 上記課題に鑑み本発明は使用ビームを中心部の強度が大
きく周辺部の強度が小さいものとし、且゛)透明材をビ
ーム強度に応じて屈折率が変化する非線形光学材料によ
り形成した。
(d) Means for Solving the Problems In view of the above problems, the present invention uses a beam that has a high intensity at the center and a low intensity at the periphery, and (2) uses a transparent material whose refractive index changes depending on the beam intensity. It is made of nonlinear optical material.

(ホ)作 用 一般に物質の屈折率nは光の強度により変化し、その屈
折率nは次式により表わされることが知られている。
(e) Function It is generally known that the refractive index n of a substance changes depending on the intensity of light, and that the refractive index n is expressed by the following formula.

n=n1+n!−1tM =−(1) ここで、では光の電場振幅、n、は非線形屈折率である
。多くの物質では、n、が極めて小さいため、光の強度
1rlが変化してもn=n、(−定)として良いが、あ
る種の材料においては、nlを無視できず、従って光強
度が大きいと屈折率がそれに応じて大きくなる。非線形
材料はこの様な効果が大きい材料である。
n=n1+n! −1tM =−(1) where the electric field amplitude of light, n, is the nonlinear refractive index. In many materials, n is extremely small, so even if the light intensity 1rl changes, n=n, (-constant) can be assumed, but for some materials, nl cannot be ignored, and therefore the light intensity changes. If it is large, the refractive index becomes correspondingly large. Nonlinear materials are materials that have a large effect like this.

この様な材料により透明材を形成し、この透明材にレー
ザビーム等の中心部の強度が大きく周辺部の強度が小さ
なビームを入射させると、ビーム入射位置における透明
材の屈折率がビーム中心部において大きくビーム周辺部
において小さくなる。このため、透明材にレンズ効果が
生じ、ビームは透明材内を進むに従って自然集光される
。斯かる透明材(非線形材料)の作用を自己集束作用と
いう。更に一度集束されたビームは集束された状態のま
ま透明材中を進む。これを自己束縛作用という。
When a transparent material is formed from such a material and a beam such as a laser beam that has a large intensity at the center and a small intensity at the periphery is incident on this transparent material, the refractive index of the transparent material at the beam incidence position will change to that at the center of the beam. It becomes large at the beam periphery and becomes small at the beam periphery. Therefore, a lens effect occurs in the transparent material, and the beam is naturally focused as it travels through the transparent material. This action of the transparent material (nonlinear material) is called self-focusing action. Furthermore, once the beam is focused, it travels through the transparent material while remaining focused. This is called self-binding.

本発明は非線形材料のこのような作用を利用したもので
、媒体に摺接する透明材を非線形材料により形成するこ
とにより、使用ビームの波長によらずビームを透明材中
において集束させ、媒体にこの集束されたビームを照射
するものである。
The present invention makes use of such an effect of a nonlinear material, and by forming the transparent material that slides on the medium from a nonlinear material, the beam is focused in the transparent material regardless of the wavelength of the beam being used, and this is applied to the medium. It emits a focused beam.

(へ) 実施−例 以下、本発明の実施例につき図面を用いて説明する。(f) Implementation-Example Embodiments of the present invention will be described below with reference to the drawings.

第1図及び第2図は第7図に示す先行技術に本発明を適
用した例を示す図である。本実施例では、回転ドラム(
1)の孔(4)に透明材及び対物レンズを配する代わり
に、非線形材料よりなる透明材(14)を孔(4)に装
着している。又、半導体レーザ(601’)として、出
射ビームが第3図(a)に示すガウス型強度分布を有す
るものを用いる。斯かる強度分布を有するレーザビーム
がコリメータレンズ(603)により平行ビームに変換
された後、透明材(]4)に入射されると、ビーム入射
部における透明材(14)の屈折率は、第3図(b)に
示す様な分布となる。従って、透明材(14)にレンズ
効果が生じ、ビームは第2図に示す様に集束される。
FIGS. 1 and 2 are diagrams showing an example in which the present invention is applied to the prior art shown in FIG. 7. In this example, the rotating drum (
Instead of disposing a transparent material and an objective lens in the hole (4) of 1), a transparent material (14) made of a nonlinear material is attached to the hole (4). Further, a semiconductor laser (601') whose output beam has a Gaussian intensity distribution as shown in FIG. 3(a) is used. When a laser beam having such an intensity distribution is converted into a parallel beam by the collimator lens (603) and then incident on the transparent material (4), the refractive index of the transparent material (14) at the beam incidence part is The distribution is as shown in Figure 3(b). Therefore, a lens effect is created in the transparent material (14) and the beam is focused as shown in FIG.

