JPH0344054B2 - - Google Patents

Info

Publication number
JPH0344054B2
JPH0344054B2 JP22126082A JP22126082A JPH0344054B2 JP H0344054 B2 JPH0344054 B2 JP H0344054B2 JP 22126082 A JP22126082 A JP 22126082A JP 22126082 A JP22126082 A JP 22126082A JP H0344054 B2 JPH0344054 B2 JP H0344054B2
Authority
JP
Japan
Prior art keywords
vaccine
pertussis
oligomer
protein
iap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22126082A
Other languages
Japanese (ja)
Other versions
JPS59110626A (en
Inventor
Isamu Takahashi
Soichiro Sato
Katsuhiko Ase
Makoto Tamura
Motoyuki Yajima
Kyoshi Ito
Chikanori Tomioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaken Pharmaceutical Co Ltd
Original Assignee
Kaken Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaken Pharmaceutical Co Ltd filed Critical Kaken Pharmaceutical Co Ltd
Priority to JP22126082A priority Critical patent/JPS59110626A/en
Publication of JPS59110626A publication Critical patent/JPS59110626A/en
Publication of JPH0344054B2 publication Critical patent/JPH0344054B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Description

【発明の詳細な説明】 本発明は、高活性で且つ安全性の高い百日咳ワ
クチンおよび百日咳ワクチンの活性成分の製造方
法に関する。 古来、小児における百日咳菌による百日咳感染
は、しばしば重篤な作用を引きおこすので、我国
において幼児期にワクチン接種が義務づけられて
いる。従来、百日咳感染を予防する目的で百日咳
菌死菌体から調製されたものがワクチンとして用
いられてきたが、百日咳菌の種々の構成成分(例
えば内毒素、外毒素等)に起因すると思われる副
作用がかなりの頻度で発現するために、百日咳ワ
クチンの改良が待望されている。 近年、百日咳ワクチンの副作用の軽減を目的と
して百日咳HAワクチンが開発された(特開昭55
−141416号参照)。百日咳HAワクチンは、百日
咳菌の産生する多くの蛋白質のうち、赤血球凝集
活性を有する分子量約11〜13万の蛋白質をホルマ
リンでトキソイド化したものである。 本発明者らは、百日咳HAワクチンよりもさら
に改良された百日咳ワクチンを開発すべく鋭意研
究した結果、ボルデテラ属に属する微生物が産生
するインシユリン分泌増強活性を有する蛋白質物
質の構成成分に百日咳菌感染防御活性があること
を知見し本発明に到達したものである。 本発明のワクチンは、ボルデテラ属に属する微
生物が産生するインシユリン増強活性因子(以
下、IAPまたはN−IAPと略称する)の構成成分
の1種である塩基性蛋白質(以下、B−オリゴマ
ーと略称する)を活性成分とするものである。本
発明の百日咳ワクチンの活性成分であるB−オリ
ゴマーは、特開昭57−67591号に開示の塩基性蛋
白質である蛋白性要素物質CP−Aと同一物質で
ある。 B−オリゴマーの物性を下記に示す。B−オリゴマーの物性: 分子量:SDS−ゲル電気泳動法 75000±5000 塩基性蛋白質 アミノ酸分析: Asp.6.4±0.7,Thr.7.3±0.8,Ser.8.2±0.9,
Glu.9.3±1.0,Pro.6.3±0.7,Gly.11.1±1.0,
Ala.9.0±0.9,Cys./21.2±0.3,Val.6.2±0.6,
Met.2.7±0.4,Ile.3.4±0.4,Leu.8.4±0.9,
Tyr.5.6±0.6,Phe.3.6±0.5,Lye.4.7±0.5,
His.1.1±0.3,Arg.4.9±0.5 組成: Lowry法による蛋白質98重量%以上。 本発明の百日咳ワクチンは、精製した上記B−
オリゴマーを緩衝生理食塩液等のワクチン製造に
使用される通常の希釈液で希釈して調製される。 本発明のワクチンは、B−オリゴマーの重量で
換算して0.1μg〜100μgを小児に対して1回また
は数回投与すれば、免疫を付与し得る。ワクチン
の投与法として、皮下、静脈内、経口、筋肉内、
皮内、直腸内投与が可能であるが、皮下投与が最
も好ましい。 皮下投与用ワクチン剤としては、下記処方が挙
げられる。 処方: 下記成分と無菌蒸留水を混合して全量を
1mlとする。 B−オリゴマー 20μg KH2PO4 12.2mg NaHPO4 40.6mg NaCl 36.0mg 水酸化アルミニウム 0.2mg 上記処方のワクチン0.005ml〜0.5mlを小児に対
して1回または複数回皮下投与すれば免疫性を付
与し得る。 ワクチン中のB−オリゴマーの濃度は、1〜
200μg/ml好ましくは10〜50μg/mlである。ま
た、アジユバンドとして添加する水酸化アルミニ
ウムまたはリン酸アルミニウムの濃度は0.01mg/
ml〜10mg/ml、好ましくは0.1mg/ml〜1mg/ml
である。因みに、マウスを使用した測定によれ
ば、B−オリゴマーの皮下投与によるLP50は100
mg/Kg以上であり、静注によるLD50は50mg/Kg
以上である。 本発明ワクチンは、マウスを使用した検査にお
いて、百日咳HAワクチンよりも優れていること
が判明した。すなわち、副作用の比較では、現行
の百日咳HAワクチンが高用量になると白血球増
多作用やヒスタミン増感作用を明らかに示すのに
対して、本発明のワクチンはこれらの副作用を実
質的に示さない。また、ワクチン投与後の体重変
化においても現行の百日咳HAワクチンが対照よ
りも体重減少を引きおこすことからワクチン中に
内毒素が存在することを示唆しているのに対し
て、本発明ワクチン中に内毒素は実質的にほとん
ど検出されなかつた。さらに、感染防御試験にお
いて本発明ワクチンは、低投与量で現行百日咳
HAワクチンよりも強い感染防御作用を示した。 次に、B−オリゴマーの効率の良い製造方法に
関して詳述する。 本発明の製造方法では、ボルデテラ属に属する
微生物、好ましくは百日咳相菌または相菌
(Bordetella pertussis phase or )を
培養し、培養後の培養上清液をハイドロキシアパ
タイトで処理することによりインシユリン分泌増
強活性因子であるIAPまたはN−IAPを含有する
粗製画分を得、得られた粗製画分に最終尿素濃度
が3〜6Mとなるように尿素を添加し、添加後2
〜48時間インキユベートし、インキユベート後の
溶液をパフトグロビンセフアロースで処理するこ
とによりB−オリゴマーを精製・単離する。ま
た、同様な製造方法として、IAPまたはN−IAP
含有の粗製画分中の塩類を限外過法で脱塩し、
脱塩後の溶液に尿素を添加して溶液中の最終尿素
濃度を4〜6Mとし、溶液のPHを7.5〜10.0に調整
後1〜4日間インキユベートし、その後にDEAE
セフアロースカラムおよびハプトグロビンセフア
ロースカラムを通して精製・単離する方法があ
る。尚、本発明における最終尿素濃度とは、尿素
の液量をふくめた全液量に対する尿素の濃度であ
る。 また、B−オリゴマーは特開昭57−67591号に
開示されてある如く製造される。すなわち、ボル
デテラ属に属する微生物の培養上清液を出発原料
として多数の精製工程を経てIAPまたはN−IAP
を精製し、精製したIAPまたはN−IAPを4〜
5M尿素含有リン酸緩衝液(PH5.8〜6.5)中で24
〜48時間インキユベートし、インキユベート後の
溶液を前記リン酸緩衝液で平衡化したCM−セフ
アロースカラムクロマトグラムで精製し、さらに
ゲル過することによりデイスク電気泳動的に単
一な物質としてB−オリゴマーが得られる。前述
の如く、精製IAPまたはN−IAPを調製するには
数段階からなる精製過程を要し、さらにB−オリ
ゴマーを得るためにCM−セフアロースクロマト
グラムを経てゲル過をおこなう等、製造操作が
煩雑であり、B−オリゴマーの収率が悪い。例え
ば、蛋白質400mg含有のハイドロキシアパタイト
溶出液(IAPの粗製画分)から114mgのIAP(また
はN−IAP)が得られ、これを処理して46mgのB
−オリゴマーが得られる。尚、かようにして得ら
れたB−オリゴマーもまた高活性で且つ安全性の
高い本発明の百日咳ワクチン中の百日咳菌感染防
御活性を有する活性成分として使用される。 一方、本発明の製造方法は、インキユベート後
の溶液をハプトグビンをセフアロースに固定した
ハプトクロビンセフアロースアフイニテイーカラ
ムに通すか、またはDEDEセフアロースカラムに
通して後にハプトグロビンセフアロースアフイニ
テイーカラムに通すのみであり操作が非常に簡便
である。さらに、収量の点でも本発明の製造方法
は優れている。例えば、蛋白質40mg含有のハイド
ロキシアパタイト溶出液(IAPの粗製画分)から
約150mgもの多量のB−オリゴマーが得られる。
すなわち、本発明の製造方法はB−オリゴマーの
収率を従来法に比べて格段に向上させ得る。 実施例 1 百日咳相菌東浜株(Bordetella per−tussis
phase,Tohama Strain)の凍結乾燥保存菌株
(北里大学薬学部微生物学教室提供)をBordet−
Gengou平板培地で37℃、2日間培養後、下記第
1表に組成を示すイオン交換樹脂加Cohen−
Wheelerの変法培地(CW培地)200mlを分注した
500mlの振盪コルベンに1白金耳接種し、37℃、
20〜22時間振盪培養した。この培養液の菌量を、
分光光度計(波長650nm)で測定し、加えた時の
菌量が最終濃度約0.1×109個/mlとなるように、
イオン交換樹脂加CW培地1を分注した2の
振盪コルベンに加え、37℃、48時間振盪培養(振
盪回数97回/分)を行つた。 尚、上記菌株の菌学的性質は、百日咳相菌に
関する下記文献の記載と一致した。 ・ Bergy′s Manual of Determinative
Becteriology 第8版1974年Baltimore:The Willi−ams
&Willkns CO., ・ J.Exp.Med.129:523〜550(1969)、 ・ 細菌学実習提要:第3版第6頁以下、昭和47
年(丸善(株)発行) 第 1 表 Cohen−Wheelerの変法培地組成 カザミノ酸 10g 酵母エキス 1g リン酸二水素カリウム 0.5 可溶性澱粉 2g 0.5%硫酸銅液 1ml 1%塩化カルシウム液 1ml 4%塩化マグネシウム液 1ml ポリペプトン 5g 1%シスチン液 2.5ml 0.5%硫酸鉄液 1ml 塩化ナトリウム 2.5g (蒸留水を加えて総量1000mlとし、20%
