JPH0344006B2 - - Google Patents

Info

Publication number
JPH0344006B2
JPH0344006B2 JP59146307A JP14630784A JPH0344006B2 JP H0344006 B2 JPH0344006 B2 JP H0344006B2 JP 59146307 A JP59146307 A JP 59146307A JP 14630784 A JP14630784 A JP 14630784A JP H0344006 B2 JPH0344006 B2 JP H0344006B2
Authority
JP
Japan
Prior art keywords
speed
vehicle speed
throttle valve
motor
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59146307A
Other languages
Japanese (ja)
Other versions
JPS6124624A (en
Inventor
Tsutomu Tominaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14630784A priority Critical patent/JPS6124624A/en
Publication of JPS6124624A publication Critical patent/JPS6124624A/en
Publication of JPH0344006B2 publication Critical patent/JPH0344006B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/02Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically
    • B60K31/04Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of an electrical signal which is fed into the controlling means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はスロツトルバルブを制御することによ
つて車速を設定車速に維持する車両の定速走行装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a constant speed traveling device for a vehicle that maintains a vehicle speed at a set vehicle speed by controlling a throttle valve.

〔従来技術〕[Prior art]

従来この種の装置として第1図にその概略図を
示すような定速走行装置があつた。図において1
は変速機、2は変速機1の図示せぬ車輪駆動軸に
対し一定の比率で回転する速度計可撓軸、3はこ
の可撓軸2に同期して回転するマグネツト4とこ
のマグネツト4の回転に伴つて実車速に対応した
パルスを発生するリードスイツチ5とからなる速
度検出部である。リードスイツチ5の実車速に対
応した発生パルスは制御回路6に入力され、この
制御回路6で一定周期毎に計数されると共に、走
行中の車速設定時において計数されたパルスは制
御回路6の図示せぬ車速設定回路に設定車速に対
応するパルス数として設定されるようになつてい
る。また、この制御回路6は車速設定時以降につ
いて上述の設定車速に対応するパルス数と継続し
て計数される実車速に対応するパルス数とを比較
し、車速の制御周期毎にそのパルス数の差に対し
て一定比率の時間直流モータ7を正転させ、実車
速を増速させる増速信号6aあるいは増速信号6
aに対し逆極性で直流モータ7を逆転させ実車速
を減速させる減速信号6bを出力すると共に、車
速設定と同時に直流モータ7に接続されたウオー
ム8aとこれに噛合するウオームホイール8bと
かなる減速機8のウオームホイール8bに内蔵さ
れたコイル8cを通電付勢する。9はコイル8c
の通電付勢によりウオームホイール8bに吸着さ
れる電磁クラツチ板であり、10はこの電磁クラ
ツチ板9に固着されると共にインテークマニホー
ルド内のスロツトルバルブ11を回動するスロツ
トルリンク12に連結されたケーブル13を巻取
る扇形の板10aを有するセクタである。スロツ
トルバルブ11の開度は定速走行以外、すなわち
通常走行時は通常のアクセルペダル14の動きに
よつて制御されるが、定速走行中はアクセルペダ
ル14の動きによらず制御回路6の増速信号6a
および減速信号6bによる直流モータ7の回転動
作により制御される。一方、定速走行中車両の図
示せぬブレーキペダルあるいはクラツチペダルを
踏圧することにより制御回路6によるコイル8c
の通電付勢を解除し、電磁クラツチ板9をウオー
ムホイール8bから離すようにしており、設定車
速による定速走行を解除することができるように
なつている。また、定速走行解除後は通常のアク
セルペダル14の動きによつてスロツトルバルブ
11の開度を制御することができ、通常走行を可
能とする。
Conventionally, as a device of this type, there has been a constant speed traveling device, the schematic diagram of which is shown in FIG. In the figure 1
2 is a speedometer flexible shaft that rotates at a constant ratio to a wheel drive shaft (not shown) of the transmission 1; 3 is a magnet 4 that rotates in synchronization with the flexible shaft 2; This is a speed detection section consisting of a reed switch 5 that generates pulses corresponding to the actual vehicle speed as the vehicle rotates. The pulses generated by the reed switch 5 corresponding to the actual vehicle speed are input to the control circuit 6, where they are counted at regular intervals. The number of pulses corresponding to the set vehicle speed is set in a vehicle speed setting circuit (not shown). Further, after the vehicle speed is set, this control circuit 6 compares the number of pulses corresponding to the above-mentioned set vehicle speed with the number of pulses corresponding to the continuously counted actual vehicle speed, and calculates the number of pulses at each vehicle speed control cycle. A speed increase signal 6a or a speed increase signal 6 that rotates the DC motor 7 in the normal direction for a certain ratio of the difference to increase the actual vehicle speed.
A reduction gear that outputs a deceleration signal 6b that reverses the DC motor 7 with the opposite polarity to that of the DC motor 7 and decelerates the actual vehicle speed, and that simultaneously sets the vehicle speed and consists of a worm 8a connected to the DC motor 7 and a worm wheel 8b that meshes with the worm wheel 8b. The coil 8c built in the worm wheel 8b of No. 8 is energized and energized. 9 is coil 8c
10 is an electromagnetic clutch plate that is attracted to the worm wheel 8b by energization, and 10 is fixed to the electromagnetic clutch plate 9 and connected to a throttle link 12 that rotates a throttle valve 11 in the intake manifold. This sector has a fan-shaped plate 10a around which the cable 13 is wound. The opening degree of the throttle valve 11 is controlled by the normal movement of the accelerator pedal 14 when driving other than at a constant speed, that is, during normal driving. Speed increase signal 6a
It is controlled by the rotational operation of the DC motor 7 based on the deceleration signal 6b. On the other hand, when the brake pedal or clutch pedal (not shown) of the vehicle is pressed while the vehicle is running at a constant speed, the control circuit 6 causes the coil 8c to
The energization is released and the electromagnetic clutch plate 9 is separated from the worm wheel 8b, thereby making it possible to cancel constant speed running at the set vehicle speed. Furthermore, after the constant speed running is canceled, the opening degree of the throttle valve 11 can be controlled by the normal movement of the accelerator pedal 14, allowing normal running.