斯様にして収束されたビームは、光テープ(7〉上にス
ポットとして照射され、更に光テープ(7)によって反
射された後再び透明材(14)に入射される。この様に
して入射された反射ビームは、もともと収束された状態
にあるので、前述した透明材の自己束縛作用により、透
明材(14)中を収束された状態にて逆行する。
The beam thus converged is irradiated as a spot onto the optical tape (7), and after being further reflected by the optical tape (7), it is incident on the transparent material (14) again. Since the reflected beam is originally in a converged state, it travels backward through the transparent material (14) in a converged state due to the self-constraining effect of the transparent material described above.

斯かる反射ビームは透明材(14)から出射されると回
折現象により発散される。そしてこの様に拡散された反
射ビームは、ビームスプリッタ(602)により光検出
器(604)側へ反射され、この光検出W(604)に
より受光さtLる。
When such a reflected beam is emitted from the transparent material (14), it is diverged due to a diffraction phenomenon. The reflected beam thus diffused is reflected by the beam splitter (602) toward the photodetector (604), and is received by the photodetector W (604).

本実施例では、光検出!(604)が回転ドラム(1)
外に配設されており、反射ビームの発散が始まった点か
ら光検出器までの距離が長いため、光検出面において光
検出5(6o4)の検出領域よりも反射ビームの発散領
域の方が大きくなり、このため反対ビームを光検出6(
604)により効率的に受光できず、その分光検出器か
らの再生出力が小さくなる。
In this example, optical detection! (604) is the rotating drum (1)
Since the distance from the point where the reflected beam starts to diverge to the photodetector is long, the divergence area of the reflected beam is larger than the detection area of photodetector 5 (6o4) on the photodetection surface. Therefore, the opposite beam is detected by optical detection 6 (
604), the light cannot be efficiently received, and the reproduced output from the spectroscopic detector becomes small.

斯かる不都合を解決する手段として、第4図に示す如く
透明材(14’)の光軸方向寸法を引き伸ばし、反射ビ
ームの発敢点と光検出器(604)との間の光学的な距
離を小さくする方法がある。更に必要に応じては、・ビ
ームスプリッタ(602)と光検出6(604)との間
に収束レンズを配し、発散された反射ビームを光検出器
上に収束させる様にしても良い。
As a means to solve this inconvenience, as shown in FIG. 4, the dimension of the transparent material (14') in the optical axis direction is increased to increase the optical distance between the starting point of the reflected beam and the photodetector (604). There is a way to make it smaller. Furthermore, if necessary, a converging lens may be disposed between the beam splitter (602) and the photodetector 6 (604) to converge the divergent reflected beam onto the photodetector.

尚、使用ビームの波長によって透明材の非線形収束効果
に差が生じるため、ビームを常に集束さ。
Note that the nonlinear convergence effect of the transparent material varies depending on the wavelength of the beam used, so the beam must always be focused.

れた状態にて光テープに照射するためには、透明材の前
記光軸方向寸法を大きくとって、ビームを波長に関係な
く透明材中において確実に集束させてから、この集束ビ
ームを光テープに導く様にする方が良い。
In order to irradiate the optical tape in a state of It is better to let it guide you.

