JPH0343820Y2 - - Google Patents
Info
- Publication number
- JPH0343820Y2 JPH0343820Y2 JP3454682U JP3454682U JPH0343820Y2 JP H0343820 Y2 JPH0343820 Y2 JP H0343820Y2 JP 3454682 U JP3454682 U JP 3454682U JP 3454682 U JP3454682 U JP 3454682U JP H0343820 Y2 JPH0343820 Y2 JP H0343820Y2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- battery
- charging
- transistor
- power supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001514 detection method Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Landscapes
- Stand-By Power Supply Arrangements (AREA)
- Continuous-Control Power Sources That Use Transistors (AREA)
Description
【考案の詳細な説明】
〔産業上の利用分野〕
この考案は、例えば非常用電源として作動する
エンジン発電機装置に備えられているバツテリ充
電装置から一定電圧を要求する制御回路等の負荷
に一定電圧を供給するために、給電回路内にドロ
ツパと並列にトランジスタ回路を設けた直流電源
装置に関する。[Detailed description of the invention] [Industrial application field] This invention applies to a load such as a control circuit that requires a constant voltage from a battery charging device installed in an engine generator device that operates as an emergency power source. The present invention relates to a DC power supply device in which a transistor circuit is provided in a power supply circuit in parallel with a dropper in order to supply voltage.
第1図は従来用いられているこの種装置の一例
を示す。図において、U,Vは直流電源装置の電
源入力端子、CHは充電装置であり商用電源を受
けて交流を直流に変換するトランスおよびダイオ
ードブリツジから構成された整流器と、この整流
器出力回路を切換えるスイツチSWと、バツテリ
BSに切換可能な電圧を供給する電圧調整装置
AVRと、検出装置CBとで構成される。検出装置
CBはバツテリ電圧を検出する検出回路と、前記
切換スイツチSWを動作するタイマと、ダイオー
ドを数個直列接続して構成されたドロツパDの両
端をバーテリ電圧に応じて開閉する接点Sを持つ
リレーから構成される。LGはバツテリBSから給
電され作動するエンジンスタータ、発電機励磁装
置等の必ずしも定電圧を要求しない負荷、Pは接
点SおよびドロツパDの負極に接続された出力端
子で、負極出力端子Cに接続された端子Nととも
に、負荷装置LGを運転制御するための制御回路
SCに接続される。この制御回路は負荷装置LGの
運転制御のための電子回路、リレー等を含んでい
るので、これは定電圧給電を要求する負荷であ
る。ドロツパDおよびリレー接点Sで給電回路が
構成されこれを通してバツテリから定電圧を必要
とする制御回路SCに給電される。
FIG. 1 shows an example of a conventionally used device of this kind. In the figure, U and V are the power input terminals of the DC power supply, and CH is the charging device, which is a rectifier consisting of a transformer and diode bridge that receives commercial power and converts AC into DC, and a rectifier that switches the output circuit of this rectifier. Switch SW and Batsuteri
Voltage regulator that supplies switchable voltage to BS
It consists of an AVR and a detection device CB. detection device
CB consists of a detection circuit that detects the battery voltage, a timer that operates the changeover switch SW, and a relay that has a contact S that opens and closes both ends of the dropper D, which is constructed by connecting several diodes in series, according to the battery voltage. configured. LG is a load that does not necessarily require constant voltage, such as an engine starter or generator excitation device that is powered by battery BS, and P is an output terminal connected to the negative terminal of contact S and dropper D, which is connected to negative output terminal C. A control circuit for controlling the operation of the load device LG along with the terminal N
Connected to SC. This control circuit includes an electronic circuit, a relay, etc. for controlling the operation of the load device LG, so this is a load that requires constant voltage power supply. A power supply circuit is constituted by the dropper D and the relay contact S, through which power is supplied from the battery to the control circuit SC which requires constant voltage.
