JPH0344652B2 - - Google Patents

Info

Publication number
JPH0344652B2
JPH0344652B2 JP59161279A JP16127984A JPH0344652B2 JP H0344652 B2 JPH0344652 B2 JP H0344652B2 JP 59161279 A JP59161279 A JP 59161279A JP 16127984 A JP16127984 A JP 16127984A JP H0344652 B2 JPH0344652 B2 JP H0344652B2
Authority
JP
Japan
Prior art keywords
liquid
gas
temperature gas
measuring
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59161279A
Other languages
Japanese (ja)
Other versions
JPS6156940A (en
Inventor
Yasuo Koseki
Katsuya Ebara
Sankichi Takahashi
Kazuhiko Matsuoka
Minoru Kuroiwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59161279A priority Critical patent/JPS6156940A/en
Publication of JPS6156940A publication Critical patent/JPS6156940A/en
Publication of JPH0344652B2 publication Critical patent/JPH0344652B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1024Counting particles by non-optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1029Particle size

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、液中の不純物を測定する方法とその
装置に係り、特に液中の微粒子の粒径と個数、ま
たは液中の塩類の量の測定に好適な方法とその装
置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method and apparatus for measuring impurities in a liquid, and in particular, to a method and an apparatus for measuring impurities in a liquid, and in particular to measuring the particle size and number of fine particles in a liquid, or the amount of salts in a liquid. This invention relates to a method and device suitable for measurement.

〔発明の背景〕[Background of the invention]

従来、オンラインで液中の微粒子の粒径、個数
を直接測定する装置のうち、最も小さい粒径まで
測れるのはレーザー散乱方式であるが、測定可能
な最小粒径は0.5μ程度であり、それ以下の粒径測
定はできない。一方、レーザー散乱光を用いた気
中微粒子測定器は気中の0.1μの微粒子まで測れる
ことはよく知られている。
Conventionally, among the devices that directly measure the particle size and number of fine particles in liquid online, the laser scattering method is capable of measuring the smallest particle size, but the smallest particle size that can be measured is about 0.5μ, and it is The following particle size measurements are not possible. On the other hand, it is well known that airborne particle measuring instruments that use laser scattered light can measure particles as small as 0.1μ in the air.

ところで、気中微粒子測定器の計器校正用にダ
ウケミカル社製のポリスチレンラテツクス球状標
準粒子を用いた標準粒子のエアロゾル発生装置
(例えば大塚他1名“公害計測における粒状物質
の測定”、日立評論vol56、No.11(1974−11)、
P1089参照)が知られているが、このような装
置、機器を組合せたとしても、粒径は測れるが粒
径分布と個数は測れない。その理由を第2図に示
す従来のエアロゾル発生装置の装置フローを用い
て説明する。このエアロゾル発生装置は、その目
的が気中微粒子測定器の校正であるため、粒径の
既知な標準粒子を含む液体を気化させ、該粒子を
ガス中に浮遊させればよいものである。この装置
は、まず標準粒子の懸濁した液100を霧化器1
0で清浄なガス120を用いて霧化して、その霧
110の1部を希釈器20清浄なガス120と混
合させたのち、気化器30でヒータ35を用いて
外部加熱して霧を気化させて、液中の微粒子がガ
ス中に浮遊した状態のガス130を気中微粒子測
定器40へ送るものである。これでは、しかし、
液中の微粒子の粒径分布と個数を測るためには、
以下の問題がある。
By the way, a standard particle aerosol generator using polystyrene latex spherical standard particles manufactured by Dow Chemical Company for instrument calibration of airborne particulate measuring instruments (for example, Otsuka et al., "Measurement of Particulate Matter in Pollution Measurement", Hitachi Review) vol56, No.11 (1974-11),
(See page 1089), but even if such devices and equipment are combined, particle size can be measured, but particle size distribution and number cannot be measured. The reason for this will be explained using the device flow of a conventional aerosol generator shown in FIG. Since the purpose of this aerosol generator is to calibrate an airborne particle measuring device, it is sufficient to vaporize a liquid containing standard particles of known particle size and suspend the particles in a gas. In this device, first, a liquid 100 in which standard particles are suspended is poured into an atomizer 1.
A part of the mist 110 is mixed with the clean gas 120 of the diluter 20, and then externally heated using the heater 35 in the vaporizer 30 to vaporize the mist. The gas 130 in which particles in the liquid are suspended in the gas is sent to the airborne particle measuring device 40. In this case, however,
In order to measure the particle size distribution and number of fine particles in liquid,
There are the following problems.