第5図及び第6図はピックアップ部を全て回転ドラム(
1)内に配した場合の実施例である。当該実施例では、
半導体レーザ(601’)と光検出器(604)が回転
ドラム(1)内に配されたいるため、これ等の素子と機
器本体側の回路とを電気的に接続するのが困難になるが
、その反面、前記反射ビームの5!敵点と光検出95(
604)の光学的な距離を小さく設定できるため、前記
反射ビームを光検出器(604)により効率的に受光せ
しめることができる。
In Figures 5 and 6, the pickup section is entirely connected to a rotating drum (
1) This is an example in which it is placed within. In this example,
Since the semiconductor laser (601') and photodetector (604) are arranged inside the rotating drum (1), it is difficult to electrically connect these elements to the circuit on the device main body side. , On the other hand, 5! of the reflected beam! Enemy point and light detection 95 (
Since the optical distance of 604) can be set small, the reflected beam can be efficiently received by the photodetector (604).

以上、本発明の種々の実施例につき説明したが、本発明
は斯かる実施例に限定されるものはない。例えば、上記
実施例では、光テープ装置に本発明を適用しているが、
他に光デイスク装置にも本発明を適用することができる
。又、上記実施例では、媒体にビームを照射した際の反
射ビームによりデータの読取りを行っているが、媒体が
透過型である場合には媒体の透過ビームによりデータを
読取る様にすれば良い。この場合、光検出器と媒体とを
極めて接近させることができるため、媒体からの透過ビ
ームがあまり発散しないうちに透過ビームを光検出器に
より受光せしめることができる。
Although various embodiments of the present invention have been described above, the present invention is not limited to these embodiments. For example, in the above embodiment, the present invention is applied to an optical tape device, but
The present invention can also be applied to other optical disk devices. Further, in the above embodiment, data is read using the reflected beam when the medium is irradiated with the beam, but if the medium is a transmission type, data may be read using the transmitted beam of the medium. In this case, since the photodetector and the medium can be brought very close to each other, the transmitted beam from the medium can be received by the photodetector before it diverges much.

尚、本発明に係る透明材としては、LiNb0+、KH
,PO,,2−メチル−4ニトロアニリン等の非線形光
学材料を用いることができる。
Incidentally, as the transparent material according to the present invention, LiNb0+, KH
, PO, , 2-methyl-4 nitroaniline, etc. can be used.

(ト)発明の効果 以上、本発明に依れば、使用ビームとして波長の異なる
種々のビームを用いても、色収差を生じることなく全て
良好に媒体上に集束せしめることができる。
(g) Effects of the Invention As described above, according to the present invention, even if various beams with different wavelengths are used, they can all be well focused on the medium without producing chromatic aberration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の一実施例を示すQ11析而
図面び要部側断面図、第3図(a)及び(b)は同実施
例のレーザビーム強度分布及び透明材の屈折率分布を示
す図、第4図は他の実施例を示す側断面図、第5図及び
第6図は更に他の実施例を示す平面図及び要部平面図、
第7図及び第8図は従来例を示す側断面図及び要部側断
面図である。 (14)(14’)・・・透明材、(601’)・・・
半導体レーザ(発光手段)。
Figures 1 and 2 are a Q11 analysis diagram and a side sectional view of essential parts showing one embodiment of the present invention, and Figures 3 (a) and (b) are the laser beam intensity distribution and transparent material of the same embodiment. A diagram showing a refractive index distribution, FIG. 4 is a side sectional view showing another embodiment, FIGS. 5 and 6 are a plan view and a main part plan view showing still another embodiment,
7 and 8 are a side sectional view and a main part side sectional view showing a conventional example. (14) (14')...Transparent material, (601')...
Semiconductor laser (light emitting means).

