JPH0344230B2 - - Google Patents

Info

Publication number
JPH0344230B2
JPH0344230B2 JP58207879A JP20787983A JPH0344230B2 JP H0344230 B2 JPH0344230 B2 JP H0344230B2 JP 58207879 A JP58207879 A JP 58207879A JP 20787983 A JP20787983 A JP 20787983A JP H0344230 B2 JPH0344230 B2 JP H0344230B2
Authority
JP
Japan
Prior art keywords
wheel
winding
shaft
spool
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58207879A
Other languages
Japanese (ja)
Other versions
JPS60101281A (en
Inventor
Shigezo Tatsumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20787983A priority Critical patent/JPS60101281A/en
Publication of JPS60101281A publication Critical patent/JPS60101281A/en
Publication of JPH0344230B2 publication Critical patent/JPH0344230B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G1/00Spring motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Braking Arrangements (AREA)
  • Retarders (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はバネによるエネルギーの蓄力装置に関
するもので、帯板バネ材をスプールに巻き込み成
形した自巻きバネを逆成形方向に巻き変える形で
エネルギー入力発生の都度随時蓄力出来、出力は
必要時任意に定荷重で出来るようにし、出力によ
り蓄力が枯渇しないよう、あらかじめ入出それぞ
れの頻度とエネルギー量を経験値より算定してこ
れを自巻きバネの強さと長さに変換設計しておき
さえすれば、産業界のエネルギー保存装置として
それぞれの分野で利用出来るよう開発したもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an energy storage device using a spring, in which a self-winding spring formed by winding a strip spring material around a spool is wound in a reverse forming direction. Energy can be stored whenever energy input occurs, and output can be made with a constant load whenever necessary.In order to avoid depleting energy storage due to output, the frequency and amount of energy for each input and output are calculated in advance from empirical values and automatically calculated. It was developed so that it can be used in various fields as an energy storage device in industry, as long as it is designed to convert the strength and length of a coiled spring.

[従来の技術] 一般に回転エネルギーの蓄力装置は化学的には
蓄電池等、機械的にはフライホイール蓄力等考え
られているが長時間保存困難と容積質量が大きい
ことおよび転換率の悪いこと等の欠点があつた。
勿論弾性体による保存装置は公知のものはあるが
単なるコイルバネ・ゼンマイバネ等の類では弾性
の限界内においても平均化しないで漸増または漸
減するため蓄力能力が乏しくまた出力時に瞬間出
力となり殆ど使用に耐えない。定荷重使用のもの
で自巻きバネを使用したものは既に本出願人の間
発になる特許第670476号(バネによるドアーチエ
ツク)において公知であるが従来のものはすべて
バツチ式仕様で巻き付けとものを巻き戻している
ため戻り止めを施す等出来ず本発明の技術として
は使えない。
[Prior art] In general, energy storage devices for rotational energy are chemically considered to be storage batteries, mechanically such as flywheels, etc., but they are difficult to store for long periods of time, have a large volumetric mass, and have a poor conversion rate. There were other drawbacks.
Of course, there are known storage devices using elastic bodies, but with simple coil springs, spiral springs, etc., the power storage capacity is poor because it gradually increases or decreases without averaging even within the limit of elasticity, and when it is output, it outputs instantaneously, making it almost unusable. I can't stand it. A type that uses a constant force and uses a self-winding spring is already known in Patent No. 670476 (door check using a spring) issued by the present applicant, but all conventional types are batch type specifications and winding type. Since the film is being rewound, it is not possible to apply a detent, etc., and it cannot be used as a technique of the present invention.

即ち入出力を自在にするため従来のバツチ式構
造を避け経験実績頻度内ならば、入出を繰り返し
つつ、半永久に用いられるもので、本発明は入出
力端の異なるものと同一のものの構造を示してい
るが、いずれも従来の技術では及ばなかつたとこ
ろである。
In other words, in order to make input and output freely possible, the conventional batch type structure is avoided, and if the frequency is within the experience and actual results, input and output can be repeated and used semi-permanently, and the present invention shows the structure of the same type with different input and output terminals. However, both of these are beyond the reach of conventional technology.

