JPH0344551A - Measuring method of reactivity of heating material of throwaway body warmer - Google Patents

Measuring method of reactivity of heating material of throwaway body warmer

Info

Publication number
JPH0344551A
JPH0344551A JP1178055A JP17805589A JPH0344551A JP H0344551 A JPH0344551 A JP H0344551A JP 1178055 A JP1178055 A JP 1178055A JP 17805589 A JP17805589 A JP 17805589A JP H0344551 A JPH0344551 A JP H0344551A
Authority
JP
Japan
Prior art keywords
reaction
iron powder
iron
reaction efficiency
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1178055A
Other languages
Japanese (ja)
Inventor
Junichi Kodama
順一 児玉
Hiroshi Sato
洋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1178055A priority Critical patent/JPH0344551A/en
Publication of JPH0344551A publication Critical patent/JPH0344551A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To measure a reaction efficiency in a short time in a simple and quantitative manner by determining the reaction efficiency by measuring a magnetic characteristic of a heating material based mainly on an oxidation reaction of iron powder. CONSTITUTION:The main reaction in a throwaway body warmer occurs among iron powder, water and oxygen, and produces heat, and an iron hydroxide is produced as the result of the reaction. While the iron powder is a ferromagnetic material and a magnetizing force, permeability and magnetic flux density are high therein, these characteristics are at low levels in the iron hydroxide. By measuring magnetic characteristics (the magnetizing force, the permeability, a the quantity of magnetism and the magnetic flux density) of a heating material accordingly, the reaction efficiency thereof is determined quantitatively.

Description

【発明の詳細な説明】 [産業上の利用分封] 本発明は、使用時に火、磁気等の外部エネルギーを与え
ず内包された成分の化学反応を利用して発熱する使い捨
てカイロの発熱素材の反応性測定方法に関する。
[Detailed Description of the Invention] [Industrial Usage Separation] The present invention is based on the reaction of the heat-generating material of a disposable body warmer, which generates heat by the chemical reaction of the contained ingredients without applying external energy such as fire or magnetism during use. Concerning sex measurement methods.

[従来の技術] 使い捨てカイロが市場に出回る様になって、現在では、
約40社に及ふ使い捨てカイロのメーカーが製造、販売
を行い、−・般的なカイロとして流通している。使い捨
てカイロの主反応素材である、鉄粉の反応性については
、特公昭59−43087号公報に細粒鉄粉が反応性が
よいことが記載され、鉄粉の粒径を調整することにより
発熱特性を改善する方法が提案され、また、特公昭63
−157802号公報には鉄粉の形状を偏平に加工して
酸化反応性を改善した鉄粉が提案されているが、鉄粉の
反応性の定量的な評価については何等示されていない。
[Conventional technology] Disposable body warmers have become available on the market, and now,
Approximately 40 manufacturers of disposable body warmers manufacture and sell them, and they are distributed as general body warmers. Regarding the reactivity of iron powder, which is the main reactive material of disposable body warmers, it is stated in Japanese Patent Publication No. 59-43087 that fine-grained iron powder has good reactivity, and that heat generation can be reduced by adjusting the particle size of iron powder. A method for improving the characteristics was proposed, and
Publication No. 157802 proposes an iron powder whose oxidation reactivity is improved by processing the iron powder into a flat shape, but it does not disclose any quantitative evaluation of the reactivity of the iron powder.