NaOH水溶液でPH7.2に調整後、陰イオン交換樹
脂(ダイヤイオンSA−20AP;三菱化成(株)
製)3gを加え、121℃で15分間、高圧蒸気滅菌
して使用に供した。) 得られた48時間振盪培養液を、56℃で30分間加
温した後、4℃で遠心分離(15000rpm)して培
養上清液と菌体とに分離した。得られた培養上清
液を本発明に係るB−オリゴマーの出発原料とし
た。 200の培養上清液を1N塩酸でPH6.0に調整後、
第1精製工程としてハイドロキシアパタイトカラ
ム(2.5×4cm)に流速200ml/時間で流した。 大部分の蛋白質は吸着されずそのままカラムを
通過した。 次に、吸着された物質についてはまず0.01Mリ
ン酸緩衝液(PH6.0)でカラムを洗い、次いでリ
ン酸緩衝液のモル濃度を0.1にPHを7.0に夫々上げ
て吸着された蛋白質を順次溶出した。しかしなが
ら、N−IAPはまだこの条件では溶出されず、更
に同じ条件のリン酸緩衝液に0.5MのNaClを含む
組成のリン酸緩衝液で溶出した。この条件で溶出
された蛋白質に一致してN−IAPを効率よく回収
することができた。 得られたN−IAP粗製画分1(蛋白質400mg、
リン酸塩14g、NaCl30mg含有)に尿素300mgを加
えて温度4℃の雰囲気下に5時間放置した。放置
後の溶液をIrons&mac Lennan(B.B.A.1978,
580,175〜185)の方法に従つて作成したハプト
グロビン−セフアロース4Bカラム(10×25cm)
に添加した。添加後のカラムを、2M尿素を含有
する0.1Mリン酸緩衝液(PH7.0)300mlで洗浄し
た後に、3MKSCNを含有する0.1Mトリス−塩酸
緩衝液(PH10.)でB−オリゴマーを溶出した。
B−オリゴマー画分は、限外過法によりKSCN
を除去した後に2M尿素を含有する0.1Mリン酸緩
衝液(PH7.0)で平衡化することにより、B−オ
リゴマー150mgを得た。(IAP粗製画分に含有され
ている蛋白質からの収率:37.5%) 尚、得られたB−オリゴマーの物性は特開昭57
−142325号に記載のCP−Aの物性値と一致した。 実施例 2 N−IAP精製画分40ml(N−IAP200mg、リン
酸塩0.56g、NaCl1.2g含有)に尿素15mgを加え
て温度4℃の雰囲気下に5時間放置した。放置後
の溶液をハプトグロビンセフアロースカラム(4
×20cm)に添加した。添加後に、2M尿素を含有
する0.1Mリン酸緩衝液(PH7.0)160mlで洗浄し
た。流出洗液の蛋白量が50μg/ml以下になつた
後、3MKSCNおよび0.5MNaClを含有するトリ
ス−塩酸緩衝液(PH10.0)100mlで流速30ml/hr、
1フラクシヨン3mlの条件で溶出処理をおこなつ
た。溶出状態を第1図に示す。次に、溶出された
B−オリゴマー含有画分を実施例1と同様に処理
してB−オリゴマー142mgを得た。 実施例 3 実施例1と同様にして調製したIAP粗製画分1
(蛋白質400mg含有)に尿素400mgを加え、
1NNaOH約24mlを使用してPH9に調整後室温で
1日間放置した。放置後、溶液をDEAEセフアロ
ースカラム(10×10cm)に添加し、カラムに吸着
されなかつた未吸着蛋白質のフラクシヨンを収集
した。収集したフラクシヨンの溶液1.6に0.1M
リン酸緩衝液(PH7.0)1を加えて充分撹拌し
た後に室温で1日間放置した。放置後の蛋白質含
有溶液をハプトグロビンセフアロースカラム(4
×20cm)に添加し、0.5MNaClを含有する0.1Mリ
ン酸緩衝液で洗浄後、3MKSCNを含有する0.1M
トリス−塩酸緩衝液(PH10.0)でB−オリゴマー
を溶出した。以下、実施例1と同様に処理してB
−オリゴマー160mgを得た。 比較例 1 特開昭57−67591号に記載の実施例および
に基づいて、培養上清液200からN−IAP粗製
画分1(蛋白質400mg含有)を得、次に単離・
精製したN−IAPを114mg得、そして単離・精製
したN−IAP114mgを処理してB−オリゴマー46
mgを得た。N−IAP粗製画分含有蛋白質から換算
すると収率は11.5%であつた。 実施例 4 実施例1で生成したB−オリゴマー20μg、
KH2PO4 12.2mg,NaHPO4 40.6mg,NaCl36.0mg
および水酸化アルミニウム0.2mgを容器に入れ、
さらに無菌蒸留水を加えて全量を1mlとし、充分
に混合して皮下注射用百日咳ワクチンを製造し
た。 実施例 5 水酸化アルミニウムのかわりにリン酸アルミニ
ウム0.2mgを使用する以外は、実施例4と同様に
して百日咳ワクチンを製造した。 比較例 2 百日咳HAワクチンを特開昭55−141416号に記
載の実施例に基づいて下記の如く調製した。 百日咳相菌(東浜株)をコーエン・ウイーラ
ーの液体培地で5日間静置培養し、その培養遠心
上清に硫安を50%飽和に加え、生じた沈殿を
10000rpm30分の遠心で集め、1MNaCl加0.05M
リン酸緩衝液に懸濁、溶解した。この1MNaCl溶
液を10〜30%の蔗糖密度勾配で3900rpm20時間遠
心し、HA活性画分を回収した。このHA画分の
LPF,HSF活性を失活させるため、0.1%濃度に
なるようにフオルマリンを添加し、室温(22℃)
で7日間静置後、さらに0.2%濃度になるように
フオルマリンを添加し、温度37℃で2日間静置し
た。静置後の溶液に緩衝生理食塩水(PH7.0)を
添加して、最終蛋白質濃度が各々12.5,25,50,
100μg/mlであり、水酸化アルミニウムを0.2
mg/ml含有する百日咳HAワクチンを4種調製し
た。 試験例 1 体重変化: 水酸化アルミニウム0.2mg/mlを含有する無菌
生理食塩水1ml中にB−オリゴマー12.5μg,25μ
g,50μg,100μgをそれぞれ含有している本発
明ワクチン0.4mlを、4群(1群10匹)のddY系
マウス(雄性、4週令、平均体重19.8g)の腹腔
内にそれぞれ投与した。投与してから24時間後の
体重の増減の程度から本発明ワクチン中の内毒素
の有無を検査した。 また、比較例で調製した4種の百日咳HAワク
チン0.4mlを同様にして別の4群のマウスにそれ
ぞれ投与した。尚、無菌生理食塩水0.4mlを投与
した群を対照群とした。 本発明ワクチン投与群と百日咳HAワクチン投
与群の体重の増減を下記第2表に示す。 【表】 本発明ワクチン投与群は対照群と比較しても体
重の減少がなかつたことから本発明ワクチンは内
毒素が実質的に存在しないことが知見された。一
方、従来の百日咳HAワクチン投与群は、対照群
よりも体重が減少していることから、百日咳HA
ワクチン中に内毒素が存在することが知見され
た。 試験例 2 白血球増多作用: 試験例1と同様にしてB−オリゴマーの含有量
が違なる4種の本発明ワクチン0.4mlまたは比較
例としてトキソイド化HA画分蛋白質の含有量の
異なる4種の百日咳HAワクチンを各群のマウス
の腹腔内に投与し、投与から3日後に末梢白血球
の増減を調べた。その結果を第2図に示す。 第2図のグラフから明白なように、本発明ワク
チンはB−オリゴマーの投与量が増加しても白血
球の量が僅かしか増加しないのに対して、比較の
百日咳HAワクチンはトキソイド化HA画分蛋白
質の投与量が増加すると顕著に白血球数が増加し
た。 試験例 3 ヒスタミン増感作用: 試験例1と同様にして、B−オリゴマーの含有
量が異なる4種の本発明ワクチン0.4mlまたは比
較例としてトキソイド化HA画分蛋白質の含有量
の異なる4種の百日咳HAワクチンを各群のマウ
スの腹腔内に投与し、投与から3日後にヒスタミ
ン1mgを含有する生理食塩水0.2mlを腹腔内に投
与して2時間後の生存率を調べた。結果を第3図
に示す。第3図のグラフから明白なように、本発
明ワクチンはB−オリゴマーの投与量が増加して
も100%生存しているのに対して、比較の百日咳
HAワクチンはトキソイド化HA画分蛋白質の投
与量が増加すると極めて顕著に生存率が低下し
た。 試験例 4 感染防御試験: 水酸化アルミニウム0.2mg/mlを含有する無菌
生理食塩水1ml中にB−オリゴマー0.25μg,
2.5μg,25μgをそれぞれ含有している本発明ワ
クチン0.4mlを、3群(1群16匹)のddYマウス
(雄性、4週令)の腹腔内にそれぞれ投与し、投
与から2週間後にマウス1匹当り百日咳菌18〜
323株(相菌)の生菌4×104個をマウスの脳内
に接種し、接種後2週間にわたつて生死を観察
し、生存率を求めた。結果を第3表に示す。 一方、水酸化アルミニウム0.2mg/mlを含有す
る無菌生理食塩水1ml中にトキソイド化したHA
画分蛋白質0.25μg,2.5μg,25μgをそれぞれ添
加・混合して調製した百日咳HAワクチンを比較
例2と同様にして調製し、調製した3種の百日咳
HAワクチン0.4mlを3群のマウスの腹腔内にそれ
ぞれ投与し、以下本発明ワクチン投与群と同様に
して百日咳菌の生菌を脳内に接種し、接種後2週
間にわたつて生死を観察し、生存率を求めた。結
果を第3表に示す。 尚、無菌生理食塩水0.4mlのみ腹腔内に投与す
ること以外は、ワクチン投与群と同様に処置した
マウスを対照群とした。 【表】 【表】 第3表から明らかなように、本発明ワクチンは
感染防御試験において百日咳HAワクチンよりも
優れた感染防御作用を示した。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a highly active and highly safe pertussis vaccine and a method for producing an active ingredient of a pertussis vaccine. Since ancient times, pertussis infection caused by Bordetella pertussis in children has often caused serious effects, so vaccination in early childhood has been compulsory in Japan. Conventionally, vaccines prepared from killed B. pertussis bodies have been used to prevent pertussis infection, but there have been side effects thought to be caused by various components of B. pertussis (e.g., endotoxins, exotoxins, etc.). Because pertussis occurs with considerable frequency, improvements in pertussis vaccines are eagerly awaited. In recent years, pertussis HA vaccine has been developed with the aim of reducing the side effects of pertussis vaccine (Japanese Patent Application Laid-open No. 1983