(1)霧化器10の内壁に液滴が付着するため霧化
量を正確に知ることができない。(2)霧化した液の
一部を気化室へ送つて気化させるため、気化液量
の測定がむずかしい。(3)霧化した液滴を輸送する
ため管内壁へのそれらの付着は防止できない。(4)
液滴を気化室で外部間接加熱で気化するので、最
高温度が加熱内壁面にあるため、壁面での液滴蒸
発が最も多くなり、微粒子の壁面付着が防止でき
ない。
(1) Since droplets adhere to the inner wall of the atomizer 10, the amount of atomization cannot be accurately determined. (2) Since a portion of the atomized liquid is sent to the vaporization chamber to be vaporized, it is difficult to measure the amount of vaporized liquid. (3) Since atomized droplets are transported, their adhesion to the inner wall of the pipe cannot be prevented. (Four)
Since the droplets are vaporized in the vaporization chamber by external indirect heating, the highest temperature is on the inner heated wall surface, so the droplets evaporate most on the wall surface, making it impossible to prevent fine particles from adhering to the wall surface.

以上のことから、エアロゾル発生装置へ送入さ
れた液体中の微粒子の個数及び粒径分布と、装置
を出てくるガス中に浮遊する微粒子の個数と粒径
分布が一致しなくなる。それ故、気中微粒子測定
器と公知のエアロゾル発生装置の単なる組合せで
は、液中の微粒子の粒径分布と個数を知ることは
できない。
As a result of the above, the number and particle size distribution of fine particles in the liquid fed into the aerosol generator do not match the number and particle size distribution of fine particles suspended in the gas exiting the apparatus. Therefore, the particle size distribution and number of particles in a liquid cannot be determined by simply combining an airborne particle measuring device and a known aerosol generator.

本発明は、上述の問題を解決すべくなされたも
のであり、また、その研究検討の過程において本
発明は液中の塩類の量の測定にも利用し得ること
が判明した。
The present invention was made to solve the above-mentioned problems, and in the course of its research and study, it was found that the present invention can also be used to measure the amount of salts in a liquid.

〔発明の目的〕[Purpose of the invention]

よつて本発明の目的は、液中の微細な微粒子の
粒径と個数の測定、または液中の塩類の量の測定
を可能とした、液体霧化同時気化工程を持つ液中
の不純物測定方法と装置を提供することにある。
Therefore, the object of the present invention is to provide a method for measuring impurities in a liquid that includes a liquid atomization and simultaneous vaporization step, which makes it possible to measure the particle size and number of fine particles in a liquid, or to measure the amount of salts in a liquid. and equipment.

〔発明の概要〕[Summary of the invention]

本発明の方法は、粒径の小さい微粒子を測定す
るには液中よりガス中の方が、より小粒径まで測
定できることに着目してなされたものである。す
なわち本発明では、液を霧化と同時に高温ガスに
接触させて気化させることにより液中の微粒子を
ガス中に浮遊させ、浮遊した状態で微粒子の粒径
および個数を測定するものである。また液中に塩
類が含まれる場合には、液を上記と同様にして気
化させることにより塩類を微粒子状態でガス中に
浮遊させ、浮遊した状態で塩類粒子の粒径および
個数を測定することによつて、液中の塩類の量を
測定するものである。
The method of the present invention was developed based on the fact that fine particles with a small particle size can be measured in gas rather than in liquid. That is, in the present invention, the fine particles in the liquid are suspended in the gas by atomizing the liquid and simultaneously bringing the liquid into contact with a high-temperature gas to vaporize the liquid, and the particle size and number of the fine particles are measured in the suspended state. In addition, if the liquid contains salts, the liquid can be vaporized in the same manner as above to suspend the salts in the gas in the form of fine particles, and the particle size and number of the salt particles can be measured in the suspended state. Therefore, it measures the amount of salts in the liquid.

また本発明の装置は、従来公知の標準粒子エア
ロゾル発生装置とは異なり、(1)霧化した後の液滴
の輸送時間を極力短くする、(2)液滴の気化を伝熱
壁を介さずに高温ガス中で直接接触により加熱し
蒸発させる、(3)霧化した液滴を全量気化させるべ
く、液体供給装置と気中微粒子測定器と、その両
者の間に挿入され高温ガスの供給を受ける液体霧
化同時気化器とを備えたことを特徴とする。つま
り、液の霧化と気化をほぼ同時に行なうために、
液体霧化同時気化器へ予め加熱されたガスを送り
こむようになつている。
Furthermore, unlike conventionally known standard particle aerosol generators, the device of the present invention (1) minimizes the transportation time of droplets after atomization, and (2) prevents vaporization of droplets through a heat transfer wall. (3) In order to completely vaporize the atomized droplets, the device is inserted between the liquid supply device and the airborne particulate analyzer, and supplies high-temperature gas. The invention is characterized in that it is equipped with a liquid atomization simultaneous vaporizer that receives liquid atomization. In other words, in order to atomize and vaporize the liquid almost simultaneously,
Preheated gas is fed into a liquid atomization and simultaneous vaporizer.