鉄粉の反応性は使い捨てカイロに配合した金属鉄が水と
酸素の存在により水酸化鉄になる反応であることから、
発熱前壕の素材の金属鉄含有量を分析することにより、
配合した鉄粉かどの程度発熱に寄与したかを求めること
が出来るが、一般的に金属鉄の分析には試料を125μ
以下に粉砕した後、ブロムメタノールに溶解し、これを
濾過した後に濾過液を塩酸と過硫酸アンモンでP)Iを
調整し、エチレンジアミンテトラ4酢酸で滴定して金属
鉄を定量する方法が採られる。この金属鉄の分折による
発熱素材の反応効率は精度良く求めることが出来る。
The reactivity of iron powder is due to the reaction of the metal iron contained in disposable body warmers to iron hydroxide in the presence of water and oxygen.
By analyzing the metallic iron content of the material of the exothermic trench,
It is possible to determine the extent to which the blended iron powder contributed to heat generation, but generally speaking, when analyzing metallic iron, a sample of 125 μm is used.
After pulverizing as follows, dissolving it in bromine methanol, filtering it, adjusting P)I in the filtrate with hydrochloric acid and ammonium persulfate, and titrating with ethylenediaminetetratetraacetic acid to quantify metallic iron. . The reaction efficiency of the exothermic material can be determined with high accuracy by dissecting this metallic iron.

[発明が解決しようとする課題] 一般に、粒径が小さい鉄粉、表面積が大きい鉄粉の反応
性がよいことはわかるが、鉄粉の反応性について定量的
に測定、評価した結果はこれまで報告された例がなく、
実際に使い捨てカイロを製造して特性を評価しなければ
反応性を評価できず、多くの工程と時間を要し、持続時
間が約1日となるため物理的にデータが得られるまでに
約1日を要するという問題があった。
[Problem to be solved by the invention] Generally, it is known that iron powder with a small particle size and iron powder with a large surface area have good reactivity, but so far there have been no quantitative measurement and evaluation results of the reactivity of iron powder. There are no reported cases;
Reactivity cannot be evaluated unless we actually manufacture disposable body warmers and evaluate their characteristics, which requires many steps and time, and lasts about 1 day, so it takes about 1 day to physically obtain data. The problem was that it took days.

また、発熱素材の発熱前後の金属鉄含有率を分析する方
法は粒度良く鉄粉の反応効率を求め、反応性を評価する
ことはできるものの、金属鉄の分析に多くの複雑な分析
工程を経る必要があり、試料を125μ以下に粉砕する
ために試料の調整も必要となり、分析結果が得られるま
でに多くの時間を要し、専門的な技能が必要であるとい
う問題があった。
In addition, the method of analyzing the metallic iron content before and after heat generation in a heat-generating material can determine the reaction efficiency of iron powder with good particle size and evaluate the reactivity, but it requires many complicated analysis steps to analyze metallic iron. There was a problem in that it required preparation of the sample in order to crush it to 125 μm or less, and that it took a lot of time and specialized skills to obtain the analysis results.

以上の問題に鑑み、本発明は使い捨てカイロ素材、特に
鉄粉の反応効率を迅速、簡便かつ定量的に測定する方法
を提供するものである。
In view of the above problems, the present invention provides a method for rapidly, simply and quantitatively measuring the reaction efficiency of disposable body warmer materials, particularly iron powder.

[課題を解決するための手段・作用] 本発明は、使い捨てカイロ発熱素材の鉄粉の反応効率を
4!り定する方法について発熱のメカニズムから種々実
験、検討を行った結果なされたものであり、その要旨と
するところは鉄粉の酸化反応を主体とした使い捨てカイ
ロにおいて、発熱素材の磁気特性を測定し、その出力か
ら素材の反応状況を求めることを特徴とする使い捨てカ
イロ素材の反応性測定方法および、使い捨てカイロ発熱
素材を測定する磁気特性として磁化力、透磁率、磁気量
および磁束密度を測定することを特徴とした使い捨てカ
イロ鉄粉の反応効率測定方法である。
[Means and effects for solving the problem] The present invention improves the reaction efficiency of iron powder, which is a heat-generating material for disposable body warmers, by 4! This method was developed after conducting various experiments and studies on the mechanism of heat generation, and its gist was to measure the magnetic properties of the heat generating material in a disposable body warmer that mainly uses the oxidation reaction of iron powder. , a method for measuring the reactivity of a disposable body warmer material characterized by determining the reaction status of the material from its output, and a method for measuring magnetizing force, magnetic permeability, magnetic quantity, and magnetic flux density as magnetic properties for measuring the disposable body warmer heat generating material. This is a method for measuring the reaction efficiency of iron powder for disposable body warmers.