-Refer to No. 141416). Pertussis HA vaccine is made by toxoidizing a protein with a molecular weight of approximately 110,000 to 130,000 with hemagglutinating activity among the many proteins produced by Bacillus pertussis with formalin. As a result of intensive research to develop a pertussis vaccine that is even more improved than the pertussis HA vaccine, the present inventors discovered that a protein substance produced by a microorganism belonging to the genus Bordetella that has insulin secretion-enhancing activity has been found to be effective against B. pertussis infection. The present invention was developed based on the discovery that it has activity. The vaccine of the present invention comprises a basic protein (hereinafter abbreviated as B-oligomer), which is one of the constituents of insulin-enhancing active factor (hereinafter abbreviated as IAP or N-IAP) produced by a microorganism belonging to the genus Bordetella. ) as the active ingredient. B-oligomer, which is the active ingredient of the pertussis vaccine of the present invention, is the same substance as the proteinaceous element CP-A, which is a basic protein, disclosed in JP-A-57-67591. The physical properties of B-oligomer are shown below. B-Oligomer physical properties: Molecular weight: SDS-gel electrophoresis 75000±5000 Basic protein amino acid analysis: Asp.6.4±0.7, Thr.7.3±0.8, Ser.8.2±0.9,
Glu.9.3±1.0, Pro.6.3±0.7, Gly.11.1±1.0,
Ala.9.0±0.9, Cys./21.2±0.3, Val.6.2±0.6,
Met.2.7±0.4, Ile.3.4±0.4, Leu.8.4±0.9,
Tyr.5.6±0.6, Phe.3.6±0.5, Lye.4.7±0.5,
His.1.1±0.3, Arg.4.9±0.5 Composition: Over 98% protein by Lowry method. The pertussis vaccine of the present invention comprises the purified B-
It is prepared by diluting the oligomer with a common diluent used in vaccine production, such as buffered saline. The vaccine of the present invention can confer immunity to children by administering 0.1 μg to 100 μg of B-oligomer once or several times. Vaccine administration methods include subcutaneous, intravenous, oral, intramuscular,
Although intradermal or rectal administration is possible, subcutaneous administration is most preferred. Examples of vaccine preparations for subcutaneous administration include the following formulations. Prescription: Mix the following ingredients with sterile distilled water to make a total volume of 1 ml. B-oligomer 20μg KH 2 PO 4 12.2mg NaHPO 4 40.6mg NaCl 36.0mg Aluminum hydroxide 0.2mg Immunity can be conferred by subcutaneously administering 0.005ml to 0.5ml of the above-prescribed vaccine to children once or multiple times. obtain. The concentration of B-oligomer in the vaccine ranges from 1 to
200 μg/ml, preferably 10-50 μg/ml. In addition, the concentration of aluminum hydroxide or aluminum phosphate added as adjuvant is 0.01mg/
ml~10mg/ml, preferably 0.1mg/ml~1mg/ml
It is. Incidentally, according to measurements using mice, the LP 50 of subcutaneous administration of B-oligomer is 100
mg/Kg or more, and the LD 50 for intravenous injection is 50 mg/Kg.
That's all. The vaccine of the present invention was found to be superior to the pertussis HA vaccine in tests using mice. That is, in a comparison of side effects, the current pertussis HA vaccine clearly exhibits leukocyte-proliferating effect and histamine-sensitizing effect at high doses, whereas the vaccine of the present invention does not substantially exhibit these side effects. In addition, regarding body weight changes after vaccination, the current pertussis HA vaccine causes weight loss more than the control, suggesting the presence of endotoxin in the vaccine, whereas the present vaccine contains endotoxin. Virtually no toxin was detected. Furthermore, in infection prevention tests, the vaccine of the present invention was shown to be effective against pertussis at low doses.
It showed stronger protection against infection than the HA vaccine. Next, an efficient method for producing B-oligomer will be described in detail. In the production method of the present invention, a microorganism belonging to the genus Bordetella, preferably Bordetella pertussis phase or Bordetella, is cultured, and the culture supernatant after culturing is treated with hydroxyapatite to increase insulin secretion enhancing activity. A crude fraction containing the factor IAP or N-IAP was obtained, and urea was added to the obtained crude fraction so that the final urea concentration was 3 to 6 M.
The B-oligomer is purified and isolated by incubating for ~48 hours and treating the post-incubation solution with puffed globin sepharose. In addition, as a similar manufacturing method, IAP or N-IAP
Desalt the salts in the crude fraction containing it by ultrafiltration method,
Add urea to the solution after desalination to make the final urea concentration in the solution 4-6M, adjust the pH of the solution to 7.5-10.0, incubate for 1-4 days, and then DEAE