以下、このように構成された従来の定速走行装
置の動作を説明する。まず、図示せぬ車両を走行
させると変速機1の速度計可撓軸2が回転し、こ
の可撓軸2に同期してマグネツト4が回転する。
このマグネツト4の回転に伴つてリードスイツチ
5から実車速に対応したパルスが発生し制御回路
6に入力されて一定周期毎にそのパルス数が計数
される。ここで、例えば平坦な道で実車速が80
Km/hになつたときこの定速走行装置を作動させ
ると、実車速80Km/hが設定車速となり、この速
度を維持する如くスロツトルバルブ11が制御さ
れ定速走行が行なわれる。すなわち、定速走行装
置を作動させると作動直前に制御回路6で計数さ
れたリードスイツチ5の実車速に対応したパルス
が図示せぬ車速設定回路に設定され、このパルス
に対応する車速が設定車速となる。この場合は80
Km/hが設定車速となる。これと同時に制御回路
6によつてウオームホイール8bのコイル8cが
通電付勢されて電磁クラツチ板9がウオームホイ
ール8bに吸着され、スロツトルバルブ11の開
度を設定車速に対応する開度に保持する。一方、
制御回路6では実車速に応じたリードスイツチ5
の発生パルスが一定周期毎に計数されており、こ
の実車速に対応するパルス数と設定車速(80Km/
h)に対応するパルス数とが比較されそのパルス
数の差に応じて増速信号6aあるいは減速信号6
bが出力され、一定比率の時間直流モータ7を回
転させる。例えば定速走行中の走行抵抗の増加の
ために車速が設定速度より減速すると、制御回路
6より増速信号6aが出力され一定比率の時間直
流モータ7を正回転させる。これに伴いセクタ1
0が回転しスロツトルリング12に連結されたケ
ーブル13の作用によりスロツトルバルブ11の
開度を増加させ、図示せぬエンジンのシリンダ内
に供給すべき混合気の量を増して設定車速(80
Km/h)に近づける。反対に定速走行中の走行抵
抗が減少し車速が設定速度より増速すると、制御
回路6より減速信号6bが出力され一定比率の時
間直流モータ7を逆回転させ、スロツトルバルブ
の開度を減少させて車速を減速して設定車速(80
Km/h)に近づける。また、実車速が設定車速
(80Km/h)に一致している時は制御回路6の増
速信号6a,減速信号6bは出力されず、直流モ
ータ7は回転せずスロツトルバルブ11はそのま
まの開度を保持する。
The operation of the conventional constant speed traveling device configured as described above will be explained below. First, when a vehicle (not shown) is driven, the speedometer flexible shaft 2 of the transmission 1 rotates, and the magnet 4 rotates in synchronization with the flexible shaft 2.
As the magnet 4 rotates, pulses corresponding to the actual vehicle speed are generated from the reed switch 5 and are input to the control circuit 6, where the number of pulses is counted at regular intervals. For example, if the actual vehicle speed is 80 on a flat road.
When the constant speed running device is activated when the speed reaches Km/h, the actual vehicle speed of 80 Km/h becomes the set vehicle speed, and the throttle valve 11 is controlled to maintain this speed to perform constant speed running. That is, when the constant speed traveling device is activated, a pulse corresponding to the actual vehicle speed of the reed switch 5 counted by the control circuit 6 immediately before activation is set in a vehicle speed setting circuit (not shown), and the vehicle speed corresponding to this pulse is set as the set vehicle speed. becomes. In this case 80
Km/h is the set vehicle speed. At the same time, the coil 8c of the worm wheel 8b is energized by the control circuit 6, so that the electromagnetic clutch plate 9 is attracted to the worm wheel 8b, and the opening degree of the throttle valve 11 is maintained at the opening degree corresponding to the set vehicle speed. do. on the other hand,
The control circuit 6 operates a reed switch 5 according to the actual vehicle speed.
The generated pulses are counted at regular intervals, and the number of pulses corresponding to the actual vehicle speed and the set vehicle speed (80 km /
h) is compared with the number of pulses corresponding to
b is output and rotates the DC motor 7 for a fixed ratio of time. For example, when the vehicle speed decreases below the set speed due to an increase in running resistance during constant speed running, the control circuit 6 outputs a speed increase signal 6a to cause the DC motor 7 to rotate forward for a fixed ratio of time. Along with this, sector 1
0 rotates, the opening of the throttle valve 11 is increased by the action of the cable 13 connected to the throttle ring 12, and the amount of air-fuel mixture to be supplied into the cylinder of the engine (not shown) is increased to reach the set vehicle speed (80
km/h). On the other hand, when running resistance decreases during constant speed driving and the vehicle speed increases above the set speed, a deceleration signal 6b is output from the control circuit 6, causing the DC motor 7 to rotate in reverse for a fixed ratio of time, thereby controlling the opening of the throttle valve. Decrease the vehicle speed to the set vehicle speed (80
km/h). Furthermore, when the actual vehicle speed matches the set vehicle speed (80 km/h), the speed increase signal 6a and deceleration signal 6b of the control circuit 6 are not output, the DC motor 7 does not rotate, and the throttle valve 11 remains unchanged. Maintain opening.

