JPH0343208B2 - - Google Patents

Info

Publication number
JPH0343208B2
JPH0343208B2 JP22367783A JP22367783A JPH0343208B2 JP H0343208 B2 JPH0343208 B2 JP H0343208B2 JP 22367783 A JP22367783 A JP 22367783A JP 22367783 A JP22367783 A JP 22367783A JP H0343208 B2 JPH0343208 B2 JP H0343208B2
Authority
JP
Japan
Prior art keywords
sio
mordenite
mixture
source
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22367783A
Other languages
Japanese (ja)
Other versions
JPS60118624A (en
Inventor
Tooru Murakami
Yasuhiko Kamitoku
Kazumi Noguchi
Haruo Takatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP22367783A priority Critical patent/JPS60118624A/en
Publication of JPS60118624A publication Critical patent/JPS60118624A/en
Publication of JPH0343208B2 publication Critical patent/JPH0343208B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ゼオライトの1種であるモルデナイ
トについて、結晶粒子サイズのそろつた微粉末状
の高シリカモルデナイトの製造方法に関するもの
である。 結晶性アルミノシリケートゼオライトは一定の
結晶構造を有し、構造内に多数の空隙及びトンネ
ルがあり、これによりある大きさの分子は吸着す
るが、それ以上のものは排斥するという機能をも
ち、分子篩とも称される。空隙やトンネルによる
細孔は結晶構造中でSiO4とAlO4が酸素を共有し
て結合する形態によつて決まる。結晶性アルミノ
シリケートゼオライトの一種であるモルデナイト
はW.M.Meierにより構造が解析されたが、SiO4
とAlO4が酸素を共有して結合した構造中の2次
元的に連結した12員環のトンネル構造を特徴とし
たもので、その基本構造はNa8(AlO28
(SiO240・24H2Oである(W.M.Meier;Z.
kristallogr.,115、439−450(1961))。 モルデナイトはその吸着特性から吸着剤として
工業的に用いられており、また、その固体酸性か
ら石油化学における工業用触媒として広く用いら
れている。モルデナイトは天然に産するゼオライ
トの中ではSiO2/Al2O3比が高く、耐熱性、耐酸
性がすぐれているが、近年更にその要請が強ま
り、天然産に比べSiO2/Al2O3比が高いモルデナ
イトの合成方法に関心がもたれ、下記の報告がさ
れている。 (1) O.J.Whittemore Jr.の報告(American
Mineralogist、57、1146−1151(1972)) (2) 特開昭56−160316号公報(東亜燃料工業(株)) (3) 特開昭58−88118号公報(東洋曹達工業(株)) 上にあげた合成法はいずれもSiO2源、Al2O3
源、アルカリ、水等を混合し、水熱処理をほどこ
し高シリカモルデナイトを合成するものである
が、調製法としていずれも困難な点であると思わ
れる。即ち、(1)に関しては原料の調製時において
水性混合物の粘度が高く、均一な水性混合物を得
るのが難しい。また水熱処理時の熱伝導が悪いな
ど、均一なモルデナイトを合成する上で技術的困
難をともなう。(2)に関して言えば、同じ出願人に
より出願されている特開昭58−88119号公報に、
殆んど同じ水熱条件下でZSM−5とモルデナイ
トの混合物と見られる結晶性物質の生成が報告さ
れており、はからずもこの方法における高シリカ
モルデナイトの合成は再現性にとぼしいことを示
している。また本引例の実施例1として記載され
ている方法を再現する為に行なつた比較例2で
も、純度の高い高シリカモルデナイトを合成する
ことは出来なかつた。(3)に関して言えば、原料と
してSiO2源、Al2O3源、アルカリ、水の他に高価
な4級アンモニウム塩を用いなければならないと
いう点で好ましくない。 本発明者らは以上の欠点を克服すべく研究を重
ねた結果、原料を混合する際、水の量を多くして
SiO2源、Al2O3源、Na源および水などが特定の
組成割合になるようにすることによつて、混合物
が均一で透明な溶液になるため取扱いが簡単なこ
と、粘ちような水性混合物の場合のように、均一
にするための熟成操作が不要であること、さらに
重要なことは、水熱処理により得られるモルデナ
イトの結晶の大きさがそろつていること、これが
反応液中に細かく分散したかたちで得られ、洗浄
操作等が容易であること、また得られるモルデナ
イトのSiO2/Al2O3比が天然のものと比べ高いと
いうことを見い出し、本発明に至つた。即ち、本
発明はSiO2源、Al2O3源、Na+源及びモル比にし
て次の組成割合 SiO2/Al2O3=50〜120 OH-/SiO2=0.5〜0.8 Na+/SiO2=0.5〜1.8 H2O/SiO2=50〜150 になるように混合した混合物を160〜200℃で10〜
50時間自己圧力下で水熱処理することを特徴とす
る、結晶サイズのそろつた高シリカモルデナイト
微粉末の製造方法に関するものである。 次に本発明の高シリカモルデナイトの製造方法
について具体的に述べる。本法ではSiO2源、
Al2O3源、Na+源及び水を所定の割合に混合し、
この混合物を、ゼオライトが得られる水熱条件下
で処理し、得られた固体生成物を水洗、乾燥する
ことによつて、結晶粒子サイズのそろつた微粉末
状の高シリカモルデナイトを製造することが出来
る。 SiO2源としては水ガラス、シリカゾル、シリ
カゲル及びシリカが使用できるが、水ガラスとシ
リカゾルが好適に用いられる。 Al2O3源としては、硫酸アルミニウム、硝酸ア
ルミニウム、塩化アルミニウム、アルミン酸ナト
リウム、アルミナゾル、アルミナ、金属アルミニ
ウム等が使用できるが、硫酸アルミニウム、アル
ミン酸ナトリウムが好ましい。 ナトリウム源としては、水酸化ナトリウム等の
ほか、SiO2源やAl2O3源、たとえば水ガラス中に
含まれる酸化ナトリウムやアルミン酸ナトリウム
なども使用することができる。 また、OH-、すなわち混合物中の水酸基の割
合を調製するなどのため、適宜に硫酸、塩酸等の
鉱酸あるいは水酸化ナトリウム等の無機塩基を添
加することができる。 上述のSiO2源やAl2O3源等を所定の割合に混合
するに際しては、混合順序および混合方法は特に
制限されない。 かくの如くして得られた混合物は均一で透明な
溶液となるので取扱いが便利でかつ、粘調な場合
におこなわれる均一にするための熟成操作を省略
し得るという特徴を有する。 次にこの混合物をゼオライトが生成するような
条件下で水熱処理する。すなわち160〜200℃で10
〜50時間密閉容器内で、自己圧力下、撹拌して水
熱処理する。 水熱処理後、反応生成物はロ過ないし遠心分離
により固体成分を分離し、水洗により余剰のイオ
ン性物質を除去した後、100℃で乾燥することに
より結晶サイズのそろつた高シリカモルデナイト
が得られる。 本発明のモルデナイトは、SiO2/Al2O3比が天
然のものよりも高く、また、結晶サイズがそろつ
た微粉末として得られるために反応終了後におこ
なう洗浄操作等が容易であるという特徴を有す
る。 本発明により得られた高シリカモルデナイトの
ひとつの例として、表1にそのX線回折パターン
を示す。なお、これは後述の実施例1(SiO2
Al2O3=98、H2O/SiO2=130)のものである。
この回折データは銅のK−アルフア線の照射によ
る標準のX線技術によつて得たもので、ピーク高
さIがブラツグ角θの2倍、2θの関数としてレコ
ーダーに記録される。I/I。は相対強度であ
り、最強ピークを示す2θ=25.74゜を100としたと