本発明は1個の使い捨てカイロが反応を終了した後に磁
気特性を測定し、配合された発熱素材かどの程度有効に
発熱したかを求めることもできるし、使い捨てカイロ製
造設備の原料ホッパーに設置し連続的に磁気特性を測定
、出力し、使い捨てカイロの発熱素材が製造以前にどの
程度反応したかを知り、工程管理に使用することもでき
る。
The present invention can measure the magnetic properties of a single disposable body warmer after the reaction has finished, and determine how effectively the heat-generating material blended generates heat. By continuously measuring and outputting magnetic properties, it is possible to know how much the heat-generating material in disposable body warmers has reacted before manufacturing, which can also be used for process control.

測定する発熱素材の磁気特性は、磁気天秤等による磁化
力の測定の他、マグネットメータ等による透磁率、磁気
量の変化を検出する方法でも、磁束密度の変化を検出す
る方法でもよく、金属鉄と水酸化鉄の磁気特性の変化を
検出できる方法であればいずれの方法でもよい。この磁
気特性の出力と金属鉄の分析による鉄粉の反応効率との
関係を求めておけば簡囃に、短時間で磁気特性の出力か
ら反応効率を求めることが出来るし、磁気特性の相対的
出力の差から鉄粉の反応の進行状況をも知ることが出来
る。
The magnetic properties of the heat-generating material to be measured can be measured by measuring the magnetizing force using a magnetic balance, etc., or by detecting changes in magnetic permeability and magnetic quantity using a magnet meter, etc., or by detecting changes in magnetic flux density. Any method that can detect changes in the magnetic properties of iron hydroxide and iron hydroxide may be used. If you find the relationship between the output of this magnetic property and the reaction efficiency of iron powder by analyzing the metal iron, you can easily and quickly find the reaction efficiency from the output of the magnetic property, and the relative The progress of the iron powder reaction can also be determined from the difference in output.

使い捨てカイロの主反応は鉄粉と水、酸素が次式のよう
に反応することにより鉄1 mo1当り96kcalの
熱量を発生するものである。
The main reaction of a disposable body warmer is that iron powder, water, and oxygen react as shown in the following equation to generate 96 kcal of heat per mo1 of iron.

Fe+ 372 H2O+3/402= Fe(OH)
3+ 96kcalこの反応式かられかるように、発熱
するためには金属鉄が必要であり、金属鉄が水と酸素と
反応することにより、水酸化鉄となる反応である。すな
わち金属鉄が発熱することにより鉄化合物となる反応で
ある。
Fe+ 372 H2O+3/402= Fe(OH)
3+ 96 kcal As can be seen from this reaction formula, metallic iron is required to generate heat, and the reaction is such that metallic iron reacts with water and oxygen to form iron hydroxide. In other words, it is a reaction in which metal iron generates heat and becomes an iron compound.

