JPH0343227B2 - - Google Patents

Info

Publication number
JPH0343227B2
JPH0343227B2 JP63279978A JP27997888A JPH0343227B2 JP H0343227 B2 JPH0343227 B2 JP H0343227B2 JP 63279978 A JP63279978 A JP 63279978A JP 27997888 A JP27997888 A JP 27997888A JP H0343227 B2 JPH0343227 B2 JP H0343227B2
Authority
JP
Japan
Prior art keywords
carbon
mandrel
temperature
resin
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63279978A
Other languages
Japanese (ja)
Other versions
JPH01153571A (en
Inventor
Hiroyuki Kosuda
Kenji Niijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP63279978A priority Critical patent/JPH01153571A/en
Publication of JPH01153571A publication Critical patent/JPH01153571A/en
Publication of JPH0343227B2 publication Critical patent/JPH0343227B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炭素繊維強化炭素複合材の製法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing carbon fiber-reinforced carbon composite materials.

炭素繊維強化炭素複合材は、マトリツクスが炭
素又は黒鉛であるため、昇華温度が高く、高温に
なる程機械的特性が向上し、熱衝撃に強く、アブ
レーチヨン性能に優れ、化学的に不活性である。
それに加え、炭素繊維で強化されているために機
械的特性が一般の炭素材料に比較して著しく良好
である。したがつて、炭素繊維強化炭素複合材
は、高温断熱材や航空機ブレーキ材や宇宙工業用
構造材等に広く使用されている。
Carbon fiber-reinforced carbon composites have a matrix of carbon or graphite, so they have a high sublimation temperature, and the higher the temperature, the better their mechanical properties, resistance to thermal shock, excellent ablation performance, and chemical inertness. .
In addition, because it is reinforced with carbon fiber, its mechanical properties are significantly better than that of general carbon materials. Therefore, carbon fiber-reinforced carbon composite materials are widely used in high-temperature insulation materials, aircraft brake materials, structural materials for the aerospace industry, and the like.

〔従来技術及び問題点〕 従来、中空円筒状炭素繊維強化炭素複合材の製
法は、通常、スチール製マンドレルに炭素繊維の
フイラメント又はテープをワインドし硬化後、マ
ンドレルから脱型したのち、炭素化するか、又
は、円筒状金型を用いて、その内側に炭素繊維プ
リプグレを積層後、加圧硬化させ脱型したのち、
炭化させていた。しかし、この炭化時において、
変形剥離、割れ等の構造的損傷を生ずることが多
く、特に肉厚の炭素繊維強化炭素複合材を構造的
損傷なしに製造することは著しく困難であつた。
[Prior art and problems] Conventionally, the method for manufacturing hollow cylindrical carbon fiber reinforced carbon composite materials is to wind a carbon fiber filament or tape around a steel mandrel, cure it, remove it from the mandrel, and then carbonize it. Or, using a cylindrical mold, after laminating carbon fiber prepure on the inside thereof, curing it under pressure and removing it from the mold,
It was carbonized. However, during this carbonization,
Structural damage such as deformation and peeling and cracking often occurs, and it has been extremely difficult to manufacture particularly thick carbon fiber-reinforced carbon composite materials without structural damage.

これらの損傷が生ずる要因として次の如く考え
られる。
The following factors may be considered to cause these damages.

炭化工程において、マトリツクスは初期の加熱
工程で熱膨張を起こし、次いで、熱分解により体
積収縮を起こす。強化繊維は熱膨張係数が非常に
小さいので、マトリツクスの変形との差により、
大きな内部応力が発生する。更に、マトリツクス
が炭化されるまでの中間段階において、マトリツ
クスが強度的に非常に弱くなる過程があるため、
内部応力がマトリツクスの強度により大となり、
前記の如く構造的損傷が生ずる。
In the carbonization process, the matrix undergoes thermal expansion during an initial heating step and then volumetric contraction due to thermal decomposition. The reinforcing fiber has a very small coefficient of thermal expansion, so due to the difference in matrix deformation,
Large internal stresses occur. Furthermore, in the intermediate stage before the matrix is carbonized, there is a process in which the strength of the matrix becomes extremely weak.
The internal stress increases due to the strength of the matrix,
Structural damage occurs as described above.