しかしながらこのような従来の定速走行装置に
よると、設定車速と実車速とを速度偏差に対応し
たパルス数とスロツトルバルブ11の開度変化量
との比率は、平坦路で使用頻度の多い80Km/h程
度の速度域において車両の加速側ゲインと減速側
ゲインとを考慮して定速走行制御性能が最適とな
るように直流モータ7の特性および通電時間、減
速機8の減速比等を調整して決定されている。し
たがつて、車両が上り坂を走行する場合は車両の
走行抵抗の増加に伴い増速側ゲインが減少すると
共に減速側ゲインが増加し、また反対に下り坂を
走行する場合は増速側ゲインが増加すると共に減
速側ゲインが減少するにもかかわらず、速度偏差
に対応したパルス数とスロツトルバルブ11の開
度変化量との比率は平坦路で略80Km/hの速度域
においての比率のままなので、上り坂では設定車
速に対してすぐには車速が増加せず、また下り坂
では設定車速に対してすぐには車速が減少しない
というきわめて速度制御性能の悪いものであつ
た。
However, according to such a conventional constant speed traveling device, the ratio between the number of pulses corresponding to the speed deviation between the set vehicle speed and the actual vehicle speed and the amount of change in the opening degree of the throttle valve 11 is limited to 80 km, which is often used on flat roads. The characteristics and energization time of the DC motor 7, the reduction ratio of the reducer 8, etc. are adjusted so that the constant-speed running control performance is optimized by taking into account the vehicle's acceleration-side gain and deceleration-side gain in the speed range of approximately /h. It has been decided that Therefore, when the vehicle runs uphill, the accelerating side gain decreases and the decelerating side gain increases as the running resistance of the vehicle increases, and conversely, when the vehicle runs downhill, the accelerating side gain decreases. Although the deceleration side gain decreases as the speed increases, the ratio between the number of pulses corresponding to the speed deviation and the amount of change in the opening of the throttle valve 11 is the same as that in the speed range of approximately 80 km/h on a flat road. As a result, the vehicle speed does not immediately increase relative to the set vehicle speed on uphill slopes, and does not immediately decrease relative to the set vehicle speed on downhill slopes, resulting in extremely poor speed control performance.