バツテリを充電する場合比較的高い電圧で充電
する均等充電と、バツテリ電圧を維持するだけの
低い電圧で充電する浮動充電とがある。商用電源
が遮断された場合、タイマのセツトにより均等充
電電圧を出力する定電圧装置AVRに接続され、
商用電源が投入されたときこの均等充電電圧がバ
ツテリBSに加えられる。 When charging a battery, there are two types: equal charging, which charges at a relatively high voltage, and floating charging, which charges at a low voltage that maintains the battery voltage. When the commercial power supply is cut off, it is connected to a constant voltage device AVR that outputs an equal charging voltage by setting a timer.
When commercial power is turned on, this equal charging voltage is applied to the battery BS.
充電初期には定電流でバツテリBSが充電され
てこの電圧が除々に上昇し、所定の均等充電電圧
に達すると以後はこの均等充電電圧で定電圧で充
電され、バツテリBSの充電電圧がそれに応じて
上昇する。バツテリBSの充電電圧がある設定値
に達したとき検出装置CBが動作し接点Sが開か
れるためバツテリ電圧BSがドロツパDを通り順
方向抵抗で下げられ出力される。これを図示すれ
ば充電時間に伴うバツテリ電圧と給電回路出力電
圧の変化は第2図の通りであり、第2図に示すよ
うに段階的に低くなる。このとき検出装置CB内
のタイマがスタートしなおある時間均等充電が継
続されてバツテリBS電圧が均等充電電圧に殆ん
ど近づく。タイマの動作終了で切換スイツチSW
が切換えられ、均等充電から浮動充電に移る。 At the beginning of charging, the battery BS is charged with a constant current, and this voltage gradually rises, and when it reaches a predetermined equal charging voltage, it is thereafter charged at a constant voltage with this equal charging voltage, and the charging voltage of the battery BS changes accordingly. and rise. When the charging voltage of the battery BS reaches a certain set value, the detection device CB operates and the contact S is opened, so that the battery voltage BS passes through the dropper D and is lowered by the forward resistance and output. To illustrate this, the changes in the battery voltage and the power supply circuit output voltage with charging time are as shown in FIG. 2, and as shown in FIG. 2, they gradually decrease. At this time, the timer in the detection device CB is restarted, and equal charging continues for a certain period of time, so that the battery BS voltage almost approaches the equal charging voltage. Changeover switch SW when timer operation ends
is switched, moving from equal charging to floating charging.
浮動充電時は均等充電より低い電圧がバツテリ
BSに加えられる。バツテリBSはタイマの動作終
了前満充電状態にあり均等充電を止めた場合、均
等充電電圧より低い電圧即ち満充電時の電圧に下
がる。浮動充電は満充電電圧を維持するだけの電
圧を加えればよいのでこのときの電圧は均等電圧
より低い定電圧が加えられ、バツテリBS電圧が
一定に維持される。 During floating charging, a voltage lower than equal charging will cause battery damage.
Added to BS. The battery BS is in a fully charged state before the timer ends, and when equal charging is stopped, the voltage drops to a voltage lower than the equal charging voltage, that is, the voltage at full charge. For floating charging, it is sufficient to apply a voltage sufficient to maintain the full charge voltage, so a constant voltage lower than the equal voltage is applied at this time, and the battery BS voltage is maintained constant.
このとき検出装置CBが動作し接点Sが閉じら
れてバツテリ電圧BSが殆んど降下されずに出力
される。 At this time, the detection device CB operates, the contact S is closed, and the battery voltage BS is output with almost no drop.
制御回路SCには上述のように変動幅の大きい
電圧が供給されるためこの回路内に組込まれた部
品でリレー、電子回路等が誤動作し、負荷装置
LGが誤動作される恐れがあつた。 As mentioned above, the control circuit SC is supplied with a voltage with a large fluctuation range, which may cause relays, electronic circuits, etc. built into this circuit to malfunction, causing damage to the load equipment.
There was a risk that the LG would malfunction.
この考案の目的は上述の欠点を除去し、一定電
圧が出力されるようにした装置を提供することに
ある。
The purpose of this invention is to eliminate the above-mentioned drawbacks and to provide a device that outputs a constant voltage.
