JPH0344299A - Sound quality evaluation device - Google Patents

Sound quality evaluation device

Info

Publication number
JPH0344299A
JPH0344299A JP18109589A JP18109589A JPH0344299A JP H0344299 A JPH0344299 A JP H0344299A JP 18109589 A JP18109589 A JP 18109589A JP 18109589 A JP18109589 A JP 18109589A JP H0344299 A JPH0344299 A JP H0344299A
Authority
JP
Japan
Prior art keywords
time
sound quality
frequency
evaluation device
quality evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18109589A
Other languages
Japanese (ja)
Other versions
JPH0832117B2 (en
Inventor
Sawako Usuki
佐和子 薄木
Seiichi Ishikawa
石川 清一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18109589A priority Critical patent/JPH0832117B2/en
Publication of JPH0344299A publication Critical patent/JPH0344299A/en
Publication of JPH0832117B2 publication Critical patent/JPH0832117B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To express a difference in sound quality in an audible sense by providing an analysis arithmetic section and a display section so as to apply analysis and display for each time and frequency based on a signal receiving each directional component of a transient response of power. CONSTITUTION:An input means 1 is provided, which uses a microphone 1a so a to obtain acoustic signals at two points apart by a prescribed distance in each of three directions, i.e., a direction tying a listening point and a signal source and directions orthogonal to the direction. Moreover, an analysis arithmetic means 2 which obtains a value expressed by a function of time and frequency from two signals inputted from the input means 1 as to each direction by means of the Cross-Wigner, distribution calculation and integrates the result in the direction of time, a display means 3 which displays the result in three-dimension in terms of time, frequency and level for each direction, are provided. In this case, the transient response of power for each three-dimension component is analyzed and displayed from two acoustic signals. Thus, the difference from the sound quality of an acoustic equipment is recognized as a physical value and the direction of the signal source is analyzed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、音Wja器の評価に用いられる音質評価装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a sound quality evaluation device used for evaluating a sound Wja device.

従来の技術 近年、CD、AT等の出現でグイナミノクレンジの拡大
、歪率の低減、周波数特性の平坦化により音質が向上さ
れ、微小信号再生技術が発展してきた。それとともにそ
の技術により再生された高品位の音を評価することも重
要視されてきた。従来からスピーカをはしめ各種音9機
器の音質の評価を行なう1つの手段としてオートライブ
ナ−分布(ジエー・ニー・イー・ニス 31S 4号(
1983年)  (J、 A、 E、 S、 、 VO
L、 31゜No、4 (1983))に発表されてい
る。)がある。
BACKGROUND OF THE INVENTION In recent years, with the advent of CD, AT, etc., sound quality has been improved by expanding the range, reducing distortion, and flattening frequency characteristics, and minute signal reproduction technology has been developed. At the same time, it has also become important to evaluate the high-quality sound reproduced using this technology. Conventionally, one method of evaluating the sound quality of nine various sound devices using speakers has been the auto-livener distribution (GNI E.N.S. 31S No. 4).
1983) (J, A, E, S, , VO
L., 31° No. 4 (1983)). ).

スピーカの従来の評価の一例を示す。スピーカのインパ
ルス応答を受聴点において取り込み、それを用い演算し
たオートライブナ−分布の出力を時間方向に任意の時間
まで加算した結果を時間毎に図示したものである。(以
下、累積パワー分布と呼ぶ) 第6図は、スピーカの累積パワー分布による評価結果で
ある。X軸に周波数、Y軸に時間、Z軸にパワーを示し
ている。時間方向にどのような周波数成分の信号が残っ
ているかがわかる。また試聴実験での音質評価結果を物
理特性から説明することができる。
An example of conventional evaluation of speakers is shown. The impulse response of the speaker is taken in at the listening point, and the output of the auto-livener distribution calculated using it is added up to an arbitrary time in the time direction, and the result is shown for each time. (Hereinafter referred to as cumulative power distribution) FIG. 6 shows the evaluation results based on the cumulative power distribution of the speaker. The X-axis shows frequency, the Y-axis shows time, and the Z-axis shows power. You can see what frequency components remain in the signal in the time direction. Also, the sound quality evaluation results in listening experiments can be explained from physical characteristics.

発明が解決しようとする課題 上記の累積パワー分布による物理的評価では信号を周波
数1時間で分析することができ、聴感による評価に結び
つけることが可能である。しかしながら、信号を分析で
きても、信号の方向性がわからないために、聴感の差異
として音質に影響していると考えられる信号源の分析が
困難という問題点を有していた。
Problems to be Solved by the Invention In the physical evaluation based on the cumulative power distribution described above, a signal can be analyzed at a frequency of 1 hour, and it is possible to link this to the auditory evaluation. However, even if the signal can be analyzed, the directionality of the signal is not known, so it is difficult to analyze the signal source that is thought to be affecting the sound quality as a difference in hearing sensation.