〔発明の概要〕[Summary of the invention]

本発明はこのような点に鑑みてなされたもの
で、その目的とするところは、上り坂や下り坂が
混在する道路を走行する場合であつても、きわめ
て高い速度制御性能をもつて車速を設定速度に維
持することのできる定速走行装置を提供すること
にある。
The present invention has been made in view of these points, and its purpose is to maintain the vehicle speed with extremely high speed control performance even when driving on a road with both uphill and downhill slopes. An object of the present invention is to provide a constant speed traveling device that can maintain a set speed.

このような目的を達成するために本発明は、制
御回路と直流モータとの間に増速信号に対して正
極性特性を有するダイオードとスロツトルバルブ
の開度の変化に対し反比例の抵抗変化特性を有す
る可変抵抗器との直列接続からなる増速側ゲイン
回路を接続し、さらにこの増速側ゲイン回路に並
列に減速信号に対して正極性特性を有するダイオ
ードとスロツトルバルブの開度の変化に対し正比
例の抵抗変化特性を有する可変抵抗器との直列接
続からなる減速側ゲイン回路を接続したものであ
る。
In order to achieve such an object, the present invention provides a diode between a control circuit and a DC motor that has a positive polarity characteristic with respect to a speed increase signal, and a resistance change characteristic that is inversely proportional to a change in the throttle valve opening. A speed increasing side gain circuit is connected in series with a variable resistor having a variable resistor, and a diode having positive polarity characteristics with respect to the deceleration signal is connected in parallel to this speed increasing side gain circuit, and a change in the opening degree of the throttle valve is connected. A deceleration side gain circuit is connected in series with a variable resistor having a resistance change characteristic directly proportional to .

〔発明の実施例〕[Embodiments of the invention]

以下、本発明に係る定速走行装置を詳細に説明
する。
Hereinafter, the constant speed traveling device according to the present invention will be explained in detail.

第2図はこの定速走行装置の一実施例を示す概
略構成図である。第1図と同一符号は同一部分を
示しその説明は省略する。図において、15は制
御回路6と直流モータ7との間に接続された、増
速信号6aに対して正極性特性を有するダイオー
ド15aと可変抵抗器15bとの直列接続からな
る増速側ゲイン回路で、可変抵抗器15bの抵抗
値はスロツトルバルブ11の開度変化に連動して
変化するようになつており、スロツトルバルブ1
1の開度が増大すると抵抗値は減少し、開度が減
少すると抵抗値は増大するいわゆる反比例の抵抗
変化特性を有している。さらに、この増速側ゲイ
ン回路15には並列に減速側ゲイン回路16が接
続されており、この減速側ゲイン回路16は増速
信号6aに対して逆極性特性、すなわち減速信号
6bに対して正極性特性を有するダイオード16
aと可変抵抗器16bとの直列接続で構成されて
いる。
FIG. 2 is a schematic diagram showing an embodiment of this constant speed traveling device. The same reference numerals as in FIG. 1 indicate the same parts, and the explanation thereof will be omitted. In the figure, reference numeral 15 denotes a speed-increasing side gain circuit connected between the control circuit 6 and the DC motor 7 and consisting of a series connection of a diode 15a and a variable resistor 15b, which have positive polarity characteristics with respect to the speed-increasing signal 6a. The resistance value of the variable resistor 15b is designed to change in conjunction with the change in the opening degree of the throttle valve 11.
1, the resistance value decreases as the opening degree increases, and the resistance value increases as the opening degree decreases, which is a so-called inversely proportional resistance change characteristic. Further, a deceleration side gain circuit 16 is connected in parallel to this speed increase side gain circuit 15, and this deceleration side gain circuit 16 has a reverse polarity characteristic with respect to the speed increase signal 6a, that is, a positive polarity with respect to the deceleration signal 6b. Diode 16 with characteristic characteristics
A and a variable resistor 16b are connected in series.