There is a method of purification and isolation through a Sepharose column and a haptoglobin Sepharose column. Note that the final urea concentration in the present invention is the concentration of urea relative to the total liquid volume including the urea liquid volume. B-oligomers are also prepared as disclosed in JP-A-57-67591. In other words, IAP or N-IAP is produced by using the culture supernatant of a microorganism belonging to the genus Bordetella as a starting material through numerous purification steps.
and purified IAP or N-IAP from 4 to
24 in 5M urea-containing phosphate buffer (PH5.8-6.5)
After incubation for ~48 hours, the solution after incubation was purified using a CM-Sepharose column chromatogram equilibrated with the above-mentioned phosphate buffer, and then gel-filtered to obtain the B-oligomer as a single substance by disk electrophoresis. is obtained. As mentioned above, preparing purified IAP or N-IAP requires a purification process consisting of several steps, and further manufacturing operations such as gel filtration via CM-Sepharose chromatogram to obtain B-oligomer. It is complicated and the yield of B-oligomer is poor. For example, 114 mg of IAP (or N-IAP) was obtained from a hydroxyapatite eluate (crude fraction of IAP) containing 400 mg of protein, which was processed to yield 46 mg of B-IAP.
- Oligomers are obtained. The B-oligomer thus obtained can also be used as an active ingredient having a protective activity against B. pertussis infection in the highly active and highly safe pertussis vaccine of the present invention. On the other hand, in the production method of the present invention, the solution after incubation is passed through a haptoglobin cepharose affinity column in which haptoglobin is immobilized on cephalose, or through a DEDE cephalose column and then transferred to a haptoglobin cephalose affinity column. It is very easy to operate as it only needs to be passed through. Furthermore, the production method of the present invention is also excellent in terms of yield. For example, as much as about 150 mg of B-oligomer can be obtained from a hydroxyapatite eluate (crude fraction of IAP) containing 40 mg of protein.
That is, the production method of the present invention can significantly improve the yield of B-oligomer compared to conventional methods. Example 1 Bordetella per-tussis strain Higashihama
Bordet-
After culturing on Gengou plate medium at 37℃ for 2 days, Cohen-
Dispense 200ml of Wheeler's modified medium (CW medium).
One platinum loop was inoculated into a 500ml shaken Kolben, and the mixture was incubated at 37°C.
Shaking culture was performed for 20-22 hours. The amount of bacteria in this culture solution is
Measured with a spectrophotometer (wavelength 650 nm), so that the final concentration of bacteria when added was approximately 0.1 x 109 cells/ml.
The ion exchange resin-added CW medium 1 was added to the shaken Kolben 2 and cultured with shaking at 37° C. for 48 hours (shaking frequency: 97 times/min). The mycological properties of the above bacterial strain were consistent with the description in the following literature regarding pertussis bacteria.・ Bergy's Manual of Determinative
Becteriology 8th edition 1974Baltimore: The Willi-ams
& Willkns CO., ・ J.Exp.Med.129:523-550 (1969), ・ Bacteriology practice summary: 3rd edition, pages 6 onwards, 1967
(published by Maruzen Co., Ltd.) Table 1 Cohen-Wheeler's modified medium composition Casamino acids 10g Yeast extract 1g Potassium dihydrogen phosphate 0.5 Soluble starch 2g 0.5% copper sulfate solution 1ml 1% calcium chloride solution 1ml 4% magnesium chloride Solution 1 ml Polypeptone 5 g 1% cystine solution 2.5 ml 0.5% iron sulfate solution 1 ml Sodium chloride 2.5 g (Add distilled water to make a total volume of 1000 ml, 20%
After adjusting the pH to 7.2 with NaOH aqueous solution, anion exchange resin (Diaion SA-20AP; Mitsubishi Kasei Corporation)
After adding 3 g of the product, the mixture was sterilized with high-pressure steam at 121°C for 15 minutes and used. ) The obtained 48-hour shaking culture solution was heated at 56°C for 30 minutes, and then centrifuged at 4°C (15,000 rpm) to separate the culture supernatant and bacterial cells. The obtained culture supernatant was used as a starting material for the B-oligomer according to the present invention. After adjusting the culture supernatant of 200 to pH6.0 with 1N hydrochloric acid,
As the first purification step, the mixture was passed through a hydroxyapatite column (2.5 x 4 cm) at a flow rate of 200 ml/hour. Most of the proteins were not adsorbed and passed through the column as is. Next, for the adsorbed substances, first wash the column with 0.01M phosphate buffer (PH6.0), then increase the molar concentration of the phosphate buffer to 0.1 and PH to 7.0, respectively, to remove the adsorbed proteins. It eluted. However, N-IAP was still not eluted under these conditions, and was further eluted under the same conditions in a phosphate buffer containing 0.5 M NaCl. N-IAP could be efficiently recovered in accordance with the protein eluted under these conditions. The obtained N-IAP crude fraction 1 (400 mg protein,