本発明は上記問題点に鑑み、入力された信号のパワーの
過渡応答特性の3次元成分を分析しそれぞれの成分毎に
3次元表示する音質評価装置を提供するものである。
In view of the above-mentioned problems, the present invention provides a sound quality evaluation device that analyzes three-dimensional components of the transient response characteristics of the power of an input signal and displays each component three-dimensionally.

課題を解決するための手段 上記課題を解決するために、受聴点と信号源を結ぶ直線
方向及びそれに互いに直交する方向、合計3方向それぞ
れの方向において一定距離離れた2点の音響信号をマイ
クロホンを用いて得る入力手段、各方向について入力手
段から入力された2つの信号から時間と周波数の関数で
表される大きさをクロスウィグナー分布演算(ジエー・
ニー・イー・ニス 31巻 4号(1983年)(J。
Means for Solving the Problems In order to solve the above problems, a microphone is used to collect acoustic signals from two points a certain distance apart in each of three directions: a straight line connecting the listening point and the signal source, and a direction orthogonal to each direction. Cross Wigner distribution calculation (J.
N.E. Nis Vol. 31 No. 4 (1983) (J.

A、 E、 S、 、 V○L、31.Nα4 (19
83)に発表されている。)により得、その結果を時間
方向に積分する演算を行なう分析演算手段、その結果を
それぞれの方向毎に時間1周波数、大きさの3次元で表
示する表示手段により構成されている。
A, E, S, , V○L, 31. Nα4 (19
83). ) and integrates the result in the time direction, and a display means that displays the result in three dimensions of time, frequency, and size in each direction.

作用 本発明は上記構成により、それぞれ2つの音響信号から
3次元成分毎のパワーの過渡応答特性を分析表示するこ
とができ、その結果をもとに音響機器の音質の差異を物
理的な値としてとらえ、信号源の方向を分析することが
可能となる。
With the above configuration, the present invention can analyze and display the power transient response characteristics of each three-dimensional component from two acoustic signals, and based on the results, the difference in sound quality of audio equipment can be expressed as a physical value. This makes it possible to detect and analyze the direction of the signal source.

実施例 以下本発明の一実施例における音質評価装置について図
面を参照しながら説明する。
Embodiment A sound quality evaluation device according to an embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の音質評価装置のブロック図を示すもの
である。
FIG. 1 shows a block diagram of a sound quality evaluation device according to the present invention.

lは人力部、1aはマイクロホン、lbはA/D変換器
、2は分析演算部、2aはクロス・ライブナ−分布演算
部、2bは積分演算部、3は表示部、4はベクトル表示
部である。
1 is a human power section, 1a is a microphone, lb is an A/D converter, 2 is an analysis calculation section, 2a is a cross-Leibner distribution calculation section, 2b is an integral calculation section, 3 is a display section, and 4 is a vector display section. be.

第2図は本発明音質評価装置の人力部1のマイクロホン
1aのXY平面上の位置を示すものである。第3図は本
発明音質評価装置の入力部1のマイクロホン1aのYZ
平面上の位置を示すものである。
FIG. 2 shows the position of the microphone 1a of the human power section 1 of the sound quality evaluation apparatus of the present invention on the XY plane. FIG. 3 shows the YZ of the microphone 1a of the input section 1 of the sound quality evaluation device of the present invention.
It shows the position on the plane.

10はスピーカで従来例に用いたものと同様であり、1
1は受聴点、12a、12bは受聴点11における信号
のX成分の分析を行なうための入力であるインパルス応
答を取り込むマイクロホンの位置、同様に13a、13
bはY成分の分析のためのマイクロホンの位置、14a
、14bはZrji。
10 is a speaker similar to that used in the conventional example;
1 is the listening point; 12a and 12b are the positions of microphones that take in the impulse response that is the input for analyzing the X component of the signal at the listening point 11; similarly, 13a and 13
b is the microphone position for analyzing the Y component, 14a
, 14b is Zrji.

分の分析のためのマイクロホンの位置である。Microphone position for minute analysis.

以上のように構成された音質評価装置の一実施例につい
て説明する。
An embodiment of the sound quality evaluation device configured as described above will be described.

マイクロホン1aでスピーカ10と受聴点11を結んだ
軸(Y軸)及びその軸に直交する軸(X。
An axis (Y-axis) connecting the speaker 10 and the listening point 11 with the microphone 1a and an axis (X-axis) perpendicular to that axis.