第3図を用いて、本発明の要点を説明する。本
発明と従来のエアロゾル発生装置を用いた例との
基本的なフローの相違は、従来の標準エアロゾル
発生装置を用いた例では、液体を霧化し、その一
部をガスと混合した後、気化器に導いて外部加熱
により液滴を蒸発気化させるが、本発明では、液
および予め加熱された高温ガスを霧化同時気化器
に導いて液を霧化と同時に該高温ガスと接触させ
て液を全量蒸発気化させる点にある。
The main points of the present invention will be explained using FIG. The basic flow difference between the present invention and an example using a conventional aerosol generator is that in an example using a conventional standard aerosol generator, a liquid is atomized, a part of it is mixed with a gas, and then it is vaporized. However, in the present invention, the liquid and preheated high-temperature gas are introduced into a simultaneous atomization vaporizer, and the liquid is atomized and brought into contact with the high-temperature gas at the same time. The point is that the entire amount is evaporated.

液滴の気化メカニズムは、従来の標準エアロゾ
ル発生装置を用いた例では、液滴を気化室に送り
込んで外部間接加熱で気化するので、最高温度が
加熱内壁面にあるため壁面での液滴蒸発が最も多
くなり、微粒子が壁面に付着してしまう。一方、
本発明では、液滴を高温ガス中に霧状浮遊させる
と同時に高温ガスにより直接加熱して気化するた
め、微粒子は壁面に付着せず全て気中に浮遊す
る。
The vaporization mechanism of droplets is that, in the example using a conventional standard aerosol generator, the droplets are sent into the vaporization chamber and vaporized by external indirect heating. becomes the largest amount, and the fine particles adhere to the wall surface. on the other hand,
In the present invention, since the droplets are suspended in a high-temperature gas in the form of a mist and are simultaneously heated and vaporized directly by the high-temperature gas, the fine particles do not adhere to the wall surface and are all suspended in the air.

また輸送に関して、従来の標準エアロゾル発生
装置を用いた例では、液滴状態で液中の微粒子を
輸送するため、管内壁に液滴が付着してしまう
が、本発明では、液を液滴の状態で輸送させる領
域を極力短くして、霧化後ただちに気化させて、
乾いた微粒子の状態で輸送させるため、微粒子は
管内壁に付着しない。
Regarding transportation, in an example using a conventional standard aerosol generator, the fine particles in the liquid are transported in the form of droplets, so the droplets adhere to the inner wall of the tube, but in the present invention, the liquid is By keeping the area where it is transported as short as possible and vaporizing it immediately after atomization,
Since the particles are transported in the form of dry particles, they do not adhere to the inner wall of the tube.

〔発明の実施例〕[Embodiments of the invention]

水中の微粒子の測定の場合を例にとつて本発明
の一実施例を第1図により詳細に説明する。図の
ように、霧化同時気化器31とレーザー散乱光式
の気中微粒子測定器40の他に、ガス120の系
統にはフイルタ51、加熱器61、さらにガス流
量検出器52、ガス流量調整器53がある。また
液供給系統は、測定すべき液の流れている主配管
1より液を一定量サンプルする液供給器71、液
流量調整器73および液流量検出器72からな
る。さらにガス量と液量をコントロールする制御
器80がある。
An embodiment of the present invention will be described in detail with reference to FIG. 1, taking as an example the measurement of fine particles in water. As shown in the figure, in addition to the atomizing simultaneous vaporizer 31 and the laser scattering light type airborne particle measuring device 40, the gas 120 system includes a filter 51, a heater 61, a gas flow rate detector 52, and a gas flow rate adjustment device. There is a container 53. The liquid supply system includes a liquid supply device 71 that samples a fixed amount of liquid from the main pipe 1 through which the liquid to be measured flows, a liquid flow rate regulator 73, and a liquid flow rate detector 72. Furthermore, there is a controller 80 that controls the amount of gas and liquid.