この目的を達成するために、この考案によれば
給電回路内にバツテリBSと出力端子間にドロツ
パDを挿入し、このドロツパDと並列にトランジ
スタを設け、このトランジスタが制御されて一定
電圧が出力される直流電源装置とするものであ
る。
In order to achieve this purpose, according to this invention, a dropper D is inserted between the battery BS and the output terminal in the power supply circuit, a transistor is provided in parallel with the dropper D, and this transistor is controlled to output a constant voltage. This is a DC power supply device.
以下、この考案の一実施例の構成および作用を
第3図、第4図、第5図、第6図および第7図に
もとずき説明する。図においてU,V,B,C,
BS,P,N,LGおよびSCは第1図に説明のも
のと同じであるので説明を省く。
The structure and operation of an embodiment of this invention will be explained below with reference to FIGS. 3, 4, 5, 6, and 7. In the figure, U, V, B, C,
BS, P, N, LG and SC are the same as those explained in FIG. 1, so their explanation will be omitted.
CHは充電装置であり、交流を直流にかえるト
ランスおよびダイオードブリツジから構成された
整流器と、この整流器出力回路を切換えるスイツ
チSWと、バツテリBSに切換可能な電圧を供給す
る定電圧装置AVRと次の検出装置CBとで構成さ
れる。検出装置CBはバツテリ電圧を検出する検
出回路とこの検出でバツテリBSが設定電圧に達
したときからある時間均等電圧を継続し、終了で
前記切換スイツチSWを動作させるタイマから構
成される。 CH is a charging device that includes a rectifier consisting of a transformer and diode bridge that converts alternating current to direct current, a switch SW that changes the output circuit of this rectifier, a voltage regulator AVR that supplies switchable voltage to the battery BS, and It consists of a detection device CB and a detection device CB. The detection device CB consists of a detection circuit that detects the battery voltage, and a timer that continues the equal voltage for a certain period of time from when the battery BS reaches the set voltage by this detection, and operates the changeover switch SW when the detection ends.
バツテリBSと出力端子P間に正極をバツテリ
側にしてドロツパDを挿入しドロツパDの正極に
トランジスタT1のエミツタを接続し、負極にこ
のトランジスタT1のコレクタを接続して、ドロ
ツパDとトランジスタT1を並列接続する。ドロ
ツパDの正極と負極出力端子C間に、抵抗R1,
R2を直列接続し、その接続点を前記トランジス
タT1のベースおよびトランジスタT2のエミツタ
に接続し、このトランジスタT2のコレクタをド
ロツパDの正極に接続する。バツテリ出力端子
B,C間に定電圧ダイオードZDと抵抗R3を直列
接続し、この接続点をトランジスタT2のベース
に接続する。 Insert the dropper D between the battery battery BS and the output terminal P with the positive terminal on the battery side, connect the emitter of the transistor T1 to the positive terminal of the dropper D, connect the collector of this transistor T1 to the negative pole, and connect the dropper D and the transistor. Connect T 1 in parallel. A resistor R 1 ,
R2 are connected in series, the connection point thereof is connected to the base of the transistor T1 and the emitter of the transistor T2 , and the collector of the transistor T2 is connected to the positive terminal of the dropper D. A constant voltage diode ZD and a resistor R3 are connected in series between battery output terminals B and C, and this connection point is connected to the base of a transistor T2 .
以上のように構成されている。この構成におい
て、商用電源が遮断された場合充電装置CHの切
換SWが均等充電電圧を出力する定電圧装置
AVRに接続され、商用電源が投入されたとき均
等電圧がバツテリBSに加えられる。 It is configured as described above. In this configuration, the switching switch of the charging device CH is a constant voltage device that outputs an equal charging voltage when the commercial power supply is cut off.
When connected to the AVR and commercial power is turned on, equal voltage is applied to the battery BS.
充電初期には定電流でバツテリBSが充電され
てバツテリBS電圧が徐々に上昇する。しかしこ
のときは電圧が低いので電流が定電圧ダイオード
ZDを流れず従つて抵抗R3の両端に電圧が生じな
いのでトランジスタT2が非導通のままである。
他方、分圧された抵抗R1の両端電圧がトランジ
スタT1のエミツタ、ベース間に加わり完全導通
状態になるので、バツテリBS出力がドロツパD
を通らず、このトランジスタT1を通り、出力端
子P,N間に出力される。充電時間によるバツテ
リBSの電圧と、給電回路出力電圧の変化は第4
図の通りであり充電初期は上述およびこの図に示
されるようにバツテリBSの電圧が殆んど降下せ
ずに出力される。 At the beginning of charging, the battery BS is charged with a constant current, and the battery BS voltage gradually increases. However, at this time, the voltage is low, so the current flows through the constant voltage diode.