Z軸)の3軸上それぞれで受聴点11の両側同距離の2
点((12a、12b)、(13a、13b)、(14
a、14b))におけるインパルス応答が入力部1に取
り込まれA/D変換器1bでデジタル信号化される。次
に分析演算部2において入力部1で取り込んだマイクロ
ホンの位置(12a。
2 at the same distance on both sides of the listening point 11 on each of the three axes (Z-axis)
Points ((12a, 12b), (13a, 13b), (14
The impulse response in a, 14b)) is taken into the input section 1 and converted into a digital signal by the A/D converter 1b. Next, in the analysis calculation unit 2, the microphone position (12a) taken in by the input unit 1.

12b)、(13a、13b)、(14a、14b)に
おけるインパルス応答3組を入力とし分析演算を行なう
、X軸上12a、12b2点のインパルス応答からクロ
スウィグナー分布演算部2aでクロスウィグナー分布を
計算し、その結果を積分演算部2bにおいて次のような
演算を行う。クロスウィグナー分布を計算した時刻ti
からt2の間で、任意の間隔ΔL毎に時刻tl+nXΔ
Lからt2の間を積分することにより時刻tl+nXΔ
Lの累積パワーのX成分を求める計算を全周波数1時間
について行い累積パワー分布のX成分を得る。
12b), (13a, 13b), and (14a, 14b) are input, and the cross Wigner distribution is calculated by the cross Wigner distribution calculation unit 2a from the impulse responses at the two points 12a and 12b on the X axis. Then, the following calculation is performed on the result in the integral calculation section 2b. Time ti when the Cross Wigner distribution was calculated
to t2, at every arbitrary interval ΔL, the time tl+nXΔ
By integrating from L to t2, time tl+nXΔ
Calculations for determining the X component of the cumulative power of L are performed for all frequencies for one hour to obtain the X component of the cumulative power distribution.

同様にY軸上13a、13b2点のインパルス応答から
累積パワー分布のY成分を、Z軸上14a14b2点の
インパルス応答から累積パワー分布のZ成分を時間と周
波数の関数として求める。分析演算部2の出力を表示部
3においてそれぞれX軸方向に周波数、Y軸方向に時間
、さらにX軸方向にパワーの対数を取り表示する。第4
図(a)、 (b)。
Similarly, the Y component of the cumulative power distribution is determined from the impulse response at two points 13a and 13b on the Y axis, and the Z component of the cumulative power distribution is determined from the impulse response at two points 14a and 14b on the Z axis as a function of time and frequency. The output of the analysis calculation unit 2 is displayed on the display unit 3 by taking the frequency in the X-axis direction, the time in the Y-axis direction, and the logarithm of the power in the X-axis direction. Fourth
Figures (a), (b).

(C)に、音質評価装置の表示部3による表示結果を示
す。第6図において分析できなかった信号の方向成分を
時間9周波数の関数として得ることができ方向成分毎に
音質差異に対するの客観的な評価が可能となる。さらに
ベクトル表示部4でそれぞれx、  y、  z軸上で
の分析演算部2の演算結果をベクトル加算し受聴点11
のおける信号源方向を示すベクトルとして表示する。第
5図にベクトル表示部4の一表示結果を示す。その結果
、表示部3の結果に比べてさらに細かく視覚的に信号の
方向成分をとらえ、信号源を点として解析できるため、
音響機器のより適切な改善を行なうことができる。
(C) shows the display results on the display unit 3 of the sound quality evaluation device. The directional components of the signal that could not be analyzed in FIG. 6 can be obtained as a function of time and frequency, making it possible to objectively evaluate differences in sound quality for each directional component. Furthermore, the calculation results of the analysis calculation unit 2 on the x, y, and z axes are added as vectors on the vector display unit 4, and the listening point 11 is
It is displayed as a vector indicating the direction of the signal source at . FIG. 5 shows one display result of the vector display section 4. As a result, the directional components of the signal can be visually captured in more detail than the results on the display unit 3, and the signal source can be analyzed as a point.
More appropriate improvements to audio equipment can be made.

なお、表示手段として3次元表示を用いたが、2次元で
大きさを等高線図表示してもよく、さらに時間2周波数
、大きさの軸との対応も評価しやすい表示を選択しても
よい。また、ベクトル表示手段として受聴点における信
号の方向を2次元表示してもよく、また信号源を中心と
した表示にしてもよい。
Although a three-dimensional display was used as a display means, the size may be displayed in a two-dimensional contour map, or a display that facilitates evaluation of the correspondence between time, frequency, and size axes may be selected. . Furthermore, the direction of the signal at the listening point may be displayed two-dimensionally as a vector display means, or the direction of the signal at the listening point may be displayed centered on the signal source.