このことから、反応性のすぐれた鉄粉はより短い時間で
反応か進行し、完全に反応してしまう!1■か推定され
る。ここで使い捨てカイロの発熱主原料である金属鉄は
強磁性材料であり高い磁化力を示す。また透Mi率、磁
束密度も高い。これに対して水酸化鉄は金属鉄に比べる
と磁化力、透磁率、磁束密度は低い2本発明はこの磁気
特性の変化を測定することにより鉄粉の反応効率を測定
するものである。具体的には使い捨てカイロが反応した
後に発熱素材を取り出して、発熱素材の磁化力、あるい
は透磁率、磁束密度に比例した出力を測定し、試料単位
重量15りの出力を求め、発熱素材がどの程度反応か進
行したかを知ることにより反応効率を求める方法である
。この発熱素材の磁気特性の出力と金属鉄の分析結果か
ら求めた反応効率の関係を求めておけば、わずか数10
秒で発熱素材の反応効率を求めることが出来る。
From this, iron powder with excellent reactivity progresses in a shorter time and reacts completely! It is estimated that 1■. Metallic iron, which is the main heating material of disposable body warmers, is a ferromagnetic material and exhibits high magnetizing power. It also has high Mi permeability and magnetic flux density. On the other hand, iron hydroxide has lower magnetizing power, magnetic permeability, and magnetic flux density than metal iron.The present invention measures the reaction efficiency of iron powder by measuring changes in these magnetic properties. Specifically, after the disposable body warmer has reacted, the heat generating material is taken out, and the output proportional to the magnetizing force, magnetic permeability, or magnetic flux density of the heat generating material is measured. This is a method of determining reaction efficiency by knowing the extent to which the reaction has progressed. If we find the relationship between the output of the magnetic properties of this heat-generating material and the reaction efficiency obtained from the analysis results of metal iron, it will be only a few tens of thousands of yen.
The reaction efficiency of heat generating materials can be determined in seconds.

測定を行う発熱素材は鉄粉部分のみをふるい分けて測定
してもよく、発熱素材全てを測定してもよい。
The heat-generating material to be measured may be measured by sieving only the iron powder portion, or may be measured by measuring the entire heat-generating material.

金属鉄の分析結果から、鉄粉反応効率を求める計算は次
の式に従い求める事が出来る。
From the analysis results of metallic iron, the iron powder reaction efficiency can be calculated according to the following formula.

(反応前の金属鉄−反応後の金属鉄〉/(反応前の金属
鉄)xlOO 第1図に市販の使い捨てカイロを完全に反応させずに発
熱時間を変えて、発熱を中断させて、再度発熱しないよ
うに減圧、乾燥した使い捨てカイロ素材の金属鉄の分析
結果から求めた鉄粉利用効率と磁化力を示した。完全に
反応を行わせないで途中で中断させた場合は鉄粉の反応
効率を強制的に低くした状態であり、反応時間を長くす
るにつれ鉄粉は反応が進行し、反応効率は高くなる。磁
化力は反応効率が最も低い未反応の使い捨てカイロの場
合最も高い値を示し、強磁性材料である金属鉄を多く含
んでいることかわかる。逆に完全に発熱反応を終了した
場合、鉄粉の反応効率は62%であり時間の経過ととも
に反応が進行し、磁化力は未反応の場合に比べ低下した
。金属鉄の分析結果により求めた鉄粉の反応効率と磁化
力はほぼ直!!関係にあり、磁化力を、1jill定す
る方法により鉄粉の反応効率を迅速に事1キ度良く測定
できるものである。
(Metallic iron before reaction - Metallic iron after reaction) / (Metallic iron before reaction) The iron powder usage efficiency and magnetizing power were determined from the analysis results of the metal iron of the disposable body warmer material, which was depressurized and dried to avoid heat generation.The iron powder utilization efficiency and magnetizing power were determined from the analysis results of the metal iron of the disposable body warmer material, which has been dried under reduced pressure to avoid heat generation.If the reaction is interrupted in the middle without allowing the reaction to occur completely, the reaction of the iron powder will increase. The efficiency is forced to be low, and as the reaction time increases, the reaction of the iron powder progresses and the reaction efficiency increases.The magnetizing force has the highest value in the case of unreacted disposable hand warmers, which have the lowest reaction efficiency. It can be seen that it contains a large amount of metallic iron, which is a ferromagnetic material.On the other hand, when the exothermic reaction is completely completed, the reaction efficiency of iron powder is 62%, and the reaction progresses over time, and the magnetizing force increases. was lower than in the case of no reaction.The reaction efficiency of iron powder determined from the analysis results of metallic iron and the magnetizing force are almost directly related!!The reaction efficiency of iron powder can be determined by the method of determining the magnetizing force by 1 jill. It allows you to quickly and accurately measure things.