Transistor T 2 remains non-conducting since no voltage flows through ZD and therefore no voltage develops across resistor R 3 .
On the other hand, the voltage across the divided resistor R1 is applied between the emitter and base of the transistor T1 , making it fully conductive, so that the battery BS output drops to the dropper D.
Instead, it passes through this transistor T1 and is output between the output terminals P and N. Changes in battery BS voltage and power supply circuit output voltage due to charging time are the fourth
As shown in the figure, at the initial stage of charging, the voltage of the battery BS is output with almost no drop, as described above and shown in this figure.
トランジスタT2の通電量割合は第5図の通り
であり、充電初期には通電が殆んどなく、またト
ランジスタT1の通電量割合は第6図の通りであ
り、充電初期には100%に近い完全な通電状態で
ある。 The current flow rate of transistor T 2 is as shown in Figure 5, and there is almost no current flow at the beginning of charging, and the current flow rate of transistor T 1 is as shown in Figure 6, and it is 100% at the beginning of charging. It is almost completely energized.
均等充電が続けられ充電初期よりバツテリBS
電圧が上がつた場合、定電圧ダイオードZDを通
り電流が抵抗R3に流れ、両端電圧がトランジス
タT2のベース、エミツタ間に加わり、コレクタ、
エミツタ間が導通状態となりこの抵抗R3の両端
電圧によつて制限されたエミツタ電流が流れるの
でトランジスタT2と並列接続された抵抗R1の両
端電圧はトランジスタT2が存在しない場合に比
べて下げられる。すなわち、トランジスタT2が
もし存在しなければ、バツテリBSの電圧上昇に
ともなつて抵抗R1に流れる電流が増し、その抵
抗R1の両端電圧も増大するのである。しかし、
このトランジスタT2が存在するおかげで、トラ
ンジスタT2は、バツテリBSの電圧が上昇するほ
ど大きなベース電流を定電圧ダイオードを介して
供給されて導通度を増し、抵抗R1に流れるはず
であつた電流の増加分を引受ける。したがつて、
バツテリBSの電圧が上昇しても、抵抗R1に流れ
る電流は殆ど変化せず、抵抗R1の両端電圧も殆
ど変化しない。トランジスタT1のベース、エミ
ツタ間には、このようにしてほぼ一定に保たれる
抵抗R1の両端電圧が加えられることから、トラ
ンジスタT1の働きで、制御回路SCに印加される
端子P,N間の電圧はバツテリBSの電圧上昇に
かかわらず一定に保たれる。 Evenly charging continues and the battery becomes BS from the beginning of charging.
When the voltage rises, current flows through the constant voltage diode ZD to the resistor R3 , and voltage is applied between the base and emitter of the transistor T2 , and the collector and
Since the emitter becomes conductive and the emitter current is limited by the voltage across resistor R3 , the voltage across resistor R1 connected in parallel with transistor T2 is lower than when transistor T2 is not present. It will be done. That is, if the transistor T2 were not present, the current flowing through the resistor R1 would increase as the voltage of the battery BS increases, and the voltage across the resistor R1 would also increase. but,
Thanks to the existence of this transistor T 2 , as the voltage of the battery BS increases, a large base current is supplied to the transistor T 2 via the voltage regulator diode, increasing its conductivity, and should flow to the resistor R 1 . Underwrites the increase in current. Therefore,
Even if the voltage of the battery BS increases, the current flowing through the resistor R1 hardly changes, and the voltage across the resistor R1 also hardly changes. Since the voltage across the resistor R1 , which is kept almost constant in this way, is applied between the base and emitter of the transistor T1 , the terminal P, which is applied to the control circuit SC, due to the action of the transistor T1 , The voltage across N is kept constant regardless of the voltage rise of battery BS.