〔発明の目的、構成及び効果〕[Object, structure, and effect of the invention]

本発明者等は、この問題を解決すべく鋭意検討
の結果、本発明に至つた。本発明の目的は、変形
剥離、割れ等の構造的損傷のない肉厚の中空の円
柱、角柱、円錐、截頭円錐、三角フラスコ形、ワ
インボルト形等の炭素繊維強化炭素複合材を製造
する方法を提供することである。
The inventors of the present invention have conducted intensive studies to solve this problem, and as a result, have arrived at the present invention. The purpose of the present invention is to manufacture carbon fiber-reinforced carbon composite materials in the shape of thick hollow cylinders, prisms, cones, truncated cones, Erlenmeyer flasks, wine bolts, etc., without structural damage such as deformation and peeling, cracking, etc. The purpose is to provide a method.

本発明は下記の通りである。 The present invention is as follows.

500〜1500℃の炭素化温度又は2000℃以上の熱
処理温度において不活性雰囲気中で炭素と反応せ
ず、1×10-5/℃以下の線膨張係数を有し、か
つ、その炭素化温度以上又は熱処理温度以上の融
点をもつセラミツク材料からなるマンドレルに、
樹脂を含浸した炭素繊維を捲回積層するか、又
は、炭素繊維を捲回積層したのち樹脂を含浸し、
次いで、硬化したのち500〜1500℃で炭素化する
か、又は、更に2000℃以上で熱処理することを特
徴とする炭素繊維強化炭素複合材の製法。
Does not react with carbon in an inert atmosphere at a carbonization temperature of 500 to 1500℃ or a heat treatment temperature of 2000℃ or higher, has a linear expansion coefficient of 1×10 -5 /℃ or less, and is higher than the carbonization temperature Or, on a mandrel made of ceramic material with a melting point higher than the heat treatment temperature,
By winding and laminating carbon fibers impregnated with resin, or by winding and laminating carbon fibers and then impregnating them with resin,
A method for producing a carbon fiber-reinforced carbon composite material, which is then cured and then carbonized at 500 to 1,500°C, or further heat-treated at 2,000°C or higher.

本発明によれば、構造的損傷のない肉厚の中空
の炭素繊維強化炭素複合材を容易に製造すること
が可能である。
According to the present invention, it is possible to easily manufacture a thick, hollow carbon fiber-reinforced carbon composite material without structural damage.

以下、本発明を更に詳細に説明する。 The present invention will be explained in more detail below.

本発明に用いられるマンドレルの材質は、500
〜1500℃の炭素化温度において、又は、2000℃以
上の熱処理温度において窒素又はアルゴン等の不
活性雰囲気中で炭素と反応せず、線膨張係数が1
×10-5/℃以下、好ましくは5×10-5/℃以下で
あり、かつ、その炭素化温度以上又は熱処理温度
以上に融点を持つセラミツク材料である。
The material of the mandrel used in the present invention is 500
It does not react with carbon in an inert atmosphere such as nitrogen or argon at a carbonization temperature of ~1500℃ or a heat treatment temperature of 2000℃ or higher, and its linear expansion coefficient is 1.
×10 -5 /°C or less, preferably 5 × 10 -5 /°C or less, and has a melting point higher than its carbonization temperature or heat treatment temperature.

ここでいうセラミツク材料とは、酸化ベリリウ
ム、酸化ジルコニウム、ボロンカーバイド、炭化
ケイ素、炭化タンタル、炭化チタン、炭化タング
ステン、炭化ジルコニウム、窒化ケイ素を主成分
とする材料である。
The ceramic material referred to herein is a material whose main components are beryllium oxide, zirconium oxide, boron carbide, silicon carbide, tantalum carbide, titanium carbide, tungsten carbide, zirconium carbide, and silicon nitride.

本発明において、マンドレルの材質を限定する
理由は、下記の通りである。
In the present invention, the reason why the material of the mandrel is limited is as follows.