300 mg of urea was added to the mixture (containing 14 g of phosphate and 30 mg of NaCl) and left in an atmosphere at a temperature of 4° C. for 5 hours. After standing, the solution was washed with Irons & mac Lennan (BBA1978,
Haptoglobin-Sepharose 4B column (10 x 25 cm) prepared according to the method of 580, 175-185)
added to. After washing the column with 300 ml of 0.1M phosphate buffer (PH7.0) containing 2M urea, the B-oligomer was eluted with 0.1M Tris-HCl buffer (PH10.) containing 3MKSCN. .
The B-oligomer fraction was converted to KSCN by ultrafiltration.
150 mg of B-oligomer was obtained by equilibration with 0.1M phosphate buffer (PH7.0) containing 2M urea. (Yield from protein contained in IAP crude fraction: 37.5%) The physical properties of the obtained B-oligomer were disclosed in JP-A-57
The physical properties were consistent with the physical properties of CP-A described in No.-142325. Example 2 15 mg of urea was added to 40 ml of N-IAP purified fraction (containing 200 mg of N-IAP, 0.56 g of phosphate, and 1.2 g of NaCl) and left in an atmosphere at a temperature of 4° C. for 5 hours. After standing, the solution was transferred to a haptoglobin sepharose column (4
×20cm). After the addition, it was washed with 160 ml of 0.1 M phosphate buffer (PH7.0) containing 2 M urea. After the protein content of the effluent washing solution became 50 μg/ml or less, the flow rate was 30 ml/hr with 100 ml of Tris-HCl buffer (PH 10.0) containing 3 MKSCN and 0.5 M NaCl.
Elution treatment was carried out under conditions of 1 fraction/3 ml. The elution state is shown in Figure 1. Next, the eluted B-oligomer-containing fraction was treated in the same manner as in Example 1 to obtain 142 mg of B-oligomer. Example 3 IAP crude fraction 1 prepared in the same manner as Example 1
(contains 400mg of protein), add 400mg of urea,
After adjusting the pH to 9 using about 24 ml of 1N NaOH, it was left at room temperature for 1 day. After standing, the solution was applied to a DEAE Sepharose column (10 x 10 cm), and the fraction of unadsorbed protein that was not adsorbed to the column was collected. Collected fraction solution 1.6 to 0.1M
After adding 1 part of phosphate buffer (PH7.0) and stirring thoroughly, the mixture was left at room temperature for 1 day. After standing, the protein-containing solution was applied to a haptoglobin sepharose column (4
x 20cm) and washed with 0.1M phosphate buffer containing 0.5M NaCl, then 0.1M containing 3MKSCN.
The B-oligomer was eluted with Tris-HCl buffer (PH 10.0). Hereafter, B was treated in the same manner as in Example 1.
- 160 mg of oligomer was obtained. Comparative Example 1 Based on the examples and methods described in JP-A-57-67591, N-IAP crude fraction 1 (containing 400 mg of protein) was obtained from 200 mg of culture supernatant, and then isolated and
114 mg of purified N-IAP was obtained, and 114 mg of isolated and purified N-IAP was processed to obtain 46 B-oligomers.
I got mg. The yield was 11.5% based on the protein contained in the N-IAP crude fraction. Example 4 20 μg of B-oligomer produced in Example 1,
KH 2 PO 4 12.2mg, NaHPO 4 40.6mg, NaCl 36.0mg
and 0.2mg of aluminum hydroxide in a container,
Further, sterile distilled water was added to bring the total volume to 1 ml, and the mixture was thoroughly mixed to produce a pertussis vaccine for subcutaneous injection. Example 5 A pertussis vaccine was produced in the same manner as in Example 4, except that 0.2 mg of aluminum phosphate was used instead of aluminum hydroxide. Comparative Example 2 A pertussis HA vaccine was prepared as follows based on the example described in JP-A-55-141416. Pertussis bacteria (Higashihama strain) was cultured for 5 days in a Cohen-Wheeler liquid medium, and ammonium sulfate was added to the culture centrifugation supernatant to 50% saturation to remove the resulting precipitate.
Collected by centrifugation at 10,000 rpm for 30 minutes, added 1M NaCl to 0.05M
Suspended and dissolved in phosphate buffer. This 1M NaCl solution was centrifuged at 3900 rpm for 20 hours on a 10-30% sucrose density gradient, and the HA active fraction was collected. This HA fraction
To inactivate LPF and HSF activities, formalin was added to a concentration of 0.1% and kept at room temperature (22℃).
After standing for 7 days, formalin was further added to a concentration of 0.2%, and the mixture was left standing at a temperature of 37°C for 2 days. Buffered saline (PH7.0) was added to the solution after it was allowed to stand, and the final protein concentrations were adjusted to 12.5, 25, 50, and 12.5, respectively.
100μg/ml, aluminum hydroxide 0.2
Four types of pertussis HA vaccines containing mg/ml were prepared. Test Example 1 Weight change: B-oligomer 12.5 μg, 25 μg in 1 ml of sterile physiological saline containing 0.2 mg/ml aluminum hydroxide