また鉄粉の反応効率は反応時間の経過で大きく異なるこ
とから、当然発熱特性の持続時間とNhlな関係があり
反応効率の高い使い捨てカイロ素材は持続時間が長くな
る。
Furthermore, since the reaction efficiency of iron powder varies greatly with the passage of reaction time, there is naturally a relationship between the duration of the exothermic property and Nhl, and disposable body warmer materials with high reaction efficiency have a longer duration.

第2図は反応効率と持続時間の関係であり、反応効率が
高くなると40℃以上の持続時間か長くなることを示し
た。この関係から鉄粉の反応効率を求めることにより持
続時間を推定可能である。
Figure 2 shows the relationship between reaction efficiency and duration, showing that the higher the reaction efficiency, the longer the duration above 40°C. The duration can be estimated by determining the reaction efficiency of iron powder from this relationship.

[実施例] 発熱素材鉄粉の種類に鋳鉄粉、純鉄粉、還元鉄粉の3種
類を使用し、平均粒径を2.10.50.801JIn
とした使い捨てカイロを製造した。配合は鉄粉28.5
g 、活性炭9 g 、 Na(4,1,5g 、水1
1gとし、重量は合計で50gとし1通気性包装材料に
充填し、人気中に放置し発熱させた。反応終了後は発熱
素材を包装材料から取り出した後に再度発熱反応を行わ
ないよう発熱素材をJh+m)Igに減圧した8樫に入
れて60℃で24時間乾燥して発熱素材の事前処理を行
った。製造した使い捨てカイロ別にそれぞれ発熱素材の
反応前後の金属鉄の分析を行い反応効率を求め、同一サ
ンプルについて鉄粉のみふるい分けて50000.、の
磁界を発生する磁気天秤で磁化力を測定し、発熱素44
1g当りの磁化力を求めた。その結果を第1表に示した
[Example] Three types of heat generating material iron powder were used: cast iron powder, pure iron powder, and reduced iron powder, and the average particle size was 2.10.50.801 JIn.
Manufactured disposable body warmers. The composition is iron powder 28.5
g, activated carbon 9 g, Na (4, 1, 5 g, water 1
The total weight was 1 g, and the total weight was 50 g, and the mixture was filled into a breathable packaging material and left to generate heat. After the reaction was completed, the exothermic material was taken out from the packaging material, and the exothermic material was pre-processed by placing it in an 8-kashi vacuum vacuumed to Jh+m)Ig and drying it at 60°C for 24 hours to prevent the exothermic reaction from occurring again. . For each disposable body warmer manufactured, the metal iron before and after the reaction of the heat-generating material was analyzed to determine the reaction efficiency, and only the iron powder was sieved for the same sample. The magnetizing force is measured with a magnetic balance that generates a magnetic field of , and the heating element 44
The magnetizing force per gram was determined. The results are shown in Table 1.

第1表の結果から発熱素材の反応前後の金属鉄の分析に
より求めた鉄粉反応効率と発熱素材の1g当りの磁化力
は、純鉄粉の場合、鉄粉粒径が細かい2μmの場合は反
応効率が82%と高く、磁化力が23.2と小さくなり
配合された鉄粉が有効に利用されていることがわかる。
From the results in Table 1, the iron powder reaction efficiency and the magnetizing power per 1 g of the heat-generating material, which were determined by analyzing the metal iron before and after the reaction of the heat-generating material, are as follows: It can be seen that the reaction efficiency is high at 82% and the magnetizing force is low at 23.2, indicating that the blended iron powder is effectively utilized.