マンドレルに捲回積層した炭素繊維及び樹脂か
らなる成形物を500〜1500℃の温度で炭素化し炭
素繊維強化炭素複合材を得るか又は該複合材を更
に緻密化するために、樹脂又はコールタール、ピ
ツチ等に含浸したのち炭素化するか、又は、必要
により更に2000℃以上の温度で熱処理する場合に
おいて、窒素又はアルゴン等の不活性雰囲気中で
マンドレルの材料が該複合材の主成分である炭素
又は黒鉛と反応したのでは、機械的特性に満足し
得る炭素繊維強化炭素複合材が得られないからで
ある。また、500〜1500℃以上の融点を持ち、又
は、必要により2000℃以上で熱処理する場合はそ
の熱処理温度以上の融点を持ち、しかも、その温
度で該成形物の内表面の変形を防ぎ得る強度を持
つ材質からなるマンドレルでなければならないの
である。更に、マンドレルは、上記炭素化温度又
は熱処理温度で熱膨張する際、複合材を損傷して
ならないので、線膨張係数が1×10-5/℃以下で
なければならない。それを超えると、マンドレル
の熱膨張と複合材の熱膨張の差により複合材が破
壊される。
In order to obtain a carbon fiber-reinforced carbon composite material by carbonizing a molded product made of carbon fibers and resin wound and laminated on a mandrel at a temperature of 500 to 1500°C, or to further densify the composite material, resin or coal tar, In cases where the material of the mandrel is impregnated with pitch etc. and then carbonized, or further heat treated at a temperature of 2000°C or higher if necessary, in an inert atmosphere such as nitrogen or argon, the carbon which is the main component of the composite material is Otherwise, if it reacts with graphite, a carbon fiber-reinforced carbon composite material with satisfactory mechanical properties cannot be obtained. In addition, it has a melting point of 500 to 1,500℃ or higher, or if necessary, if heat treatment is performed at 2,000℃ or higher, a melting point that is higher than the heat treatment temperature, and has a strength that can prevent the inner surface of the molded product from deforming at that temperature. The mandrel must be made of a material that has a Further, the mandrel must have a linear expansion coefficient of 1×10 −5 /° C. or less in order not to damage the composite material when it thermally expands at the above carbonization temperature or heat treatment temperature. If this is exceeded, the composite will fail due to the difference between the thermal expansion of the mandrel and the composite.

マンドレルの形状は、円筒(柱)、角柱、截形
の外、截頭錐形、三角フラスコ形、ワインボトル
形、その他の形状のものが目的物の形状に合せて
選定される。
The shape of the mandrel may be a cylinder (column), a prism, a truncated shape, a truncated pyramid, an Erlenmeyer flask, a wine bottle, or other shapes depending on the shape of the object.

本発明に使用される炭素繊維は、レーヨン、ポ
リアクリロニトリル、ピツチ等を主成分とするプ
レカーサーを不活性雰囲気中で1000〜2000℃で炭
化した炭素質繊維、又は、2000℃以上の温度で黒
鉛化した黒鉛質繊維である。
The carbon fibers used in the present invention are carbon fibers obtained by carbonizing a precursor mainly composed of rayon, polyacrylonitrile, pitch, etc. at 1000 to 2000°C in an inert atmosphere, or graphitized at a temperature of 2000°C or higher. It is a graphite fiber.

炭素繊維をマンドレルの周囲に捲回積層するに
は、炭素繊維のフイラメント又はテープをワイン
ドするか、又は、炭素繊維の一方向シート、織
物、マツト等をマンドレルの周囲にローリングす
る方法が採用される。
In order to wind and laminate carbon fibers around a mandrel, winding a filament or tape of carbon fibers, or rolling a unidirectional sheet, fabric, mat, etc. of carbon fibers around a mandrel is adopted. .

本発明では、マンドレルに、樹脂を含浸した炭
素繊維を捲回積層するか、又は、炭素繊維を捲回
積層したのち樹脂を含浸し、次いで硬化を行う。
この際、必要により予備硬化を行い成形を容易に
することも可能である。
In the present invention, resin-impregnated carbon fibers are wound and laminated on a mandrel, or carbon fibers are wound and laminated on a mandrel and then impregnated with a resin, and then cured.
At this time, if necessary, it is also possible to perform preliminary curing to facilitate molding.

成形硬化に使用する樹脂は、フラン、フエノー
ル、ポリイミド、エポキシ等の各樹脂である。樹
脂が高粘度のもの又は固体である場合には、適当
な溶媒に溶かすか、又は加熱して溶融して用い
る。また、必要により緻密化するために複合材を
フラン樹脂、フエノール樹脂、コールタール、ピ
ツチ等に含浸し、不活性雰囲気中で炭化すること
も可能である。更に、高温で熱処理することによ
り、炭素質を黒鉛質に変えることも可能である。
The resin used for molding and curing is furan, phenol, polyimide, epoxy, and the like. When the resin is highly viscous or solid, it is used by dissolving it in an appropriate solvent or by heating it to melt it. Further, in order to make the composite material denser if necessary, it is also possible to impregnate the composite material with furan resin, phenolic resin, coal tar, pitch, etc., and carbonize it in an inert atmosphere. Furthermore, it is also possible to change carbonaceous material to graphitic material by heat treatment at high temperature.