4 groups (10 mice per group) of ddY mice (male, 4 weeks old, average weight 19.8 g) were each intraperitoneally administered with 0.4 ml of the vaccine of the present invention containing 50 μg, 50 μg, and 100 μg, respectively. The presence or absence of endotoxin in the vaccine of the present invention was examined based on the degree of change in body weight 24 hours after administration. Additionally, 0.4 ml of the four types of pertussis HA vaccines prepared in Comparative Examples were administered to four other groups of mice in the same manner. The group to which 0.4 ml of sterile physiological saline was administered was used as a control group. The changes in body weight of the group administered with the vaccine of the present invention and the group administered with the pertussis HA vaccine are shown in Table 2 below. [Table] Since there was no decrease in body weight in the group administered with the vaccine of the present invention compared to the control group, it was found that the vaccine of the present invention was substantially free of endotoxin. On the other hand, the group receiving the conventional pertussis HA vaccine lost more weight than the control group.
It has been discovered that endotoxins are present in vaccines. Test Example 2 Leukocytosis effect: Same as Test Example 1, 0.4 ml of 4 types of vaccines of the present invention with different contents of B-oligomer or 4 types with different contents of toxoidized HA fraction protein as a comparative example. Pertussis HA vaccine was intraperitoneally administered to mice in each group, and the increase and decrease in peripheral leukocytes was examined 3 days after administration. The results are shown in FIG. As is clear from the graph in Figure 2, the amount of leukocytes in the vaccine of the present invention increases only slightly even when the dose of B-oligomer increases, whereas the comparative pertussis HA vaccine contains only a toxoidized HA fraction. As the protein dose increased, the white blood cell count increased significantly. Test Example 3 Histamine sensitization effect: In the same manner as Test Example 1, 0.4 ml of four types of vaccines of the present invention with different contents of B-oligomer or four types with different contents of toxoidized HA fraction protein as a comparative example were prepared. Pertussis HA vaccine was administered intraperitoneally to mice in each group, and 3 days after administration, 0.2 ml of physiological saline containing 1 mg of histamine was intraperitoneally administered to examine the survival rate 2 hours later. The results are shown in Figure 3. As is clear from the graph in Figure 3, the vaccine of the present invention survived 100% even when the dose of B-oligomer was increased, whereas the vaccine for pertussis in comparison
The survival rate of the HA vaccine decreased significantly as the dose of toxoidated HA fraction protein increased. Test Example 4 Infection prevention test: 0.25 μg of B-oligomer in 1 ml of sterile physiological saline containing 0.2 mg/ml of aluminum hydroxide.
0.4 ml of the vaccine of the present invention containing 2.5 μg and 25 μg, respectively, was intraperitoneally administered to three groups (16 mice per group) of ddY mice (male, 4 weeks old), and 2 weeks after administration, one mouse Bacillus pertussis per animal 18~
4 x 10 4 live bacteria of strain 323 (competitive fungus) were inoculated into the brains of mice, and the survival rate was determined by observing whether they were alive or dead for two weeks after the inoculation. The results are shown in Table 3. On the other hand, toxoidized HA was added to 1 ml of sterile physiological saline containing 0.2 mg/ml of aluminum hydroxide.
A pertussis HA vaccine prepared by adding and mixing 0.25 μg, 2.5 μg, and 25 μg of fractionated proteins, respectively, was prepared in the same manner as in Comparative Example 2, and three types of pertussis were prepared.
0.4 ml of HA vaccine was administered intraperitoneally to each of the three groups of mice, and live Bordetella pertussis was inoculated into the brain in the same manner as in the group administered with the vaccine of the present invention, and the survival and death of the mice was observed for 2 weeks after inoculation. , the survival rate was determined. The results are shown in Table 3. The control group consisted of mice treated in the same manner as the vaccine administration group, except that only 0.4 ml of sterile physiological saline was administered intraperitoneally. [Table] [Table] As is clear from Table 3, the vaccine of the present invention exhibited superior infection-preventing action than the pertussis HA vaccine in the infection-prevention test.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面中、第1図は実施例2におけるハプト
グロビンセフアロースカラムに関する溶出グラフ
を示し、第2図は試験例2における白血球数の増
減を示すグラフであり、第3図は試験例3におけ
るヒスタミン増感作用に係る生存率のグラフを示
す図である。
In the accompanying drawings, FIG. 1 shows an elution graph for the haptoglobin Sepharose column in Example 2, FIG. It is a figure which shows the graph of the survival rate regarding a sensitization effect.