可変抵抗器16の抵抗値はスロツトルバルブ1
1の開度変化に連動して変化するようになつてお
り、スロツトルバルブ11の開度に対して正比例
の抵抗変化測定を有している。
The resistance value of the variable resistor 16 is the same as that of the throttle valve 1.
1, and has a resistance change measurement that is directly proportional to the opening degree of the throttle valve 11.

次に、このように構成された定速走行装置の動
作について説明する。図示せぬ車両を走行させて
この定速走行装置を作動させると、従来と同様に
車速が設定されると共に走行状態に応じて設定車
速を維持するために制御回路6より増速信号6a
あるいは減速信号6bが出力される、制御回路6
より増速信号6aが出力されると、この信号は可
変抵抗器15b、ダイオード15a、直流モータ
7を介して制御回路6に戻り、一定比率の時間直
流モータ7を正回転させ、実車速に増速して設定
車速に近づける。また、減速信号6bが出力され
ると、この信号は直流モータ7、ダイオード16
a、可変抵抗器16bを介して制御回路6に戻
り、一定比率の時間直流モータ7を逆回転させ、
実車速を減速して設定車速に近づける。ここで、
例えば連続した上り坂を車両が高速で走行してい
る時はスロツトルバルブ11は広開度まで開いで
おり、これと連動して増速側ゲイン回路15の可
変抵抗器15bは低抵抗となり、反対に減速側ゲ
イン回路16の可変抵抗器16bは高抵抗となつ
ている。このため、制御回路6より増速信号6a
が出力されると低抵抗の可変抵抗器15bを介し
て直流モータ7に入力され、増速信号6aに応じ
て一定比率の時間大電流で直流モータ7を正回転
させる。逆に制御回路6より減速信号6bが出力
されると高抵抗の可変抵抗器16bを介して直流
モータ7に入力され、減速信号6bに応じて一定
比率の時間小電流で直流モータ7を逆回転させ
る。従つて、上り坂走行に伴う走行抵抗の増加に
より実車速が低下し、低下した車速に応じて一定
比率の時間増速信号6aが従来と同様に出力され
ても、直流モータ7を大電流で回転させるので従
来に比してスロツトルバルブ11を広開度の変化
量で開くことができ、実車速を速やかに設定車速
に近づけることができる。さらに、実車速が設定
車速を上回つたとしても一定比率の時間直流モー
タ7を小電流で回転させるのでスロツトルバルブ
11を狭開度の変化量で閉じることができ、実車
速を大幅に減速することはない。また、これとは
反対に連続した下り坂を車両が走行している時は
スロツトルバルブ11は狭開度となつており、こ
れと連動しで減速側ゲイン回路16の可変抵抗器
16bは低抵抗となり、反対に増速側ゲイン回路
15の可変抵抗器15bは高抵抗となつている。
このため、制御回路6より減速信号6bが出力さ
れると低抵抗の可変抵抗器16bを介して直流モ
ータ7に入力され、減速信号6bに応じて一定比
率の時間大電流で直流モータ7を逆回転させる。
従つて、下り坂走行に伴う走行抵抗の減少により
実車速が増し、増加した車速に応じて従来と同様
一定比率の時間減速信号6bが出力されても、直
流モータ7を大電流で回転させるので従来に比し
てスロツトルバルブ11を広開度の変化量で閉じ
ることができ、実車速を設定車速に速やかに近づ
けることができる。さらに、実車速が設定車速を
下回つたとしても一定比率の時間直流モータ7を
小電流で正回転させるのでスロツトルバルブ11
を狭開度の変化量で開くことができ、実車速を大
幅に増速することはない。このように、制御回路
6の増速信号6a、減速信号6bの出力時間が従
来と同一であつても車両の走行状態によつて直流
モータ7を駆動する電流を制御しスロツトルバル
ブ11の開度変化量を変えることができるので、
従来に比して速度制御性能を著しく向上させるこ
とができる、なお、増速側ゲイン回路15の可変
抵抗器15bおよび減速側ゲイン回路16の可変
抵抗器16bの抵抗変化特性は平坦路上り坂およ
び下り坂の任意の速度域で増速側ゲインおよび減
速側ゲインを考慮して定速走行制御性能が最適と
なるように選定すればよい。
Next, the operation of the constant speed traveling device configured as described above will be explained. When a vehicle (not shown) is driven and this constant speed traveling device is activated, the vehicle speed is set as in the conventional case, and a speed increase signal 6a is sent from the control circuit 6 to maintain the set vehicle speed according to the traveling condition.
Alternatively, the control circuit 6 to which the deceleration signal 6b is output
When the speed increase signal 6a is output, this signal returns to the control circuit 6 via the variable resistor 15b, the diode 15a, and the DC motor 7, and rotates the DC motor 7 in the forward direction for a fixed ratio of time to increase the actual vehicle speed. Speed up to bring the vehicle closer to the set speed. Furthermore, when the deceleration signal 6b is output, this signal is transmitted to the DC motor 7 and the diode 16.
a. Return to the control circuit 6 via the variable resistor 16b and reversely rotate the DC motor 7 for a fixed ratio of time;
Decrease the actual vehicle speed to bring it closer to the set vehicle speed. here,