液を加熱蒸発させ乾いた微粒子を輸送させるた
めのキヤリヤーガス120は、フイルタ51でガ
ス中の微粒子を除去したのち、調整器53で流量
を調整され、流量検出器52を通つて加熱器61
で加熱され、高温ガス121として霧化同時気化
器31へ入る。一方サンプル液100は主配管1
から液供給器71により一部サンプルされ、調整
器73で流量を調整されたのち、流量検出器72
を通つて霧化器31へ入る。霧化同時気化器31
では、液100が霧化されて水滴になると同時
に、高温ガス121と直接接触し、高温ガス中で
水滴の蒸発気化が起こり、水滴全量が気化して、
乾いた微粒子がガス中に浮遊する状態で輸送さ
れ、その1部もしくは全量が気中微粒子測定器4
0へ送られて、粒径及び粒径分布と個数が計測さ
れる。以上の操作は全て連続的に行なうことがで
きる。
The carrier gas 120 for heating and evaporating the liquid and transporting the dried particles is filtered by a filter 51 to remove particles from the gas, and then its flow rate is adjusted by a regulator 53 and passed through a flow rate detector 52 to a heater 61.
and enters the atomization/co-vaporizer 31 as a high-temperature gas 121. On the other hand, the sample liquid 100 is in the main pipe 1
A portion of the liquid is sampled by the liquid supply device 71, the flow rate is adjusted by the regulator 73, and then the flow rate detector 72
It enters the atomizer 31 through the Atomization simultaneous vaporizer 31
At the same time as the liquid 100 is atomized into water droplets, it comes into direct contact with the high-temperature gas 121, and the water droplets evaporate in the high-temperature gas, and the entire amount of water droplets is vaporized.
Dry particulates are transported in a state suspended in gas, and part or all of them are detected by the airborne particulate meter 4.
0, and the particle size, particle size distribution, and number of particles are measured. All of the above operations can be performed continuously.

次に、霧化同時気化器31についてさらに詳し
く述べる。液を霧化する方法としては、(1)液体を
40〜60Kg/cm2まで加圧してノズルより噴出させる
高圧ノズル法、(2)高速回転中の円板に液を衝突さ
せて液を微粒化させる回転円板法、(3)高速ガスで
液を微粒化させる2流体ノズル法、さらには(4)超
音波微粒化法、(5)高電場法がある。
Next, the atomizing and simultaneous vaporizer 31 will be described in more detail. Methods of atomizing liquid include (1) atomizing liquid;
High-pressure nozzle method, in which the liquid is pressurized to 40 to 60 kg/cm 2 and sprayed from a nozzle; (2) the rotating disk method, in which the liquid collides with a disk rotating at high speed to atomize the liquid; (3) liquid is sprayed using high-speed gas. There is a two-fluid nozzle method that atomizes the particles, as well as (4) the ultrasonic atomization method, and (5) the high electric field method.

(5)の高電場法は技術的に未知の点があると同時
に安全面で問題があり、(1)の高圧ノズル法では粒
径の小さい微粒子の発生が困難である。従つて液
の微粒化法としては残る3方法が適用可能である
が、本発明のポイントである霧化後ただちに高温
ガスと直接接触させて蒸発気化させる事から考え
れば、(3)の2流体ノズル法が最適である。他の方
法では、外部エネルギー(高速回転、超音波)に
より霧化させる工程と、高温ガスと接触させて蒸
発気化させる工程が必要となり、この両工程の同
時化は容易でないが、2流体ノズル法を用いれ
ば、霧化(微粒化)に用いる高速ガスを加熱高温
ガスとしておくことにより、霧化と高温ガス接触
による蒸発気化が同工程で可能になる利点があ
る。
The high electric field method (5) has technical unknowns and safety issues, and the high pressure nozzle method (1) has difficulty generating small particles. Therefore, the remaining three methods can be applied as methods for atomizing the liquid, but considering the point of the present invention, which is to bring the liquid into direct contact with high-temperature gas immediately after atomization to evaporate it, the two fluids in (3) are applicable. The nozzle method is the best. Other methods require a process of atomization using external energy (high-speed rotation, ultrasonic waves) and a process of evaporation by contacting with high-temperature gas, and it is not easy to perform both processes at the same time, but the two-fluid nozzle method By using the high-speed gas used for atomization (atomization) as a heated high-temperature gas, there is an advantage that atomization and evaporation through contact with the high-temperature gas can be performed in the same process.

2流体ノズルを用いる効果として、液が微粒
化されながら、高温ガスと接触するため、熱交換
効率が良く、蒸発が促進されると同時に蒸発を
伴う微粒化なので、発生微粒水滴の径が小さくな
る等が挙げられる。
The effect of using a two-fluid nozzle is that the liquid is atomized and comes into contact with high-temperature gas, which improves heat exchange efficiency and promotes evaporation.As the atomization accompanies evaporation, the diameter of the generated fine water droplets becomes smaller. etc.