[発明が解決しようとする課題] 適正時間単位までの予想消費エネルギーをその
間の入力エネルギーで賄い得るようにするために
は、蓄力量を大きくし、かつ同一出力で常に必要
消費エネルギーを取り出しえる弾性体の形状を選
ぶ必要性があり、入出力がバツチ式でなく連続式
であること、蓄力構造がバネ容量の多寡に順応出
来る空間が確保出来る構造であること、さらに入
力端と出力端を同一にすることによつて必要時だ
け蓄力装置を活用し得る機構であれば更に広範囲
な活用が期待できる。
[Problem to be solved by the invention] In order to be able to cover the expected energy consumption up to an appropriate time unit with the input energy during that time, it is necessary to increase the amount of stored power and to have the elasticity to always extract the necessary energy consumption with the same output. It is necessary to choose the shape of the body, the input and output should be continuous rather than batch, the force storage structure should have a structure that can secure a space that can adapt to the amount of spring capacity, and the input and output ends should be If it is possible to use the energy storage device only when necessary by making it the same, it can be expected to be used more widely.

[課題を解決するための手段] 蓄力量を大にし且つ出力を同一にする唯一のバ
ネは自巻き成形帯状バネでこの利点はこれの蓄力
量は単位期間予想しうる消費量とその間の予想入
力量を算定してバネの長さ方向へ換算出来る、こ
とと、必要出力をバネの板厚・材質・巾による巻
き際の力に換算して設計し、常に同一の力を抽出
出来ることにあるがこれを活用し、また入力端と
出力端を異にして連続的に入出自在にする基本設
計のものと、入出力端を同一にすることで歯車シ
フト等無く原動軸が動力軸となり又蓄力装置の不
必要なときには空転して効率を妨げないようにす
る蓄力の必要時と不要時を選択しうる等の可能な
差動歯車装置を挿入して開発したものである。
[Means for solving the problem] The only spring that can increase the amount of stored power and keep the output the same is a self-winding formed band spring.The advantage of this is that the amount of stored power can be predicted for a unit period and the expected input during that time. It is possible to calculate the amount and convert it in the length direction of the spring, and it is possible to always extract the same force by converting the required output into the force at the end of the spring depending on the thickness, material, and width of the spring. Utilizing this, there is also a basic design in which the input end and output end are different so that input and exit can be made continuously, and by making the input and output ends the same, the drive shaft becomes the power shaft without gear shift etc. It was developed by inserting a differential gear device that can select when power storage is needed and when it is not needed, so that the power storage device does not idle and impede efficiency when it is not needed.

[作用] 前者の原理設計のものは入力にたいしては定荷
重でスプールへの自巻き状態に成形した自巻きバ
ネを、大径のホイールの周縁にスプールが遊星回
動して巻き出すにともなつて自巻きバネの成形に
よる巻き込み力に打ち勝つて逆向けの巻き付けト
ルクとして蓄力し、出力についてはホイールの追
従トルクを消費する形で、入出力端は異なる構造
のものである。また後者の入出力端を同一にする
ためには差動歯車の両サイドギヤー軸の間に自巻
きバネを係合する方法を用い、動力をギヤーケー
スに入力して両サイドギヤー軸の回転角度差に蓄
力するから入力端と出力端は同一で、その際双方
軸関係位置を固定すれば蓄力装置は介入しないた
め双方簡単に選択出来る。
[Function] The former principle design has a self-winding spring that is formed into a self-winding state around the spool with a constant load in response to input, and as the spool rotates planetarily around the periphery of a large diameter wheel and unwinds it. The input and output terminals have different structures, as they overcome the winding force created by the self-winding spring and store it as winding torque in the opposite direction, and consume the follow-up torque of the wheel for output. In order to make the input and output terminals of the latter the same, a self-winding spring is engaged between both side gear shafts of the differential gear, and power is input into the gear case to control the rotation angle of both side gear shafts. Since the power is stored based on the difference, the input end and the output end are the same, and in this case, if the relative positions of both shafts are fixed, the power storage device does not intervene, so both can be easily selected.