また持続時間は1200分と最も長くなった。鉄粉の粒
径が大きくなると十分に反応しないで未反応で桟存する
割合が高く、80μmの場合、反応効率が35%と低く
、磁化力は59.3と高い値を示した。また持続時間は
645分と最も短くなった。この鉄粉粒径による反応効
率、磁化率、持続時間の傾向は鋳鉄粉を使用した場合で
も同じである。鉄粉の種類別では比表面積の大きい還元
鉄粉は反応効率がほとんど同しで粒径の違いの影響は認
められない。磁化力もほとんど回し値を小した。。
The duration was also the longest at 1200 minutes. As the particle size of the iron powder becomes larger, the proportion of particles remaining unreacted without sufficient reaction increases; in the case of 80 μm, the reaction efficiency was as low as 35% and the magnetizing force was as high as 59.3. The duration was also the shortest at 645 minutes. The trends in reaction efficiency, magnetic susceptibility, and duration depending on the iron powder particle size are the same even when cast iron powder is used. Regarding the type of iron powder, the reaction efficiency of reduced iron powder with a large specific surface area is almost the same, and there is no effect of difference in particle size. The magnetizing force was also reduced to almost the same value. .

このことから磁化力を測定することにより鉄粉の反応効
率を求めることができ、反応性の違う鉄粉の特徴を明ら
かにすることができた。この値の測定には分析法は約1
日を要し、磁化力の測定は1サンプル30秒程度で測定
できた。
From this, we were able to determine the reaction efficiency of iron powder by measuring the magnetizing force, and were able to clarify the characteristics of iron powder with different reactivity. To measure this value, the analytical method is approximately 1
However, the magnetizing force could be measured in about 30 seconds per sample.

また反応効率の変化にともない発熱特性も変化しており
、鉄粉反応効率と発熱特性の40℃以上の持続時間との
関係は第1表のように鉄粉の反応効率が高い場合には持
続時間が長くなった。
In addition, as the reaction efficiency changes, the exothermic characteristics also change, and as shown in Table 1, the relationship between the iron powder reaction efficiency and the duration of the exothermic characteristics above 40°C persists when the iron powder reaction efficiency is high. It's been a long time.

[発明の効果] 本発明による使い捨てカイロ素材の磁気特性を測定し0
反応性を求めることにより鉄粉の反応効率を評価でき、
発熱特性の40℃以上の持続時間もある程度推定可能で
ある。
[Effect of the invention] The magnetic properties of the disposable body warmer material according to the invention were measured and 0
The reaction efficiency of iron powder can be evaluated by determining the reactivity.
The duration of the exothermic characteristic at 40°C or higher can also be estimated to some extent.

このことから本発明は従来、感覚的にしかわからなかっ
た鉄粉の反応性を短時間で簡便に定壜的に測定できる方
法であり、しかも磁気天秤等の既存の設備を用いて測定
可能であり、その実用的価値は高い。
Based on this, the present invention is a method that allows the reactivity of iron powder, which could only be detected intuitively, to be measured in a short time, easily, and regularly, and can be measured using existing equipment such as a magnetic balance. Yes, and its practical value is high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図二金属鉄分析による反応効率と磁化力の関係を示
すグラフ。 第2図:反応効率と40℃以上持続時間の関係を示すグ
ラフ。
Figure 1 is a graph showing the relationship between reaction efficiency and magnetizing force based on bimetallic iron analysis. Figure 2: Graph showing the relationship between reaction efficiency and duration of 40°C or higher.

Claims (1)

【特許請求の範囲】 l.鉄粉の酸化反応を主体とした使い捨てカイロにおい
て、発熱素材の磁気特性を測定し、その出力から素材の
反応効率を求めることを特徴とする使い捨てカイロ発熱
素材の反応性測定方法。 2.使い捨てカイロ発熱素材の磁気特性として磁化力、
透磁率、磁気量、磁束密度を測定することを特徴とする
請求項1記載の方法。
[Claims] l. A method for measuring the reactivity of a heat-generating material in a disposable hand warmer, which is characterized by measuring the magnetic properties of the heat-generating material and determining the reaction efficiency of the material from the output of the heat-generating material in a disposable hand warmer mainly based on the oxidation reaction of iron powder. 2. Magnetizing power is the magnetic property of the heat generating material of disposable body warmers.
The method according to claim 1, characterized in that magnetic permeability, magnetic quantity, and magnetic flux density are measured.
JP1178055A 1989-07-12 1989-07-12 Measuring method of reactivity of heating material of throwaway body warmer Pending JPH0344551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1178055A JPH0344551A (en) 1989-07-12 1989-07-12 Measuring method of reactivity of heating material of throwaway body warmer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1178055A JPH0344551A (en) 1989-07-12 1989-07-12 Measuring method of reactivity of heating material of throwaway body warmer