この定電圧動作では、バツテリ電圧が上昇する
ほどトランジスタT1での電圧降下が増す。ドロ
ツパDの電流とその電圧降下の特性は第7図のと
おりであるので、トランジスタT1の電圧降下が
小さい間は、ドロツパDを通して流れる電流は僅
かであつて、負荷電流の殆どはトランジスタT1
を通して流れる。バツテリ電圧の上昇にともなつ
てトランジスタT1の電圧降下の増大していくが、
これが所定の値を越えるとドロツパDを通して流
れる電流が急激に増し、ついには負荷電流の多く
はドロツパDを通して流れるようになる。このと
き既述のように検出装置CB内のタイマが時限動
作を開始し、なおある時間均等充電が維持され
る。このタイマが時限動作終了でリセツト動作を
するので切換スイツチSWが切換えられて均等充
電より浮動充電に移行する。 In this constant voltage operation, the voltage drop across transistor T1 increases as the battery voltage increases. The characteristics of the current in the dropper D and its voltage drop are as shown in Fig. 7, so while the voltage drop across the transistor T1 is small, the current flowing through the dropper D is small, and most of the load current flows through the transistor T1.
flows through. As the battery voltage rises, the voltage drop of transistor T1 increases,
When this exceeds a predetermined value, the current flowing through the dropper D increases rapidly, and eventually most of the load current comes to flow through the dropper D. At this time, as described above, the timer in the detection device CB starts a timed operation, and uniform charging is maintained for a certain period of time. Since this timer performs a reset operation at the end of the timed operation, the changeover switch SW is changed to shift from equal charging to floating charging.
浮動充電を維持するだけの電圧を加えればよい
ので、充電装置CHからは均等充電より低い電圧
が加えられる。このとき、バツテリBSの端子B,
C間の電圧が低下することから、再びトランジス
タT1による定電圧動作に移行する。 Since it is sufficient to apply a voltage sufficient to maintain floating charge, a voltage lower than that for uniform charging is applied from the charging device CH. At this time, terminal B of battery BS,
Since the voltage across C decreases, the transistor T1 shifts to constant voltage operation again.
上述のように、トランジスタT1はバツテリ端
子電圧が定電圧ダイオードZDの動作電圧以下に
あるときは完全導通して電圧降下させることなく
バツテリ端子電圧を制御回路SCに導き、バツテ
リ端子電圧が定電圧ダイオードZDの動作電圧以
上になると定電圧動作をして制御回路SCへ定電
圧を供給する。均等充電の末期にしか生じない高
いバツテリ端子電圧に対してはドロツパに負荷電
流の大部分を受け持たせることによつて、正確な
定電圧特性は失われるものの、この程度は制御回
路SCにとつては許容できるものであり、むしろ
トランジスタT1の負担を軽くしてこれの小形化
が図れるという効果が貴重である。すなわち、こ
のような高いバツテリ端子電圧の範囲でもトラン
ジスタT1による定電圧特性を強要すると、トラ
ンジスタT1は大きな電圧降下を出しながら負荷
電流の全部を負担しなければならないために、ト
ランジスタT1における損失電力が大きく、発熱
が増大する。したがつて、このように高いバツテ
リ端子電圧が現れる状態が全運転時間のうちの極
めて僅かな時間しかないとしても、それのために
のみトランジスタT1としては大きな冷却体を持
つた大形のものを使用せざるを得なくなるのであ
る。 As mentioned above, when the battery terminal voltage is below the operating voltage of the constant voltage diode ZD, the transistor T1 becomes completely conductive and guides the battery terminal voltage to the control circuit SC without voltage drop, so that the battery terminal voltage becomes a constant voltage. When the operating voltage of the diode ZD is exceeded, it performs constant voltage operation and supplies a constant voltage to the control circuit SC. For the high battery terminal voltage that occurs only at the end of equalizing charging, by having the dropper take charge of most of the load current, accurate constant voltage characteristics will be lost, but this degree will depend on the control circuit SC. This is acceptable, but rather the advantageous effect is that the load on the transistor T1 can be reduced and its size can be reduced. In other words, if the constant voltage characteristic of transistor T 1 is forced even in such a high battery terminal voltage range, transistor T 1 has to bear the entire load current while producing a large voltage drop. Power loss is large and heat generation increases. Therefore, even if such a high battery terminal voltage occurs only for a very short time out of the total operating time, the transistor T1 should be a large one with a large cooling body. You will be forced to use the .