[実施例] 実施例については図面により説明すると、回転
エネルギー源1(例えば風車)の軸に、ウオーム
2ウオームホイール3をもうけウオームホイール
3の軸4に、ホイール5の軸部6を、回転自在に
かん挿しこのホイール5の周縁に沿つてスプール
7を遊星状に回動させるよう、スプール軸8の回
動腕9を軸4にとりつける。スプール7には巻き
込み型に成形した帯状の自巻きバネ10を巻き付
け自巻きバネ10の外端部11は、ホイール5の
周縁の一部に取り付けているため、回転エネルギ
ー源1が回転し、ウオーム2、ウオームホイール
3、軸4、回動腕9が連動回転しスプール7がホ
イール5の周縁を矢印方向に回動するとスプール
7に巻き付けた自巻きバネ10はホイール5が停
止している限りにおいて、その周縁に巻きだされ
る形に構成している。ホイール5を止め爪12、
ラチエツト歯12′によつて回転を固定し、スプ
ール7を回動するが止め爪12を外すことによつ
て、その蓄力はホイール5の矢印方向へ回転によ
つてその軸部6の回転トルクとして取り出すこと
ができ、入力Mの入力中においても、出力M1M
2として取り出しうる。また通常の弾性巻きバネ
と異なり、自巻きバネは巻き際の成形性で巻き弾
性を有するため、その長さ方向に常に均一で蓄力
量は、帯状バネの長さに比例して大量化でき従来
のゼンマイバネの比ではない。
[Example] An example will be described with reference to the drawings. A worm 2 and a worm wheel 3 are provided on the shaft of a rotational energy source 1 (for example, a windmill), and a shaft 6 of a wheel 5 is rotatably attached to the shaft 4 of the worm wheel 3. A rotating arm 9 of a spool shaft 8 is attached to the shaft 4 so as to rotate the spool 7 in a planetary manner along the circumference of the wheel 5. A belt-shaped self-winding spring 10 formed into a winding type is wound around the spool 7, and the outer end 11 of the self-winding spring 10 is attached to a part of the periphery of the wheel 5, so that the rotational energy source 1 rotates and the worm 2. When the worm wheel 3, shaft 4, and rotating arm 9 rotate in conjunction with each other, and the spool 7 rotates around the periphery of the wheel 5 in the direction of the arrow, the self-winding spring 10 wound around the spool 7 will rotate as long as the wheel 5 is stopped. , it is structured in such a way that it is rolled out around its periphery. A pawl 12 that stops the wheel 5;
The rotation is fixed by the ratchet teeth 12', and the spool 7 is rotated, but by removing the pawl 12, the stored force is released by rotating the wheel 5 in the direction of the arrow, and the rotation torque of the shaft 6 is increased. Even during the input M, the output M1M
It can be extracted as 2. Also, unlike ordinary elastically wound springs, self-winding springs have elasticity due to the formability at the edge of winding, so they are always uniform in the length direction, and the amount of stored force can be increased in proportion to the length of a strip spring. It is not the ratio of a mainspring.

また間欠的入力の保存方法のみでなく出力のブ
レーキとして、ホイール5を反矢印方向に回せば
ブレーキとなりその力も保存方向に蓄力できる。
第1図は回転出力を発電機とした例、広告塔とし
た例、第2図は振子Kの振動をクラツチ盤13に
より一方方向の回動に切り替え蓄力した例をしめ
しており何れも等出力を達成したものである。
In addition to a method for storing intermittent input, as a brake for output, turning the wheel 5 in the opposite direction of the arrow acts as a brake, and its force can also be stored in the storage direction.
Figure 1 shows an example where the rotational output is used as a generator and an example where it is used as a billboard, and Figure 2 shows an example where the vibration of the pendulum K is changed to rotation in one direction by the clutch plate 13 and the power is stored. This is what achieved the output.