Claims (1)

【特許請求の範囲】 1 SDS−ゲル電気泳動法による分子量が7500±
5000;Lowry法による蛋白質が98重量%以上で
あり、且つ蛋白質成分のアミノ酸組成及び組成比
(μM/100μM)は、Asp.6.4±0.7,Thr.7.3±0.8,
Ser.8.2±0.9,Glu.9.3±1.0,Pro.6.3±0.7,
Gly.11.1±1.0,Ala.9.0±0.9,Cys./21.2±0.3,
Val.6.2±0.6,Met.2.7±0.4,Ile.3.4±0.4,
Leu.8.4±0.9,Tyr.5.6±0.6,Phe.3.6±0.5,
Lys.4.7±0.5,His.1.1±0.3,及びArg.4.9±0.5で
あり; 且つ塩基性蛋白質であるB−オリゴマーを活性成
分として含有する百日咳ワクチン。 2 アジユバントとしてリン酸アルミニウムまた
は水酸化アルミニウムを含有することを特徴とす
る特許請求の範囲第1項に記載の百日咳ワクチ
ン。
[Claims] 1. Molecular weight by SDS-gel electrophoresis method is 7500±
5000; Protein by Lowry method is 98% by weight or more, and the amino acid composition and composition ratio (μM/100μM) of the protein component are Asp.6.4±0.7, Thr.7.3±0.8,
Ser.8.2±0.9, Glu.9.3±1.0, Pro.6.3±0.7,
Gly.11.1±1.0, Ala.9.0±0.9, Cys./21.2±0.3,
Val.6.2±0.6, Met.2.7±0.4, Ile.3.4±0.4,
Leu.8.4±0.9, Tyr.5.6±0.6, Phe.3.6±0.5,
Lys.4.7±0.5, His.1.1±0.3, and Arg.4.9±0.5; and a pertussis vaccine containing B-oligomer, which is a basic protein, as an active ingredient. 2. The pertussis vaccine according to claim 1, which contains aluminum phosphate or aluminum hydroxide as an adjuvant.
JP22126082A 1982-12-17 1982-12-17 Pertussis vaccine containing b-oligomer and its preparation Granted JPS59110626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22126082A JPS59110626A (en) 1982-12-17 1982-12-17 Pertussis vaccine containing b-oligomer and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22126082A JPS59110626A (en) 1982-12-17 1982-12-17 Pertussis vaccine containing b-oligomer and its preparation