発明の効果 以上のように本発明は音質の差異の原因を探るため分析
演算部と表示部によって聴感上の音質の差異を表現する
パワーの過渡応答特性の各方向成分を入力された信号を
もとに各時間1周波数毎に解析表示することを可能にす
る音質評価装置を実現するものである。
Effects of the Invention As described above, in order to find the cause of the difference in sound quality, the present invention uses an analysis calculation section and a display section to analyze the input signal of each directional component of the power transient response characteristic that expresses the difference in sound quality in the auditory sense. The purpose of this invention is to realize a sound quality evaluation device that enables analysis and display for each frequency at each time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の音質評価装置のブロック図
、第2図は本発明の一実施例の音響評価装置の入力部の
マイクロホンのXY平面上の位置を表す説明図、第3図
は本発明の一実施例の音質評価装置の入力部のマイクロ
ホンのYZ平面上の位置を表す説明図、第4図はスピー
カの音質評価装置表示部の出力結果を表す説明図、第5
図はスピーカの音質評価装置ベクトル表示部の出力結果
を表す説明図、第6図は従来例のスピーカの累積パワー
分布表す説明図である。 1・・・・・・入力部、2・・・・・・分析演算部、3
・・・・・・表示部、4・・・・・・ベクトル表示部、
10・・・・・・スピーカ、11・・・・・・受聴点。
FIG. 1 is a block diagram of a sound quality evaluation device according to an embodiment of the present invention, FIG. 2 is an explanatory diagram showing the position on the XY plane of the microphone of the input section of the sound evaluation device according to an embodiment of the present invention, and FIG. The figures are an explanatory diagram showing the position on the YZ plane of the microphone of the input section of the sound quality evaluation device according to an embodiment of the present invention, FIG. 4 is an explanatory diagram showing the output result of the display section of the sound quality evaluation device of the speaker, and FIG.
The figure is an explanatory diagram showing the output results of the vector display unit of the speaker sound quality evaluation device, and FIG. 6 is an explanatory diagram showing the cumulative power distribution of a conventional speaker. 1...Input section, 2...Analysis calculation section, 3
...Display section, 4...Vector display section,
10...Speaker, 11...Listening point.

Claims (2)

【特許請求の範囲】[Claims] (1)信号源と受聴点とを結ぶ直線方向とこれと互いに
直交する2つの方向それぞれ3方向で、各方向毎に一定
距離隔てた2つの場所の音響信号をマイクロホンを用い
て得る入力手段と、各方向について入力手段から入力さ
れた2つの信号から時間と周波数の関数で表される大き
さを得るクロスウィグナー分布演算とクロスウィグナー
分布演算結果を周波数毎にある時間を基点として任意の
時間幅ΔTを増加もしくは減少させながら積分を行なう
積分演算とを行なう分析演算手段と、分析演算手段結果
をそれぞれの方向毎に時間、周波数、大きさの3次元で
表示する表示手段とを有することを特徴とする音質評価
装置。
(1) Input means that uses a microphone to obtain acoustic signals from two locations separated by a certain distance in each direction in three directions: a straight line connecting the signal source and the listening point, and two directions perpendicular to the straight line; , Cross Wigner distribution calculation to obtain the magnitude expressed as a function of time and frequency from the two signals input from the input means for each direction, and the Cross Wigner distribution calculation result for each frequency with an arbitrary time width as the base point. It is characterized by having an analytical calculation means for performing an integral calculation that performs integration while increasing or decreasing ΔT, and a display means for displaying the results of the analytical calculation means in three dimensions of time, frequency, and magnitude for each direction. Sound quality evaluation device.
(2)2または3方向の分析演算手段の出力をベクトル
加算し受聴点または信号源における各時間、周波数毎の
信号の方向ベクトルを表示するベクトル表示手段を有す
る請求項1記載の音質評価装置。
(2) The sound quality evaluation device according to claim 1, further comprising vector display means for adding the outputs of the analysis calculation means in two or three directions as vectors and displaying the direction vector of the signal for each time and frequency at the listening point or the signal source.
JP18109589A 1989-07-12 1989-07-12 Sound quality evaluation device Expired - Lifetime JPH0832117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18109589A JPH0832117B2 (en) 1989-07-12 1989-07-12 Sound quality evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18109589A JPH0832117B2 (en) 1989-07-12 1989-07-12 Sound quality evaluation device

Publications (2)