For example, when the vehicle is running at high speed on a continuous uphill slope, the throttle valve 11 is opened to a wide opening, and in conjunction with this, the variable resistor 15b of the speed increasing side gain circuit 15 has a low resistance. On the contrary, the variable resistor 16b of the deceleration side gain circuit 16 has a high resistance. Therefore, the control circuit 6 sends a speed increase signal 6a.
When outputted, it is input to the DC motor 7 via the low resistance variable resistor 15b, and the DC motor 7 is rotated in the forward direction with a large current for a fixed ratio of time in accordance with the speed increase signal 6a. Conversely, when a deceleration signal 6b is output from the control circuit 6, it is input to the DC motor 7 via a high-resistance variable resistor 16b, and the DC motor 7 is reversely rotated with a small current for a fixed ratio of time according to the deceleration signal 6b. let Therefore, even if the actual vehicle speed decreases due to an increase in running resistance due to uphill traveling, and the time speed increase signal 6a of a fixed ratio is output in accordance with the decreased vehicle speed as in the past, the DC motor 7 is not driven by a large current. Since the throttle valve 11 is rotated, the throttle valve 11 can be opened with a wider variation than in the past, and the actual vehicle speed can be brought closer to the set vehicle speed quickly. Furthermore, even if the actual vehicle speed exceeds the set vehicle speed, the DC motor 7 is rotated with a small current for a fixed ratio of time, so the throttle valve 11 can be closed with a narrow opening change, significantly reducing the actual vehicle speed. There's nothing to do. On the other hand, when the vehicle is running on a continuous downhill slope, the throttle valve 11 has a narrow opening, and in conjunction with this, the variable resistor 16b of the deceleration side gain circuit 16 has a low opening. Conversely, the variable resistor 15b of the speed increasing side gain circuit 15 has a high resistance.
Therefore, when the deceleration signal 6b is output from the control circuit 6, it is input to the DC motor 7 via the low-resistance variable resistor 16b, and the DC motor 7 is reversed with a large current for a fixed ratio of time according to the deceleration signal 6b. Rotate.
Therefore, even if the actual vehicle speed increases due to the reduction in running resistance associated with downhill running, and the time deceleration signal 6b at a constant ratio is output in response to the increased vehicle speed, the DC motor 7 is rotated with a large current. The throttle valve 11 can be closed with a wider variation than in the past, and the actual vehicle speed can be quickly brought close to the set vehicle speed. Furthermore, even if the actual vehicle speed falls below the set vehicle speed, the throttle valve 11 rotates the DC motor 7 in the forward direction with a small current for a fixed ratio of time.