マンドレルは上記の最終工程まで挿入したまま
でもよいし、複合材が緻密化し充分な強度を保持
したら、除去したのち更に処理を行なつてもよ
い。
The mandrel may remain inserted until the final step described above, or it may be removed after the composite material is densified and maintains sufficient strength for further processing.

マンドレルを中空状とし、その側面に幾つかの
小さな穴をあけて、複合材の緻密化工程での含浸
を容易にすることも可能である。
It is also possible for the mandrel to be hollow and have several small holes in its side to facilitate impregnation during the densification process of the composite.

使用目的によつては、内層にマンドレルを残し
たまま外層を炭素繊維強化炭素複合材の2層構造
として使用することも可能である。
Depending on the purpose of use, it is also possible to use the outer layer as a two-layer structure of carbon fiber-reinforced carbon composite material while leaving the mandrel in the inner layer.

〔実施例及び比較例〕[Examples and comparative examples]

実施例 1 線膨張係数4.7×10-6/℃を有する炭化ケイ素
からなるマンドレル(外径10mm)を使用して、フ
エノール樹脂(住友化学社製スミライトレンジ
PR−50273)を含浸した炭素繊維(東邦レーヨン
社製ベスフアイトHTA−6000)を、フイラメ
ントワインド法によりマンドレルに巻き角度60゜
で捲回積層し、外径35mmの成形物を得た。この成
形物を170℃で1時間硬化し、250℃で6時間ポス
トキユアしたのち、窒素雰囲気中で50℃/時間で
1000℃まで昇温し炭素化した。
Example 1 Using a mandrel (outer diameter 10 mm) made of silicon carbide with a coefficient of linear expansion of 4.7 × 10 -6 /°C,
Carbon fiber (Besphite HTA-6000 manufactured by Toho Rayon Co., Ltd.) impregnated with PR-50273) was wound around a mandrel by the filament winding method at an angle of 60° and laminated to obtain a molded product with an outer diameter of 35 mm. This molded product was cured at 170℃ for 1 hour, post-cured at 250℃ for 6 hours, and then cured at 50℃/hour in a nitrogen atmosphere.
The temperature was raised to 1000℃ to carbonize.

この複合材を緻密化するため、コールタールへ
の浸漬と前記条件での炭素化とを6回繰返した。
In order to densify this composite material, immersion in coal tar and carbonization under the above conditions were repeated six times.

次いで、芯部の炭化ケイ素材マンドレルを切削
除去したのち、アルゴン雰囲気中で50℃1時間で
昇温し2800℃て黒鉛化した。
Next, the core silicon carbide mandrel was cut and removed, and then the temperature was raised to 50°C for 1 hour in an argon atmosphere to 2800°C to graphitize.

その結果、見掛密度1.55g/cm3のクラツクのな
い均質な円筒状炭素繊維強化炭素複合材が得られ
た。
As a result, a homogeneous cylindrical carbon fiber-reinforced carbon composite material with no cracks and an apparent density of 1.55 g/cm 3 was obtained.

比較例 1 通常のスチール材(線膨張係数2×10-5/℃)
からなるマンドレル(外径30mm)を使用して、実
施例1と同様にして、巻き角度45℃で捲回積層し
て、外径75mmの成形物を得た。この成形物を170
℃で1時間硬化したのち、内芯のスチール製マン
ドレルを引抜いて、更に250℃で8時間ポストキ
ユアした。
Comparative example 1 Ordinary steel material (linear expansion coefficient 2×10 -5 /℃)
Using a mandrel (outer diameter 30 mm), winding and lamination were carried out in the same manner as in Example 1 at a winding angle of 45° C. to obtain a molded product with an outer diameter of 75 mm. This molded product is 170
After curing at 250°C for 1 hour, the inner core steel mandrel was pulled out and post-curing was further carried out at 250°C for 8 hours.