Publication Number Publication Date
JPH0344299A true JPH0344299A (en) 1991-02-26
JPH0832117B2 JPH0832117B2 (en) 1996-03-27

Family

ID=16094746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18109589A Expired - Lifetime JPH0832117B2 (en) 1989-07-12 1989-07-12 Sound quality evaluation device

Country Status (1)

Country Link
JP (1) JPH0832117B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317324A (en) * 1991-06-20 1994-05-31 Sumitomo Metal Mining Co., Ltd. Printed antenna
US5757939A (en) * 1994-12-22 1998-05-26 Lucent Technologies Inc. Method for demonstrating sound quality differences between audio samples
US5915029A (en) * 1998-04-23 1999-06-22 Sony Corporation Automated testing apparatus for electronic component
US6124065A (en) * 1997-08-20 2000-09-26 Nec Corporation Photosensitive body and electrophotographic printer using the same
US6338903B1 (en) 1998-11-02 2002-01-15 Fujitsu Limited Resin composition for semiconductor encapsulation, method and apparatus for producing the composition, as well as semiconductor device using the composition
JP2004251751A (en) * 2003-02-20 2004-09-09 Mitsui Eng & Shipbuild Co Ltd Acoustic sensor array, acoustic diagnostic device and acoustic diagnostic method
US8160264B2 (en) 2008-07-30 2012-04-17 Fujitsu Limited Transfer function estimating device, noise suppressing apparatus and transfer function estimating method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317324A (en) * 1991-06-20 1994-05-31 Sumitomo Metal Mining Co., Ltd. Printed antenna
US5757939A (en) * 1994-12-22 1998-05-26 Lucent Technologies Inc. Method for demonstrating sound quality differences between audio samples
US6124065A (en) * 1997-08-20 2000-09-26 Nec Corporation Photosensitive body and electrophotographic printer using the same
US5915029A (en) * 1998-04-23 1999-06-22 Sony Corporation Automated testing apparatus for electronic component
US6338903B1 (en) 1998-11-02 2002-01-15 Fujitsu Limited Resin composition for semiconductor encapsulation, method and apparatus for producing the composition, as well as semiconductor device using the composition
JP2004251751A (en) * 2003-02-20 2004-09-09 Mitsui Eng & Shipbuild Co Ltd Acoustic sensor array, acoustic diagnostic device and acoustic diagnostic method
US8160264B2 (en) 2008-07-30 2012-04-17 Fujitsu Limited Transfer function estimating device, noise suppressing apparatus and transfer function estimating method

Also Published As

Publication number Publication date
JPH0832117B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
KR101333031B1 (en) Method of and device for generating and processing parameters representing HRTFs
Algazi et al. The cipic hrtf database
US9173032B2 (en) Methods of using head related transfer function (HRTF) enhancement for improved vertical-polar localization in spatial audio systems
Campbell et al. A Matlab simulation of" shoebox" room acoustics for use in research and teaching
Minnaar et al. Directional resolution of head-related transfer functions required in binaural synthesis
US8428269B1 (en) Head related transfer function (HRTF) enhancement for improved vertical-polar localization in spatial audio systems
KR100606734B1 (en) Method and apparatus for implementing 3-dimensional virtual sound
US20180048959A1 (en) Head-related transfer function selection device, head-related transfer function selection method, head-related transfer function selection program, and sound reproduction device
Satongar et al. The influence of headphones on the localization of external loudspeaker sources
JPH0344299A (en) Sound quality evaluation device
Völk Inter-and intra-individual variability in the blocked auditory canal transfer functions of three circum-aural headphones
US10854210B2 (en) Device and method for capturing and processing a three-dimensional acoustic field
Crispien et al. Evaluation of the-cocktail-party effect-for multiple speech stimuli within a spatial auditory display
Li et al. Towards mobile 3d hrtf measurement
CN114339582B (en) Dual-channel audio processing method, device and medium for generating direction sensing filter
JP3377178B2 (en) Acoustic loudspeaker and its clarity improvement method
Geronazzo et al. Evaluating vertical localization performance of 3d sound rendering models with a perceptual metric
US20030016837A1 (en) Stereo sound circuit device for providing three-dimensional surrounding effect
JPH02249400A (en) Sound quality evaluation equipment
JPH06147968A (en) Sound evaluating device
Inoue et al. HRTF modeling using physical features
JPH1183982A (en) Sound source direction detector
Hess et al. Acoustical evaluation of virtual rooms by means of binaural activity patterns
Robinson et al. Design, construction, and evaluation of a 1: 8 scale model binaural manikin
Potard et al. Control and Measurement of Apparent Sound Source Width and its Applications to Sonification and Virtual Auditory Displays.