Publications (2)

Publication Number Publication Date
JPS59110626A JPS59110626A (en) 1984-06-26
JPH0344054B2 true JPH0344054B2 (en) 1991-07-04

Family

ID=16763977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22126082A Granted JPS59110626A (en) 1982-12-17 1982-12-17 Pertussis vaccine containing b-oligomer and its preparation

Country Status (1)

Country Link
JP (1) JPS59110626A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699291B2 (en) * 1985-06-14 1994-12-07 ライオン株式会社 Oral composition
CA1337859C (en) * 1987-04-24 1996-01-02 Masashi Chazono Method for culturing bordetella pertussis, a pertussis toxoid and a pertussis vaccine
JP2560069B2 (en) * 1988-03-09 1996-12-04 雪印乳業株式会社 Method for producing erythropoietin

Also Published As

Publication number Publication date
JPS59110626A (en) 1984-06-26

Similar Documents

Publication Publication Date Title
EP0845270B1 (en) Functional fragment antigen of tetanus toxin and tetanus vaccine
AU714493B2 (en) Multivalent DTP-polio vaccines
EP1028750B1 (en) Method for preparing multivalent vaccines
JPH10504717A (en) Pneumococcal polysaccharide-recombinant pneumolysin conjugate vaccines for immunization against pneumococcal infection
US5667787A (en) Purification of a pertussis outer membrane protein
US3888977A (en) Modified neurotoxin
NO165478B (en) PROCEDURE FOR THE MANUFACTURE OF ANTIGENIC PREPARATIONS.
US4285931A (en) E. coli enterotoxin vaccine for veterinary and human use
US4220584A (en) E. coli enterotoxin vaccine for veterinary and human use
US4234570A (en) Proteinic active substances
EP0202947A2 (en) Vaccine production
PT90310B (en) PROCESS FOR OBTAINING ADENILATE-CYCLASE PREPARATIONS
GB2182937A (en) Common antigen (psc-a)to pseudomonas aeruginosa
JPH0344054B2 (en)
US3987164A (en) Method for prevention of pseudomonas aeruginosa infections
US5176910A (en) Treponema hyodysenteriae hemolysin and uses therefor
OA10038A (en) Bordetella pertussis vaccine
Boroff Studies of the toxin of Clostridium botulinum. IV. Fluorescence of Clostridium botulinum toxin and its relation to toxicity
Steabben A study on bacteriological lines of the antigens derived from Bact. dysenteriae Shiga and of their antisera in protective tests against the living organisms
US5723325A (en) Indolyl-3-alkane alpha-hydroxylase compositions from pseudomonas XA
CA2236165A1 (en) Novel polypeptide from haemophilus paragallinarum and process for preparing the same
JP3169379B2 (en) Preventive vaccine for swine hemophylosis
JPH0341478B2 (en)
US5114712A (en) Common antigen (PSC-A) to Pseudomonas aeruginosa which acts as an agent for protecting Pseudomonas aeruginosa infection
JPH0272200A (en) Pertussis toxoid vaccine