第3図第4図に示したものは、差動歯車装置に
組み入れたもので、ギヤーケース14に軸受けし
た遊星ピニオンギヤー15,15′に噛み合う左
サイドギヤー16には中空サイド軸17をとりつ
け、右サイドギヤー16′には、貫通サイド軸1
7′をとりつけ、その中空サイド軸17に貫通サ
イド軸17′を挿入して同心円状に中空サイド軸
側のギヤーケース14の外部サイドに突出させ、
そのそれぞれに大径のスプール軸回動腕軸フラン
ジ18、およびそれより小径のホイールフランジ
19を取り付け双方を対向接近させ、スプール軸
回動腕軸フランジ18に取り付けた自巻きバネス
プール20に巻き付けた自巻きバネ21の端部2
2をホイールフランジ19の周上に取り付けて自
巻きバネスプール20がその周縁を自転および公
転の遊星回動するように設計している。ホイール
フランジ19の取り付け軸である右サイドギヤー
軸17′の更に延長状にバンドブレーキセツト2
3を取り付けそのレバー24をワイヤー25で引
くことによつてホイールヘランジ19の回転を自
在に停止出来るようにしている。またスプール軸
回動腕軸フランジ18にはラチエツト刃26を刻
んで爪27で回り止めを施している。
The one shown in FIGS. 3 and 4 is assembled into a differential gear device, in which a hollow side shaft 17 is attached to a left side gear 16 that meshes with planetary pinion gears 15, 15' bearing on a gear case 14. The right side gear 16' has a through side shaft 1.
7', insert the penetrating side shaft 17' into the hollow side shaft 17 so that it protrudes concentrically to the outside side of the gear case 14 on the side of the hollow side shaft,
A large-diameter spool shaft rotating arm shaft flange 18 and a smaller-diameter wheel flange 19 are attached to each of the spool shafts, and the two are brought close to each other and are wound around a self-winding spring spool 20 attached to the spool shaft rotating arm shaft flange 18. End 2 of self-winding spring 21
2 is attached on the circumference of the wheel flange 19, and the self-winding spring spool 20 is designed to rotate and revolve planetarily around its periphery. A band brake set 2 is further extended from the right side gear shaft 17', which is the mounting shaft of the wheel flange 19.
3 and pulling the lever 24 with a wire 25 allows the rotation of the wheel flange 19 to be stopped freely. Further, a ratchet blade 26 is carved into the spool shaft rotating arm shaft flange 18, and a pawl 27 is provided to prevent rotation.