Publications (1)

Publication Number Publication Date
JPH0344551A true JPH0344551A (en) 1991-02-26

Family

ID=16041815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1178055A Pending JPH0344551A (en) 1989-07-12 1989-07-12 Measuring method of reactivity of heating material of throwaway body warmer

Country Status (1)

Country Link
JP (1) JPH0344551A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002035397A (en) * 2000-07-26 2002-02-05 Oizumi Corp Discharge ball amount display machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002035397A (en) * 2000-07-26 2002-02-05 Oizumi Corp Discharge ball amount display machine

Similar Documents

Publication Publication Date Title
Turci et al. The iron‐related molecular toxicity mechanism of synthetic asbestos nanofibres: a model study for high‐aspect‐ratio nanoparticles
Hafez et al. Preconcentration and separation of total mercury in environmental samples using chemically modified chloromethylated polystyrene-PAN (ion-exchanger) and its determination by cold vapour atomic absorption spectrometry
Chen et al. Ultrasensitive surface-enhanced Raman scattering nanosensor for mercury ion detection based on functionalized silver nanoparticles
CN106290334B (en) The chemistry in detecting of cobalt and manganese content in cobalt manganese raw material
CN114487263B (en) Method for measuring nickel cobalt manganese content in nickel cobalt manganese-containing waste
Langford et al. Kinetics and equilibrium of binding of Fe3+ by a fulvic acid: A study by stopped flow methods
Reinoso-García et al. CMP (O) tripodands: synthesis, potentiometric studies and extractions
Ziemniak et al. Nickel (II) oxide solubility and phase stability in high temperature aqueous solutions
CN109738412B (en) Method for detecting aluminum, iron, chromium, mercury, europium, thulium and ytterbium ions in drinking water
Xu et al. Selective and sensitive colorimetric determination of cobalt ions using Ag–Au bimetallic nanoparticles
Andrade et al. Equilibrium and Kinetic Behavior of (NH3) 5CoC2O4H2+ in Aqueous Solution
JPH0344551A (en) Measuring method of reactivity of heating material of throwaway body warmer
Teeparuksapun et al. Alpha-lipoic acid functionalized silver nanoparticles for colorimetric detection of copper ion
Li et al. Highly catalysis amplification of MOF Nd-loaded nanogold combined with specific aptamer SERS/RRS assay of trace glyphosate
CN110128865A (en) A kind of surface chemical modification micaceous iron oxide powder and preparation method thereof
Stefanova et al. Unmodified manganese ferrite nanoparticles as a new sorbent for solid-phase extraction of trace metal–APDC complexes followed by inductively coupled plasma mass spectrometry analysis
CN108593488A (en) The joint measurement method of silicon, aluminium and calcium element content in a kind of Alsical
CN111848655A (en) Synthesis of three-dimensional cadmium complex and application of three-dimensional cadmium complex as fluorescent probe
JP2022148840A (en) Gas adsorbent and gas sensor
Dickens Jr et al. The corrosion and oxidation of Nd‐Fe‐B magnets
Vinci Analytical Chemistry of Beryllium
CN107422065A (en) The assay method of iron content in a kind of chromite reducting pellet sample solution
Pickett et al. Carrier Precipitation of Trace Elements. Radioisotope Evaluation of Efficiency
JP6959591B2 (en) Tritium absorbent and its manufacturing method and separation method of tritium from light water
Alder et al. Determination of hydrogen cyanide in air using mass amplification by heavy ligand replacement on a coated quartz piezoelectric crystal