第4図に2流体ノズル200を用いた本発明に
好適な霧化同時気化器31の実施例を示す。高温
ガス121は、ガス入口221よりガス室222
へ入り、ノズル口231で絞られて高速となり、
液入口211を通つて液ノズル口212から出た
液100を微粒化霧化すると同時に、直接接触に
より水滴に熱を与えて蒸発気化させる。従つて、
霧化同時気化器31′中では高温ガスが水滴に熱
を与えて冷却されると共に、水滴の蒸発により加
湿され、気化が完了してから霧化同時気化器出口
241までは、低温で湿度の高いガス中に元来液
100中に存在していた微粒子が浮遊した状態で
輸送され、ガスサンプル口251よりガスと共に
該浮遊微粒子がサンプルリングされ、これが気中
微粒子測定器40へ行き、残余は排気として出口
241から排出される。
FIG. 4 shows an embodiment of a simultaneous atomizing vaporizer 31 suitable for the present invention using a two-fluid nozzle 200. The high temperature gas 121 enters the gas chamber 222 from the gas inlet 221.
enters the nozzle, is narrowed down by the nozzle port 231, and becomes high speed.
The liquid 100 coming out of the liquid nozzle port 212 through the liquid inlet 211 is atomized and atomized, and at the same time, heat is applied to the water droplets by direct contact to evaporate them. Therefore,
In the atomizing simultaneous vaporizer 31', the high-temperature gas gives heat to water droplets and is cooled, and the water droplets are humidified by evaporation. The particles originally present in the liquid 100 are transported in a suspended state in the high-temperature gas, and the suspended particles are sampled together with the gas from the gas sample port 251, which goes to the airborne particle measuring device 40, and the remaining particles are It is discharged from the outlet 241 as exhaust gas.

霧化同時気化器31で次に重要なことは、気化
したガスは湿度が高くなるため、冷却されると気
化した水蒸気が凝縮して水滴が発生するので、霧
化同時気化器31の壁面を気化後のガス温度以上
に保つ必要があることである。そのために霧化同
時気化器31は外面を断熱材261で保温する
か、場合によつては積極的にヒータ262を設置
して加温することが必要である。
The next important thing about the simultaneous atomizing vaporizer 31 is that the vaporized gas has high humidity, so when it is cooled, the vaporized water vapor condenses and water droplets are generated. It is necessary to maintain the temperature above the gas temperature after vaporization. For this purpose, it is necessary to insulate the outer surface of the atomizing and simultaneous vaporizer 31 with a heat insulating material 261, or to proactively install a heater 262 in some cases to heat it.

測定上のポイントは、霧化同時気化器31で霧
化した液を全量気化蒸発させて測定することにあ
り、ガスと液の流量比、及び加熱ガスの温度・湿
度条件の設定が重要である。そこで、第4図の霧
化同時気化器31を使つて種々実験を行ない、適
切な流量比及び加熱ガス条件を求めた。
The key point in measurement is to vaporize and evaporate the entire amount of the liquid atomized by the simultaneous atomization vaporizer 31, and it is important to set the flow rate ratio of gas and liquid and the temperature and humidity conditions of the heated gas. . Therefore, various experiments were conducted using the atomizing simultaneous vaporizer 31 shown in FIG. 4, and appropriate flow rate ratios and heating gas conditions were determined.

第5図は、大気中の空気をキヤリヤーガスとし
て用いた場合の、下記式で定義する気化率X(%)
およびガスと液の重量流量比Fw/Fgを加熱器の
ヒータ入力をパラメータとして示したものであ
る。
Figure 5 shows the vaporization rate X (%) defined by the following formula when atmospheric air is used as a carrier gas.
and the weight flow rate ratio F w /F g of gas and liquid are shown using the heater input of the heater as a parameter.

気化率X=気化蒸発量(g/h)/霧化量(g/h)
×100 ヒータ入力を上げれば気化率は上がるが、霧化
同時気化器出口の気化ガス温度が高くなるので、
実用的には、150w程度が限界であるから、全量
気化させる(気化率100%)ためには、ガスと液
の重量流量比Fw/Fgは6wt%以下が望ましいこと
が第5図からわかる。
Evaporation rate X = vaporization amount (g/h)/atomization amount (g/h)
×100 Increasing the heater input will increase the vaporization rate, but the vaporized gas temperature at the outlet of the vaporizer will increase, so
Practically speaking, the limit is about 150w, so in order to vaporize the entire amount (vaporization rate 100%), Figure 5 shows that it is desirable that the weight flow ratio of gas and liquid, Fw / Fg , be 6wt% or less. Recognize.

Fw:液流量(Kg/h) Fg:高温ガス流量(Kg/h) また重量流量比Fw/Fgの下限値は、キヤリヤ
ーガス使用量とヒータ入力の増大及び、液中微粒
子数の減少から来る測定時間の増大を考慮する
と、実用的には0.5wt%以上が適当である。
F w : Liquid flow rate (Kg/h) F g : High temperature gas flow rate (Kg/h) The lower limit of the weight flow rate ratio Fw/Fg is based on the increase in carrier gas usage and heater input, and the decrease in the number of fine particles in the liquid. Considering the upcoming increase in measurement time, 0.5 wt% or more is practically appropriate.