ギヤーケース14には動力源の回転を伝えるた
め、ギヤーケース駆動歯車28を取り付け、これ
に噛む小歯車29、およびその軸に大歯車30を
取り付けている。スプール軸回動軸フランジ18
にはバランス錘31を設けて回転バランスを取る
ようにしている。いまこの機構により説明をくわ
えると、動力源として例えば自転車車輪のハブ芯
よりの連動で大歯車30を回転させるとギヤーケ
ース駆動歯車28の回転によるギヤーケース14
が回りこれに取り付けた遊星ピニオンギヤー1
5,15′に噛み合う左右サイドギヤー16,1
6′が共回りしてその軸17,17′に取り付けた
スプール軸回動腕軸フランジ18およびホイール
フランジ19の関係位置はずれることなく回転す
るがバンドブレーキセツト23のレバー24をワ
イヤー25で移動して働かせるとホイールフラン
ジ19が回転を停止した時点より自巻きバネスプ
ール20がその周縁を回動して自巻きバネ21を
ホイールフランジ19の周縁に自巻きバネ21の
スプール20えの巻き込み力に打ち勝つて巻き付
けてゆく。任意の時点でバンドブレーキセツト2
3のブレーキを開放するとスプール軸回動腕軸1
8はラチエツト刃26と、爪27で逆転を防止し
ているため、復元はホイールフランジ19の回転
により行なわれ、その軸に取り付けたサイドギヤ
ー16′が回転しギヤーケース14が回転する。
いずれの場合も回転方向は矢印方向で大歯車30
も同一当初方向に常に回転しうるため例えば坂道
降下時のエネルギーを登はんエネルギーとして再
度自転車のハブ芯に同じ進行方向に回転トルクを
与え蓄力を活用することが出来る。
In order to transmit the rotation of the power source to the gear case 14, a gear case driving gear 28 is attached, a small gear 29 meshing with the gear case driving gear 28, and a large gear 30 are attached to the shaft thereof. Spool shaft rotation shaft flange 18
A balance weight 31 is provided to balance the rotation. To explain this mechanism now, when the large gear 30 is rotated in conjunction with the hub core of a bicycle wheel as a power source, the gear case 14 is rotated by the rotation of the gear case drive gear 28.
The planetary pinion gear 1 attached to this rotates.
Left and right side gears 16, 1 meshing with 5, 15'
6' rotate together and the spool shaft rotating arm shaft flange 18 and wheel flange 19 attached to the shafts 17 and 17' rotate without shifting their relative positions, but the lever 24 of the band brake set 23 is moved by the wire 25. When the wheel flange 19 stops rotating, the self-winding spring spool 20 rotates around its periphery to force the self-winding spring 21 onto the periphery of the wheel flange 19 to overcome the winding force of the spool 20 of the self-winding spring 21. and wrap it around. Band brake set 2 at any time
When the brake 3 is released, the spool shaft rotation arm shaft 1
8 is prevented from reversing by a ratchet blade 26 and pawl 27, so restoration is performed by rotation of the wheel flange 19, which rotates the side gear 16' attached to its shaft and rotates the gear case 14.
In either case, the direction of rotation is the direction of the arrow, which is the large gear 30.
Since the bicycle can always rotate in the same initial direction, for example, the energy from descending a slope can be used as climbing energy to apply rotational torque to the bicycle hub core again in the same direction of travel, making use of stored power.