can be opened by small changes in the opening degree, and the actual vehicle speed will not be increased significantly. In this way, even if the output times of the speed increase signal 6a and deceleration signal 6b of the control circuit 6 are the same as in the conventional case, the current that drives the DC motor 7 is controlled depending on the running condition of the vehicle, and the throttle valve 11 is opened. Since the degree of change can be changed,
The speed control performance can be significantly improved compared to the conventional one.The resistance change characteristics of the variable resistor 15b of the speed-increasing gain circuit 15 and the variable resistor 16b of the decelerating-side gain circuit 16 are suitable for use on flat roads, uphill slopes, and The selection may be made so that the constant speed running control performance is optimized in consideration of the speed increase side gain and the deceleration side gain in an arbitrary speed range on a downhill slope.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係る定速走行装置
によると、制御回路と直流モータとの間に増速信
号に対して正極性特性を有するダイオードとスロ
ツトルバルブの開度変化に対し反比例の抵抗変化
特性を有する可変抵抗器との直列接続からなる増
速側ゲイン回路を接続し、さらにこの増速側ゲイ
ン回路に並列に減速信号に対して正極性特性を有
するダイオードとスロツトルバルブの開度変化に
対し正比例の抵抗値特性を有する可変抵抗器との
直列接続からなる減速側ゲイン回路を接続したの
で、上り坂や下り坂が混在する道路を走行する場
合であつても従来に比してきわめて高い速度制御
性能をもつて車速を設定速度に維持することがで
きる。
As explained above, according to the constant speed traveling device according to the present invention, between the control circuit and the DC motor, there is provided a diode having a positive polarity characteristic with respect to the speed increase signal, and a resistance that is inversely proportional to the change in opening of the throttle valve. A speed-increasing gain circuit is connected in series with a variable resistor that has variable characteristics, and a diode that has positive polarity characteristics with respect to the deceleration signal and a throttle valve opening are connected in parallel to this speed-increasing gain circuit. Since we have connected a deceleration-side gain circuit consisting of a series connection with a variable resistor that has a resistance value characteristic that is directly proportional to the change in resistance, it is easier to operate than before even when driving on a road that has both uphill and downhill slopes. The vehicle speed can be maintained at a set speed with extremely high speed control performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の定速走行装置を示す概略構成
図、第2図は本発明に係る定速走行装置を示す概
略構成図である。 6……制御回路、6a……増速信号、6b……
減速信号、7……直流モータ、11……スロツト
ルバルブ、15……増速側ゲイン回路、15a…
…ダイオード、15b……可変抵抗器、16……
減速側ゲイン回路、16a……ダイオード、16
b……可変抵抗器。
FIG. 1 is a schematic configuration diagram showing a conventional constant speed traveling device, and FIG. 2 is a schematic configuration diagram showing a constant speed traveling device according to the present invention. 6... Control circuit, 6a... Speed increase signal, 6b...
Deceleration signal, 7... DC motor, 11... Throttle valve, 15... Speed increase side gain circuit, 15a...
...Diode, 15b...Variable resistor, 16...
Deceleration side gain circuit, 16a...Diode, 16
b...variable resistor.