Claims (1)

【特許請求の範囲】[Claims] (1)中心部の強度が大きく周辺部の強度が小さいビー
ムを出射する発光手段と、媒体に摺接すると共に前記ビ
ームを透過して該ビームを媒体に導く透明材とを有し、
前記透明材をビーム強度に応じて屈折率が変化する非線
形光学材料により形成したことを特徴とする光ヘッド装
置。
(1) It has a light emitting means that emits a beam having a high intensity at the center and a low intensity at the periphery, and a transparent material that slides into contact with a medium and transmits the beam to guide the beam to the medium,
An optical head device characterized in that the transparent material is formed of a nonlinear optical material whose refractive index changes depending on the beam intensity.
JP1179412A 1988-10-12 1989-07-11 Optical head device Pending JPH0344836A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1179412A JPH0344836A (en) 1989-07-11 1989-07-11 Optical head device
US07/419,021 US5272689A (en) 1988-10-12 1989-10-10 Optical head system with transparent contact member
CA002000416A CA2000416A1 (en) 1988-10-12 1989-10-11 Optical head device
KR1019890014551A KR900006919A (en) 1988-10-12 1989-10-11 Optical head unit
DE68924120T DE68924120T2 (en) 1988-10-12 1989-10-12 Optical head arrangement.
EP89118992A EP0363966B1 (en) 1988-10-12 1989-10-12 Optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1179412A JPH0344836A (en) 1989-07-11 1989-07-11 Optical head device

Publications (1)

Publication Number Publication Date
JPH0344836A true JPH0344836A (en) 1991-02-26

Family

ID=16065416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1179412A Pending JPH0344836A (en) 1988-10-12 1989-07-11 Optical head device

Country Status (1)

Country Link
JP (1) JPH0344836A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008234308B2 (en) * 2007-03-30 2012-09-06 China Petroleum & Chemical Corporation A noble metal-containing Ti-Si material and the preparing method thereof
US9713274B2 (en) 2013-09-18 2017-07-18 Sony Corporation Electronic apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173401A (en) * 1986-01-28 1987-07-30 Olympus Optical Co Ltd Method for fitting and adjusting refractive index distribution lens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173401A (en) * 1986-01-28 1987-07-30 Olympus Optical Co Ltd Method for fitting and adjusting refractive index distribution lens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008234308B2 (en) * 2007-03-30 2012-09-06 China Petroleum & Chemical Corporation A noble metal-containing Ti-Si material and the preparing method thereof
US8349756B2 (en) 2007-03-30 2013-01-08 China Petroleum & Chemical Corporation Noble metal-containing titanosilicate material and its preparation method
US9713274B2 (en) 2013-09-18 2017-07-18 Sony Corporation Electronic apparatus

Similar Documents

Publication Publication Date Title
US4507766A (en) Optical device for optically recording and reproducing information signals on an information carrier
KR100207648B1 (en) Optical pickup device and optical power control method
US5787058A (en) Optical pickup apparatus utilizing a polygonal prism
KR100478559B1 (en) Optical pickup for recordable and playable discs
US4929044A (en) Optical pickup using waveguide
KR19980044383A (en) Optical pickup device
JPS5971142A (en) Optical information reproducer
KR20020064822A (en) Near field recording/reproducing optical head
US5214633A (en) Optical waveguide recording medium playing apparatus
US5293372A (en) Apparatus for optically recording and reproducing information from an optical recording medium
KR100350990B1 (en) Solid immersion mirror type objective lens and optical pickup apparatus employing it
JPH0344836A (en) Optical head device
US5901132A (en) Pickup head having two laser light sources for separately reading an optical disk with two recording layers
US6373809B1 (en) Multi-channel optical head for optical recording and reading optical storage data
US5742567A (en) Master optical disk recording apparatus
JPH0434740A (en) Optical head
KR100252170B1 (en) Optical head
KR20010102340A (en) Optical scanning unit comprising a detection system for detecting the position of a movable element within the unit
JP2600704B2 (en) Optical recording / reproducing device
JPH04370536A (en) Optical recording/reproducing device
JPH01307934A (en) Optical head
KR100230226B1 (en) Light beam modulation method and recording and reproducing optical pickup thereof
JPH0219537B2 (en)
JPS5897141A (en) Recorder and reproducer for optical information
KR19980025759A (en) Optical pickup device