[発明の効果] 入力端のエネルギーは自巻きバネの巻き際を巻
き伸ばす力として連続的に積算蓄積されるが、そ
の出力頻度と入力頻度をあらかじめ経験値等で計
算してバネ長さを設計すれば出力によつて蓄力が
枯渇することもなく、第1図の例示のように入出
端を異にしてよい用途も頗多い。またこの構造で
は第1図で云えば回転腕9の長さの設計は、自巻
きバネ巻き厚により、おおまかに段階的に用意す
るのみでまかなえるが、場合によつてはコイルバ
ネ等を介入して伸縮自在にすれば、全くその配慮
も要しないで汎用に作りうるし入力に風力、振
動、重力、等自然エネルギーの入力衝撃の緩和と
入力頻度の間欠性双方をバネ長さ方向で平準化し
て利用可能にするためその用途は広い。また第2
図には入力、機械力等においては入出力端を同一
にすることによつて、余つたエネルギーを蓄力し
て再び同一入力軸に返したい場合で、おおむね大
容量のものはこれに代替するものはなく、その用
途上の利点はおおきい。ギヤーシフトはバネが介
入しているため差動歯車形式でなければ不可能で
本出願の中空サイド軸を用いて貫通サイド軸と同
心円状に接近設定出来スプールをホイールフラン
ジに遊星回動させる方法で頗簡易に実現できたも
ので、さらにバネ容量を必要に応じて大きく出
来、また逆巻きによる極端なバネ疲労を避けるた
めには、相当の大径のホイール径を理想とするが
これに対しても、本構造では可能で実用化出来る
ようにしたため、坂道対応の電池自動車の効率向
上等に例をとつてもギヤー切り替えが不要で且つ
通常に切り替えるときは、本機構のホイルフラン
ジをバンドブレーキよりフリーにすればサイドギ
ヤー双方が契合固定し、自巻きバネの容量が大き
くても単に連動経路にすぎなくその損失はない。
従つて必要時に長期の蓄力が出来従来のゼンマイ
バネ等では不可能なおおかたのエネルギー保存に
活用できる。ブレーキ等の瞬間出力のもの、坂道
等の大容量の蓄力を目的のものも相応バネ力の設
計で可能である。このように本発明は長時間定出
力のものには予想入出力設計に余裕をもてば半永
久に複雑な操作もなく使用できる。例えば乗りも
の一般の登はん損失、ブレーキ損失の補填、又第
1図のリターン動力を要しないものでは自然エネ
ルギーの活用例えば風力発電等その使用範囲は広
い。
[Effect of the invention] The energy at the input end is continuously accumulated as a force to wind and stretch the winding edge of the self-winding spring, but the output frequency and input frequency are calculated in advance using empirical values, etc., and the spring length is designed. This way, the power storage will not be depleted due to the output, and there are many applications in which the input and output ends can be made different as shown in FIG. In addition, with this structure, the length of the rotating arm 9 as shown in Fig. 1 can be designed by roughly preparing it in stages depending on the thickness of the self-winding spring, but in some cases, it may be necessary to intervene with a coil spring, etc. If it is made elastic, it can be made for general purpose without any consideration at all, and it can be used by equalizing both the input impact of wind, vibration, gravity, etc. and the intermittency of the input frequency in the spring length direction. Its uses are wide. Also the second
The figure shows a case where you want to store excess energy and return it to the same input shaft by making the input and output terminals the same for input, mechanical power, etc., and this is generally the case for large-capacity devices. There are no such things, and the advantages of its use are great. Since the gear shift involves a spring, it is only possible with a differential gear type.The hollow side shaft of this application can be set concentrically with the through side shaft, and the spool can be planetarily rotated around the wheel flange. This was easy to achieve, and in order to increase the spring capacity as needed, and to avoid extreme spring fatigue due to reverse winding, it would be ideal to have a fairly large wheel diameter. With this structure, we have made it possible and practical, so for example, to improve the efficiency of battery-powered vehicles that can handle slopes, there is no need to change gears, and when switching normally, the wheel flange of this mechanism is freer than the band brake. If this is done, both side gears will be engaged and fixed, and even if the self-winding spring has a large capacity, it will only be an interlocking path and there will be no loss.
Therefore, it can store energy for a long time when needed, and can be used to conserve energy, which is not possible with conventional spiral springs. It is possible to design a spring force suitable for instantaneous output such as a brake, or for storing a large amount of force on a slope. As described above, the present invention can be used semi-permanently without complicated operations for long-term constant output devices if the expected input/output design allows some leeway. For example, it can be used to compensate for climbing losses and braking losses in general vehicles, and in vehicles that do not require return power as shown in Figure 1, it can be used in a wide range of ways, such as utilizing natural energy, such as wind power generation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理を示す斜視図、第2図は
原動力に振子を用いたものの原理斜視図、第3図
は差動歯車機構を用いて実施し自巻きバネを介入
したものの1部切り欠正面図、第4図はその1部
切り欠側面図である。 1……回転エネルギー源、2……ウオーム、3
……ウオームホイール、4……軸、5……ホイー
ル、6……軸部、7……スプール、8……スプー
ル軸、9……回転腕、10……自巻きバネ、11
……外端部、12……止め爪、12′……ラチエ
ツト歯、13……クラツチ盤、14……ギヤーケ
ース、15,15′……遊星ピニオンギヤー、1
6,16′……左右サイドギヤー、17……中空
サイド軸、17′……貫通サイド軸、18……ス
プール軸回動腕軸フランジ、19……ホイールフ
ランジ、20……自巻きバネスプール、21……
自巻きバネ、22……端部、23……バンドブレ
ーキセツト、24……レバー、25……ワイヤ
ー、26……ラチエツト刃、27……爪、28…
…ギヤーケース駆動歯車、29……小歯車、30
……大歯車、31……バランス錘、K……振子、
M……入力、M1,M2……出力。
Fig. 1 is a perspective view showing the principle of the present invention, Fig. 2 is a perspective view of the principle using a pendulum as the driving force, and Fig. 3 is a part of an example using a differential gear mechanism and intervening with a self-winding spring. FIG. 4 is a partially cutaway side view. 1... Rotating energy source, 2... Worm, 3
... Worm wheel, 4 ... Axis, 5 ... Wheel, 6 ... Shaft section, 7 ... Spool, 8 ... Spool shaft, 9 ... Rotating arm, 10 ... Self-winding spring, 11
...outer end, 12...stop pawl, 12'...ratchet tooth, 13...clutch disc, 14...gear case, 15, 15'...planetary pinion gear, 1
6, 16'... Left and right side gear, 17... Hollow side shaft, 17'... Penetrating side shaft, 18... Spool shaft rotating arm shaft flange, 19... Wheel flange, 20... Self-winding spring spool, 21...
Self-winding spring, 22... end, 23... band brake set, 24... lever, 25... wire, 26... ratchet blade, 27... pawl, 28...
... Gear case drive gear, 29 ... Small gear, 30
...Big gear, 31...Balance weight, K...Pendulum,
M...input, M1, M2...output.