以上述べた通りこの考案によれば、充電装置
CHの出力側にドロツパDと並列にトランジスタ
T1を接続し、このトランジスタT1を制御するた
めに分圧抵抗R1,R2、定電圧ダイオード、抵抗
R3および分圧抵抗R1に並列に接続されたトラン
ジスタT2を設けて、バツテリBSが均等および浮
動充電される場合、この電圧が変化しても常に一
定電圧が出力されるようにしたものであり、従来
の装置では均等および浮動充電状態が変わつたと
きバツテリ電圧が変化するに従い、段階的に上下
幅のある電圧が制御回路SCに供給されるので制
御回路SC内のリレー、コンデンサおよび半導体
が誤動作または損傷し負荷装置LGが誤動作する
欠点があつたが、本考案によれば上述のような簡
単な構成により充電状態の変更があつても制御回
路SCにはほぼ一定電圧を供給することができる
ので、本考案は前記欠点を除去でき、実用上甚だ
有効である。
As mentioned above, according to this invention, the charging device
Transistor in parallel with dropper D on the output side of CH
To connect T 1 and control this transistor T 1 , voltage dividing resistors R 1 , R 2 , constant voltage diode, resistor
A transistor T 2 connected in parallel with R 3 and voltage dividing resistor R 1 is provided so that a constant voltage is always output even if this voltage changes when the battery BS is charged equally or floatingly. In the conventional device, as the battery voltage changes when the equal and floating charge states change, a voltage with a range of up and down steps is supplied to the control circuit SC, so that the relays, capacitors, and semiconductors in the control circuit SC are However, according to the present invention, with the simple configuration described above, a nearly constant voltage can be supplied to the control circuit SC even if the charging state changes. Therefore, the present invention can eliminate the above-mentioned drawbacks and is extremely effective in practice.
第1図は従来の直流電源装置を示す回路図、第
2図は従来の電源装置のバツテリ出力および給電
回路電圧一充電時間特性線図、第3図はこの考案
の直流電源装置の一実施例を示す回路図、第4図
はバツテリ電圧および給電回路電圧一充電時間特
性線図、第5図、第6図はトランジスタT2およ
びT1の通電量割合一充電時間特性線図、第7図
はドロツパDの降下電圧一負荷電流特性線図であ
る。
U,V……電源入力端子、CH……充電装置、
B,C……正極、負極出力端子、D……ドロツ
パ、T1……トランジスタ、T2……トランジスタ、
P,N……給電回路出力端子、SC……定電圧給
電を要求する負荷(制御回路)、LG……発電機等
の負荷装置、BS……バツテリ、ZD……定電圧ダ
イオード、R1,R2,R3……抵抗、SW……切換
スイツチ、AVR……定電圧装置、CB……検出装
置。
Figure 1 is a circuit diagram showing a conventional DC power supply, Figure 2 is a battery output and power supply circuit voltage vs. charging time characteristic diagram of the conventional power supply, and Figure 3 is an example of the DC power supply of this invention. Figure 4 is a battery voltage and power supply circuit voltage vs. charging time characteristic diagram, Figures 5 and 6 are transistors T 2 and T 1 current flow ratio vs. charging time characteristic diagram, and Figure 7 is a circuit diagram showing the characteristics. is a drop voltage vs. load current characteristic diagram of Dropper D. U, V...Power input terminal, CH...Charging device,
B, C...Positive pole, negative pole output terminal, D...Dropper, T1 ...Transistor, T2 ...Transistor,
P, N...Power supply circuit output terminal, SC...Load that requires constant voltage power supply (control circuit), LG...Load device such as a generator, BS...Battery, ZD...Constant voltage diode, R1 , R 2 , R 3 ... Resistor, SW ... Changeover switch, AVR ... Constant voltage device, CB ... Detection device.