これを窒素雰囲気中で50℃/時間で1000℃まで
昇温し炭素化した。その結果、クラツクが著しく
多発した品質不良の炭素繊維強化炭素複合材が得
られた。
This was heated to 1000°C at a rate of 50°C/hour in a nitrogen atmosphere to carbonize it. As a result, a poor quality carbon fiber-reinforced carbon composite material with a significant number of cracks was obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 500〜1500℃の炭素化温度又は2000℃以上の
熱処理温度において不活性雰囲気中で炭素と反応
せず、1×10-5/℃以下の線膨張係数を有し、か
つ、その炭素化温度以上又は熱処理温度以上の融
点をもつセラミツク材料からなるマンドレルに、
樹脂を含浸した炭素繊維を捲回積層するか、又
は、炭素繊維を捲回積層したのち樹脂を含浸し、
次いで、硬化したのち500〜1500℃で炭素化する
か、又は、更に2000℃以上で熱処理することを特
徴とする炭素繊維強化炭素複合材の製法。
1. Does not react with carbon in an inert atmosphere at a carbonization temperature of 500 to 1500℃ or a heat treatment temperature of 2000℃ or higher, has a linear expansion coefficient of 1×10 -5 /℃ or less, and has a carbonization temperature on a mandrel made of ceramic material with a melting point above or above the heat treatment temperature,
By winding and laminating carbon fibers impregnated with resin, or by winding and laminating carbon fibers and then impregnating them with resin,
A method for producing a carbon fiber-reinforced carbon composite material, which is then cured and then carbonized at 500 to 1,500°C, or further heat-treated at 2,000°C or higher.
JP63279978A 1988-11-05 1988-11-05 Production of carbon composite material reinforced with carbon fiber Granted JPH01153571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63279978A JPH01153571A (en) 1988-11-05 1988-11-05 Production of carbon composite material reinforced with carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63279978A JPH01153571A (en) 1988-11-05 1988-11-05 Production of carbon composite material reinforced with carbon fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10717180A Division JPS5734085A (en) 1980-08-06 1980-08-06 Manufacture of carbon fiber reinforced carbon composite material

Publications (2)

Publication Number Publication Date
JPH01153571A JPH01153571A (en) 1989-06-15
JPH0343227B2 true JPH0343227B2 (en) 1991-07-01

Family

ID=17618599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63279978A Granted JPH01153571A (en) 1988-11-05 1988-11-05 Production of carbon composite material reinforced with carbon fiber

Country Status (1)

Country Link
JP (1) JPH01153571A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11549420B2 (en) 2019-02-04 2023-01-10 Honda Motor Co., Ltd. Outboard motor catalytic converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3917884A (en) * 1973-04-23 1975-11-04 Fiber Materials Method of making wound graphite carbon body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3917884A (en) * 1973-04-23 1975-11-04 Fiber Materials Method of making wound graphite carbon body

Also Published As

Publication number Publication date
JPH01153571A (en) 1989-06-15

Similar Documents

Publication Publication Date Title
US3462289A (en) Process for producing reinforced carbon and graphite bodies
US3936535A (en) Method of producing fiber-reinforced composite members
US4581263A (en) Graphite fiber mold
JPS631265B2 (en)
JPH01167276A (en) Hollow composite body having symmetrical center of axis
US5665464A (en) Carbon fiber-reinforced carbon composite material and process for the preparation thereof
CN113072387A (en) Carbon fiber winding crucible and preparation method thereof
JP3810816B2 (en) Manufacturing method for components made of composite material consisting of fiber reinforcement solidified by liquid process
JP2519042B2 (en) Carbon-carbon composite material manufacturing method
JP2664047B2 (en) Method for producing carbon fiber reinforced carbon composite material
JP4245725B2 (en) High temperature pressure molding furnace member made of carbon fiber reinforced carbon composite material and method for producing the same
JPH0343227B2 (en)
JPH0143621B2 (en)
JPH0555751B2 (en)
JP3008411B2 (en) Double hollow cylinder
JP2762291B2 (en) Manufacturing method of carbonaceous push rod
JPH0378498B2 (en)
JP2002255664A (en) C/c composite material and production method therefor
JP4420371B2 (en) Manufacturing method of screw member made of C / C material
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
KR940010099B1 (en) Process for producing carbon/carbon composite using coaltar-phenol resin
JPH04149068A (en) Double hollow cylinder made of carbon fiber-reinforced carbon composite
JP3128571B2 (en) Method of manufacturing C / C composite product
JPH04160059A (en) Production of carbon fiber reinforcing carbon composite material
JP3249141B2 (en) Tubular composite structure