Claims (1)

【特許請求の範囲】 1 回転エネルギー源によりウオームギヤー・ウ
オームホイールをへてスプール軸回動腕軸を回動
し、回動腕に取り付けたスプールに巻きこんで成
形した帯状自巻きバネの巻き出し端部をホイール
周上に固定し、スプールがホイール周上を回動腕
により遊星回動するにともなつて、ホイール周縁
に自巻きバネを逆成形方向に巻きつかせて入力エ
ネルギーを蓄力し、必要時にホイールの回り止め
を解除することによつて出力し、その入力出力の
繰り返し頻度に逆巻きによるバネ疲労が耐えうる
充分な大きさのホイール径と、出力により蓄力が
枯渇しない充分な強度・長さの自巻きバネを収め
る巻き厚空間と、それにみ合う回動腕長さを持つ
入出力自在エネルギー蓄力装置。 2 回転エネルギー源を差動歯車装置のギヤーケ
ースに連動し、ギヤーケースの左サイドギヤーの
中空軸に右サイドギヤーの貫通軸を挿入して同心
円状にギヤーケースのサイド外部に突出してそれ
ぞれの軸端に大径のスプール軸回動腕軸フランジ
およびそれより小径のホイールフランジを取り付
けて相対向接近して設け、ホイールフランジ周上
に巻き込み方向に成形した帯状の自巻きバネの巻
き出し端部を固定し、自巻きバネのスプールがホ
イールフランジの周上をスプール軸回動腕軸フラ
ンジにより遊星回動するにともなつて、ホイール
フランジ周上に自巻きバネを逆成形方向に巻き付
かせるよう設定し、ホイールフランジをバンドブ
レーキで任意に固定および開放出来るようにし、
スプール軸回動腕軸フランジに逆転防止機構を施
した入出力自在エネルギー蓄力装置。
[Scope of Claims] 1. Unwinding of a band-shaped self-winding spring formed by rotating a spool shaft rotating arm shaft through a worm gear/worm wheel using a rotational energy source and winding it around a spool attached to the rotating arm. The end is fixed on the circumference of the wheel, and as the spool rotates planetarily on the circumference of the wheel by a rotating arm, a self-winding spring is wound around the circumference of the wheel in the reverse forming direction to store input energy. The wheel diameter is large enough to withstand the spring fatigue due to reverse winding due to the frequency of input/output repetition, and the strength is sufficient so that the stored power is not depleted by the output. - An input/output variable energy storage device with a space with a winding thickness that accommodates a self-winding spring of the same length, and a rotating arm length that matches the length. 2 The rotational energy source is interlocked with the gear case of the differential gear device, and the penetrating shaft of the right side gear is inserted into the hollow shaft of the left side gear of the gear case, and the respective shafts are concentrically protruded outside the side of the gear case. A large-diameter spool shaft rotating arm shaft flange and a smaller-diameter wheel flange are attached to the end, and the unwinding end of the band-shaped self-winding spring is formed around the wheel flange in the winding direction. As the spool of the self-winding spring rotates planetarily around the wheel flange by the spool shaft rotating arm shaft flange, the self-winding spring is set to wrap around the wheel flange in the reverse forming direction. The wheel flange can be fixed and released at will using a band brake.
A flexible input/output energy storage device with a reverse rotation prevention mechanism on the spool shaft rotating arm shaft flange.
JP20787983A 1983-11-05 1983-11-05 Energy storing device for freely controlling input and output Granted JPS60101281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20787983A JPS60101281A (en) 1983-11-05 1983-11-05 Energy storing device for freely controlling input and output