次に霧化同時気化器31へ送り込む高温ガスの
条件の最適化について種々実験した。液を全量気
化させるに必要な、流量比Fw/Fgと高温ガスの
温度Tとの関係を第6図に、流量比Fw/Fgと高
温ガスの相対湿度Rとの関係を第7図に示す。そ
の結果、全量気化させるために必要な高温ガス温
度Tは流量比にほぼ比例するが、最小流量比が
0.5wt%であることから、少なくとも40℃以上は
必要なこと、また相対湿度Rも最小流量比の関係
から多くとも20%以下にする必要があることを見
出した。
Next, various experiments were conducted to optimize the conditions for the high-temperature gas sent to the atomizing and simultaneous vaporizer 31. Figure 6 shows the relationship between the flow rate ratio F w /F g and the temperature T of the high-temperature gas necessary to vaporize the entire amount of liquid, and Figure 6 shows the relationship between the flow rate ratio F w /F g and the relative humidity R of the high-temperature gas. It is shown in Figure 7. As a result, the high temperature gas temperature T required to vaporize the entire amount is approximately proportional to the flow rate ratio, but the minimum flow rate ratio is
Since it is 0.5wt%, it was found that the temperature must be at least 40°C or higher, and that the relative humidity R also needs to be at most 20% or less from the relationship of the minimum flow rate ratio.

上記測定条件の設定のためには、具体的には、
流量比Fw/Fgについては第1図の実施例に示す
ごとく液及びガスの流量を検出器72,52で検
出し制御器80を介して流量調整器73,53で
それぞれの流量を調整した。高温ガス条件の設定
は、高温ガスの温度と湿度を検知しヒータ入力を
制御するのが一般的であるが、高温ガスの湿度を
精度良く測定するのが難かしい。しかし、ガス流
量と液流量を検出することにより、設定すべき温
度と湿度の高温ガスを得るために必要なヒータ入
力を容易に計算できるから、具体的には、第1図
の実施例において、ガスと液の流量を検出器7
2,52で検出し、その値を基に制御器80で必
要ヒータ入力を計算し、加熱器61のヒータ入力
を調整させた。
To set the above measurement conditions, specifically,
Regarding the flow rate ratio F w /F g, the flow rates of liquid and gas are detected by detectors 72 and 52 as shown in the embodiment of FIG. did. The high temperature gas conditions are generally set by detecting the temperature and humidity of the high temperature gas and controlling the heater input, but it is difficult to accurately measure the humidity of the high temperature gas. However, by detecting the gas flow rate and liquid flow rate, it is possible to easily calculate the heater input required to obtain high temperature gas at the desired temperature and humidity. Detector 7 detects the flow rate of gas and liquid
2 and 52, the necessary heater input was calculated by the controller 80 based on the value, and the heater input of the heater 61 was adjusted.

なお、気中微粒子測定器は、レーザー散乱光を
利用した測定器であることが好ましい。このよう
な測定器の例は、雑誌「空気調和と冷凍」1984年
1月号、第79〜81頁、向板保雄著「サブミクロン
エアロゾル粒子の監視と測定について」に示され
ている。
Note that the airborne particle measuring device is preferably a measuring device that uses laser scattered light. An example of such a measuring device is shown in Yasuo Mukaiita, "On the Monitoring and Measurement of Submicron Aerosol Particles", magazine "Air Conditioning and Refrigeration", January 1984 issue, pages 79-81.

以上は、液体の微粒子を例にとつて説明した
が、塩類等の溶解性不純物であつても同様に微粒
子状態にして測定できるし、液中に微粒子と溶解
性不純物の両方が含まれる場合これらの不純物を
まとめて測定できる。
The above explanation uses fine particles in liquid as an example, but soluble impurities such as salts can be measured in the same way in the form of fine particles, and if the liquid contains both fine particles and soluble impurities, these impurities can be measured all at once.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、液を管内壁等に付着させるこ
となく、全量気化することができるので液中の微
粒子または塩類の正確な測定を行なうことができ
る。また、液を気化して測定するので、液のまま
で測定する場合に比べて、より小粒径の微粒子の
粒径、個数、または、塩類の量を連続的に測定す
ることができる。
According to the present invention, since the entire amount of the liquid can be vaporized without adhering to the inner wall of the pipe, it is possible to accurately measure particles or salts in the liquid. Furthermore, since the liquid is vaporized and measured, the particle size and number of smaller particles or the amount of salts can be continuously measured compared to the case where the liquid is measured as it is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例のフローシート、第2図
は従来のエアロゾル発生装置を用いた例のフロー
シート、第3図は従来のエアロゾル発生装置を用
いた例と本発明との比較図表、第4図は2液体ノ
ズルを用いた霧化同時気化器の断面図、第5図は
気化率と液とガスの重量流量比とヒータ入力の関
係を示す図、第6図は高温ガス温度と重量流量比
の関係を示す図、第7図は高温ガス相対湿度と重
量流量比との関係を示す図である。 1……被測定液の主配管、31……霧化同時気
化器、40……気中微粒子測定器、51……フイ
ルタ、61……加熱器、80……制御器、200
……2流体ノズル。
FIG. 1 is a flow sheet of an example of the present invention, FIG. 2 is a flow sheet of an example using a conventional aerosol generator, and FIG. 3 is a comparison chart of an example using a conventional aerosol generator and the present invention. Figure 4 is a cross-sectional view of a simultaneous atomizing vaporizer using two liquid nozzles, Figure 5 is a diagram showing the relationship between vaporization rate, weight flow rate ratio of liquid and gas, and heater input, and Figure 6 is a diagram showing the relationship between high temperature gas temperature and heater input. A diagram showing the relationship between the weight flow rate ratio and FIG. 7 is a diagram showing the relationship between the high temperature gas relative humidity and the weight flow rate ratio. DESCRIPTION OF SYMBOLS 1... Main piping of the liquid to be measured, 31... Atomization simultaneous vaporizer, 40... Airborne particulate measuring device, 51... Filter, 61... Heater, 80... Controller, 200
...Two-fluid nozzle.