Claims (1)

【特許請求の範囲】 1 予め設定された設定車速と実車速とを比較し
てこの比較結果に基づき実車速を増す増速信号お
よびこの増速信号に対し逆極性で実車速を減少さ
せる減速信号を出力する制御回路と、この制御回
路の増速信号および減速信号に対応して回転する
ことによりスロツトルバルブの開度を変化させる
直流モータとを備えた定速走行装置において、 前記増速信号に対して正極性特性を有するダイ
オードと前記スロツトルバルブの開度変化に対し
反比例の抵抗変化特性を有する可変抵抗器とが直
列接続され、前記制御回路と前記直流モータとの
間に接続された増速側ゲイン回路と、 前記減速信号に対して正極性特性を有するダイ
オードと前記スロツトルバルブの開度変化に対し
正比例の抵抗変化特性を有する可変抵抗器とが直
列接続され、前記増速側ゲイン回路に並列に接続
された減速側ゲイン回路と を備えた定速走行装置。
[Claims] 1. A speed increase signal that compares a preset vehicle speed and an actual vehicle speed and increases the actual vehicle speed based on the comparison result, and a deceleration signal that decreases the actual vehicle speed with the opposite polarity to this speed increase signal. and a DC motor that changes the opening degree of a throttle valve by rotating in response to a speed increase signal and a deceleration signal of the control circuit. A diode having a positive polarity characteristic and a variable resistor having a resistance change characteristic inversely proportional to a change in the opening degree of the throttle valve are connected in series, and are connected between the control circuit and the DC motor. A speed increasing side gain circuit, a diode having a positive polarity characteristic with respect to the deceleration signal, and a variable resistor having a resistance change characteristic directly proportional to an opening degree change of the throttle valve are connected in series, and a speed increasing side gain circuit is connected in series. A constant speed traveling device equipped with a deceleration side gain circuit connected in parallel to the gain circuit.
JP14630784A 1984-07-13 1984-07-13 Constant speed running device Granted JPS6124624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14630784A JPS6124624A (en) 1984-07-13 1984-07-13 Constant speed running device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14630784A JPS6124624A (en) 1984-07-13 1984-07-13 Constant speed running device

Publications (2)

Publication Number Publication Date
JPS6124624A JPS6124624A (en) 1986-02-03
JPH0344006B2 true JPH0344006B2 (en) 1991-07-04

Family

ID=15404712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14630784A Granted JPS6124624A (en) 1984-07-13 1984-07-13 Constant speed running device

Country Status (1)

Country Link
JP (1) JPS6124624A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013154053A1 (en) 2012-04-09 2013-10-17 三井化学株式会社 Plant cultivation material and plant cultivation method using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199805U (en) * 1986-06-10 1987-12-19

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898636A (en) * 1981-12-04 1983-06-11 Nippon Denso Co Ltd Constant-speed running device for use in vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898636A (en) * 1981-12-04 1983-06-11 Nippon Denso Co Ltd Constant-speed running device for use in vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013154053A1 (en) 2012-04-09 2013-10-17 三井化学株式会社 Plant cultivation material and plant cultivation method using same

Also Published As

Publication number Publication date
JPS6124624A (en) 1986-02-03

Similar Documents

Publication Publication Date Title
US4408293A (en) Automotive control systems for improving fuel consumption
US4725969A (en) Constant-speed driving system
JPH0210737B2 (en)
EP0051004B1 (en) Automatic speed control system for a heavy vehicle
US4532901A (en) Engine governor with fast reference positioning and slow opening and closing movement of throttle limiter
JPH0771900B2 (en) Vehicle transmission
JP2776271B2 (en) Motor lock detection device during constant speed traveling control
JPH0344006B2 (en)
JPS63160350U (en)
JPS61129336A (en) Automatic car speed control unit
JPS604427A (en) Constant speed running device
EP0096126A1 (en) Engine governor with reference position for throttle limiter
JP2868152B2 (en) Control device for vehicle having electric motor and engine
JP3032892B2 (en) Constant speed traveling equipment for vehicles
JP2928350B2 (en) Control method of automatic transmission for vehicle
JP2819796B2 (en) Throttle control device
JPS63176740A (en) Constant speed driving device for automobile
CA1151961A (en) Engine governor with reference position for throttle limiter
JP3025815B2 (en) Constant speed traveling equipment for vehicles
JP3023889B2 (en) Constant speed traveling equipment for vehicles
JPS604429A (en) Constant speed running device
JPH0551055B2 (en)
JPH0572303B2 (en)
JPH0133378Y2 (en)
JPH0356927B2 (en)