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20787983A JPS60101281A (en) 1983-11-05 1983-11-05 Energy storing device for freely controlling input and output

Publications (2)

Publication Number Publication Date
JPS60101281A JPS60101281A (en) 1985-06-05
JPH0344230B2 true JPH0344230B2 (en) 1991-07-05

Family

ID=16547068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20787983A Granted JPS60101281A (en) 1983-11-05 1983-11-05 Energy storing device for freely controlling input and output

Country Status (1)

Country Link
JP (1) JPS60101281A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044292A1 (en) 2020-08-28 2022-03-03 平田機工株式会社 Test method and manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3720389A1 (en) * 1987-06-19 1989-01-05 Robert Birkmeyer DEVICE FOR STORING ENERGY
JP5272277B1 (en) * 2012-07-20 2013-08-28 眞司 今西 Bicycle wheel rotation starting force generator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946585A (en) * 1972-09-11 1974-05-04
JPS5310732A (en) * 1976-07-14 1978-01-31 Kanai Hiroyuki Method of regulating frictional resistance
JPS5319737A (en) * 1976-08-06 1978-02-23 Ibm Tester

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946585A (en) * 1972-09-11 1974-05-04
JPS5310732A (en) * 1976-07-14 1978-01-31 Kanai Hiroyuki Method of regulating frictional resistance
JPS5319737A (en) * 1976-08-06 1978-02-23 Ibm Tester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044292A1 (en) 2020-08-28 2022-03-03 平田機工株式会社 Test method and manufacturing method

Also Published As

Publication number Publication date
JPS60101281A (en) 1985-06-05

Similar Documents

Publication Publication Date Title
US6199664B1 (en) Spring motor for generating constant torque
US10760657B2 (en) Apparatus utilizing planetary gearset coupled to a constant torsion spring
JP5412436B2 (en) Mechanical watch with constant spring force
US5590741A (en) Spring motor assembly
WO1999012080A1 (en) Spring, power spring, hair spring, driving mechanism utilizing them, and timepiece
KR102236808B1 (en) Tape measure with planetary gear drive for tape retraction
JPH0344230B2 (en)
US4135329A (en) Vehicle with spring motor operable in running and rewind modes
US4263820A (en) Energy equalizing and storing device
US6196894B1 (en) Vehicle with spring motor operable in running and rewind modes
US4409503A (en) Rotary assistance device, more especially for vehicle steering
US3308907A (en) Motor
US2835344A (en) Spring actuated motors
US5909784A (en) Spring motor
US4354448A (en) Manually driven generating mechanism for doorbells
US3645039A (en) Moving toy
CN2802118Y (en) Elastic power machine
US1274243A (en) Spring-motor.
US2710674A (en) Speed regulating mechanism
RU205836U1 (en) AUTONOMOUS POWER SUPPLY STORAGE WITH MECHANICAL ENERGY STORAGE
JPS5813910Y2 (en) Drive device for traveling toys
CN221664631U (en) Curtain rolling and unwinding driving device
CN217296809U (en) Automatic pipe winder
GB1441225A (en) Automatic barrel winding mechanism for a watch
US1181062A (en) Self-winding weight-motor.