Claims (1)

【特許請求の範囲】 1 液を霧化させると同時に高温ガスと接触させ
ることにより気化させて該液中の不純物を該ガス
中に微粒子として浮遊させ、このガス中に浮遊し
た状態での該微粒子の粒径または粒径と個数を測
定することを特徴とする液中の不純物の測定方
法。 2 液が水である場合は、用いる高温ガスの温度
が40℃以上、または相対湿度が20%以下である特
許請求の範囲第1項記載の液中の不純物の測定方
法。 3 液と高温ガスの重量流量比(液/高温ガス)
が0.5wt%から6wt%である特許請求の範囲第1
項又は第2項記載の液中の不純物の測定方法。 4 液を連続的にサンプルし、該液を連続的に霧
化させると同時に高温ガスと直接接触させて気化
させる特許請求の範囲第1項、第2項または第3
項記載の液中の不純物の測定方法。 5 液体供給装置と、高温ガス供給装置と、気中
微粒子測定器と、前記の液体供給装置および高温
ガス供給装置との間に挿入された液体霧化同時気
化器と、を備え、該液体霧化同時気化器は、前記
の液体供給装置および高温ガス供給装置から夫々
液および高温ガスの供給を受けて該液を霧化させ
ると同時に該高温ガスと接触させて気化させるこ
とによつて、該液中の不純物を該ガス中に微粒子
として浮遊させ、この微粒子が浮遊した状態の該
ガスを前記気中微粒子測定器へ送るものであるこ
とを特徴とする液中の不純物の測定装置。 6 液体霧化同時気化器は夫々前記液体供給装置
および高温ガス供給装置に接続された2流体ノズ
ルを用いた特許請求の範囲第5項記載の液中の不
純物の測定装置。 7 気中微粒子測定器がレーザー散乱光を利用し
た測定器である特許請求の範囲第5項又は第6項
記載の液中の不純物の測定装置。 8 液体供給装置からの供給液流路と高温ガス供
給装置からの供給ガス流路に、流量検出器と流量
調整器を設けた特許請求の範囲第5項、第6項又
は第7項記載の液中の不純物の測定装置。 9 液体霧化同時気化器は、前記の微粒子が浮遊
した状態のガスを保温または加温する容器を備え
ている特許請求の範囲第5項ないし第8項のいず
れかに記載の液中の不純物の測定装置。
[Claims] 1. A liquid is atomized and at the same time brought into contact with a high-temperature gas to vaporize it so that impurities in the liquid are suspended in the gas as fine particles, and the fine particles are suspended in the gas. A method for measuring impurities in a liquid, characterized by measuring the particle size or particle size and number of particles. 2. When the liquid is water, the method for measuring impurities in a liquid according to claim 1, wherein the temperature of the high-temperature gas used is 40°C or higher, or the relative humidity is 20% or lower. 3 Weight flow rate ratio of liquid and high temperature gas (liquid/high temperature gas)
is from 0.5wt% to 6wt%
The method for measuring impurities in a liquid according to item 1 or 2. 4. Claims 1, 2, or 3 in which a liquid is continuously sampled, and the liquid is continuously atomized and simultaneously brought into direct contact with a high-temperature gas to vaporize it.
Method for measuring impurities in liquid as described in section. 5 comprising a liquid supply device, a high-temperature gas supply device, an airborne particle measuring device, and a liquid atomization simultaneous vaporizer inserted between the liquid supply device and the high-temperature gas supply device, The co-vaporizer receives a liquid and a high-temperature gas from the liquid supply device and high-temperature gas supply device, respectively, atomizes the liquid, and at the same time vaporizes the liquid by bringing it into contact with the high-temperature gas. A device for measuring impurities in a liquid, characterized in that impurities in the liquid are suspended in the gas as fine particles, and the gas with the fine particles suspended is sent to the airborne particle measuring device. 6. The device for measuring impurities in a liquid according to claim 5, wherein the liquid atomization and simultaneous vaporizer uses two-fluid nozzles connected to the liquid supply device and the high-temperature gas supply device, respectively. 7. The device for measuring impurities in a liquid according to claim 5 or 6, wherein the airborne particle measuring device is a measuring device using laser scattered light. 8. A flow rate detector and a flow rate regulator are provided in the supply liquid flow path from the liquid supply device and the supply gas flow path from the high-temperature gas supply device, as set forth in claim 5, 6, or 7. Device for measuring impurities in liquid. 9. Impurities in the liquid according to any one of claims 5 to 8, wherein the liquid atomization simultaneous vaporizer is equipped with a container that insulates or heats the gas in which the fine particles are suspended. measuring device.
JP59161279A 1984-07-31 1984-07-31 Method and apparatus for measuring impurity in liquid Granted JPS6156940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59161279A JPS6156940A (en) 1984-07-31 1984-07-31 Method and apparatus for measuring impurity in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59161279A JPS6156940A (en) 1984-07-31 1984-07-31 Method and apparatus for measuring impurity in liquid