Claims (1)
との間での切換が可能な直流充電電圧を出力する
充電装置CHと、 この充電装置の出力端子間に接続されたバツテ
リBSと、 このバツテリと定電圧給電を要求する負荷SC
との間の給電路に挿入され、均等充電末期に生じ
る高い値のバツテリ端子電圧を降下させて前記負
荷に導く直列ダイオード式ドロツパDと、 前記直列ダイオード式ドロツパに並列接続され
たトランジスタT1と、 バツテリの端子電圧に応じて、その電圧が低い
値のときは該電圧を降下させることなく前記負荷
に導くべく前記トランジスタを十分に導通させ、
その電圧が高い値のときはその値に応じて該電圧
を降下させて前記負荷に導くべく前記トランジス
タの導通度を低く調整する制御手段T2,ZD,R1
〜R3と、 を備えていることを特徴とする直流電源装置。[Claim for Utility Model Registration] Connection between a charging device CH that outputs a DC charging voltage that can be switched between a high-value equal charging voltage and a low-value floating charging voltage, and the output terminal of this charging device. battery BS and a load SC that requires constant voltage power supply.
A series diode dropper D is inserted in the power supply path between the battery terminals and lowers the high battery terminal voltage generated at the end of equal charging and guides it to the load; and a transistor T1 connected in parallel to the series diode dropper. , depending on the terminal voltage of the battery, when the voltage is a low value, the transistor is sufficiently conducted so as to lead the voltage to the load without dropping;
Control means T 2 , ZD, R 1 for adjusting the degree of conductivity of the transistor to be low in order to lower the voltage in accordance with the value when the voltage is a high value and guide it to the load;
A DC power supply device comprising ~R 3 and.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3454682U JPS58136939U (en) | 1982-03-11 | 1982-03-11 | DC power supply |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3454682U JPS58136939U (en) | 1982-03-11 | 1982-03-11 | DC power supply |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58136939U JPS58136939U (en) | 1983-09-14 |
JPH0343820Y2 true JPH0343820Y2 (en) | 1991-09-13 |
Family
ID=30046035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3454682U Granted JPS58136939U (en) | 1982-03-11 | 1982-03-11 | DC power supply |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58136939U (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0431800Y2 (en) * | 1985-03-27 | 1992-07-30 |
-
1982
- 1982-03-11 JP JP3454682U patent/JPS58136939U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58136939U (en) | 1983-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3735233A (en) | Battery charger apparatus having multiple modes of operation and automatic switching therebetween | |
US7439636B2 (en) | Driver system for MOSFET based, high voltage electronic relays for AC power switching and inductive loads | |
JPS62104500A (en) | Control device of generator for rolling stock | |
US3179871A (en) | Battery charging circuit | |
US4706009A (en) | Electronic switching power supply | |
US7230354B2 (en) | Driver system for MOSFET based, high voltage, electronic relays for AC power switching and inductive loads | |
CN101552450B (en) | Pure simulation circuit for realizing undervoltage instantaneous release | |
CN208754025U (en) | A kind of switched charge circuit | |
US4677367A (en) | Current fed boost converter | |
US5631535A (en) | Regulator for charging a rechargeable storage device from a photovoltaic cell | |
JPH0343820Y2 (en) | ||
US4623832A (en) | Secondary battery quick-charging circuit | |
US4465965A (en) | Power limiting apparatus | |
US4278926A (en) | Step motor circuit | |
US4223262A (en) | Means for controlling battery chargers | |
CN221058180U (en) | Pre-charging circuit, vehicle-mounted charger and vehicle | |
US3599072A (en) | Battery charger regulator circuit for periodically supplying charging current to a battery | |
US4475076A (en) | Power tapping apparatus | |
US4340173A (en) | Low voltage power supply | |
CN220569611U (en) | Control circuit of relay and photovoltaic inverter | |
US3343066A (en) | Voltage and current controlled rectifier | |
CN214588625U (en) | Low-voltage drive general relay device with anti-shake characteristic | |
CN221688326U (en) | Timer and power supply circuit thereof | |
US4488106A (en) | Resettable power limiting apparatus | |
CN219394688U (en) | Starting circuit of control chip and switching power supply |