Publications (2)

Publication Number Publication Date
JPS6156940A JPS6156940A (en) 1986-03-22
JPH0344652B2 true JPH0344652B2 (en) 1991-07-08

Family

ID=15732084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59161279A Granted JPS6156940A (en) 1984-07-31 1984-07-31 Method and apparatus for measuring impurity in liquid

Country Status (1)

Country Link
JP (1) JPS6156940A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663961B2 (en) * 1986-03-24 1994-08-22 日本科学工業株式会社 Method for measuring impurities in liquid and its measuring device
JPH0612941U (en) * 1992-07-17 1994-02-18 日本科学工業株式会社 Sampling device in impurity concentration measuring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756014A (en) * 1980-07-23 1982-04-03 Sandosesu Jiyaaru Air filter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335395Y2 (en) * 1980-02-29 1988-09-20
JPS6237160Y2 (en) * 1980-02-29 1987-09-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756014A (en) * 1980-07-23 1982-04-03 Sandosesu Jiyaaru Air filter

Also Published As

Publication number Publication date
JPS6156940A (en) 1986-03-22

Similar Documents

Publication Publication Date Title
US4917830A (en) Monodisperse aerosol generator
US4963289A (en) Method for producing monodisperse aerosols
Lewis et al. Atomization of liquids in high velocity gas streams
US5096615A (en) Solid aerosol generator
US5372754A (en) Liquid vaporizer/feeder
Joutsensaari et al. A novel tandem differential mobility analyzer with organic vapor treatment of aerosol particles
Wisniewski Spray drying technology review
JP2003509209A (en) Liquid atomization method and apparatus
WO2011131825A1 (en) Coating method and apparatus
CN103487494A (en) Environmental aerosol direct sampling gathering sample injecting device and quantitative analysis method
Mezhericher et al. Aerosol-assisted synthesis of submicron particles at room temperature using ultra-fine liquid atomization
US20020179732A1 (en) Substrate cleaning apparatus
CA2424621A1 (en) Combination particles for the treatment of asthma
JPH0344652B2 (en)
Onischuk et al. Anti-inflammatory effect from indomethacin nanoparticles inhaled by male mice
TWI679168B (en) Controlled, compact, on-demand ammonia gas generation process and apparatus
US6491976B2 (en) Method for adding hydrophilic groups to the surface of particles
Hiller et al. Effect of low and high relative humidity on metered‐dose bronchodilator solution and powder aerosols
JP2016155111A (en) Particle adhesion method
Lamb et al. The environmental control of individual aqueous particles in a cubic electrodynamic levitation system
Zhiyi et al. Experimental investigation on the micronization of aqueous cefadroxil by supercritical fluid technology
JP2017003384A (en) Particle measuring device and particle measuring method
KR950704056A (en) Manufacturing method of powder coating, apparatus and powder preparation for performing this (POWDER-COATING PROCESS, A DEVICE FOR CARRYING OUT THE PROCESS AND A COATING POWDER FOR USE IN THE PROCESS)
Gapale et al. Mathematical modeling of droplet formation, evaporation, and film growth to study crystallite size and film thickness of spray pyrolysis deposited TiO2 thin films
Oh et al. Modeling and measurement of aerosol deposition on a heated substrate