きの相対値である。
The present invention relates to mordenite, which is a type of zeolite, and relates to a method for producing high-silica mordenite in the form of a fine powder with uniform crystal grain sizes. Crystalline aluminosilicate zeolite has a certain crystal structure and has many voids and tunnels within the structure, which has the function of adsorbing molecules of a certain size but excluding molecules larger than that, and is a molecular sieve. Also called. Pores due to voids and tunnels are determined by the form in which SiO 4 and AlO 4 bond by sharing oxygen in the crystal structure. The structure of mordenite, a type of crystalline aluminosilicate zeolite, was analyzed by WMMeier, but SiO 4
It is characterized by a tunnel structure of two-dimensionally connected 12-membered rings in a structure in which AlO 4 and AlO 4 are bonded by sharing oxygen, and its basic structure is Na 8 (AlO 2 ) 8
(SiO 2 ) 40・24H 2 O (WMMeier; Z.
Kristallogr., 115, 439-450 (1961)). Mordenite is used industrially as an adsorbent due to its adsorption properties, and is also widely used as an industrial catalyst in petrochemistry due to its solid acidity. Mordenite has a high SiO 2 /Al 2 O 3 ratio among naturally occurring zeolites and has excellent heat resistance and acid resistance, but in recent years the demand for this has become even stronger, and compared to naturally occurring zeolites, mordenite has a high SiO 2 /Al 2 O 3 ratio. There has been interest in the synthesis method of mordenite with a high ratio, and the following reports have been made. (1) Report of OJ Whittemore Jr. (American
Mineralogist, 57, 1146-1151 (1972)) (2) JP-A-56-160316 (Toa Fuel Industry Co., Ltd.) (3) JP-A-58-88118 (Toyo Soda Kogyo Co., Ltd.) The synthesis methods listed above all use SiO 2 source, Al 2 O 3
High silica mordenite is synthesized by mixing sources, alkali, water, etc. and subjecting it to hydrothermal treatment, but all of these preparation methods seem to be difficult. That is, regarding (1), the viscosity of the aqueous mixture is high during the preparation of the raw materials, making it difficult to obtain a uniform aqueous mixture. Furthermore, there are technical difficulties in synthesizing uniform mordenite, such as poor heat conduction during hydrothermal treatment. Regarding (2), in Japanese Patent Application Laid-open No. 58-88119 filed by the same applicant,
The formation of a crystalline material that appears to be a mixture of ZSM-5 and mordenite under almost the same hydrothermal conditions has been reported, indicating that the synthesis of high-silica mordenite using this method is not very reproducible. Furthermore, even in Comparative Example 2, which was carried out to reproduce the method described as Example 1 of this reference, it was not possible to synthesize high-silica mordenite with high purity. Regarding (3), it is not preferable in that an expensive quaternary ammonium salt must be used as raw materials in addition to a SiO 2 source, an Al 2 O 3 source, an alkali, and water. As a result of repeated research to overcome the above drawbacks, the inventors of the present invention have found that when mixing raw materials, the amount of water is increased.
By adjusting the SiO 2 source, Al 2 O 3 source, Na source, water, etc. to specific composition ratios, the mixture becomes a homogeneous and transparent solution, making it easy to handle. Unlike the case of aqueous mixtures, there is no need for an aging operation to make the mixture homogeneous. What is more important is that the mordenite crystals obtained by hydrothermal treatment are uniform in size, and are finely dispersed in the reaction solution. The present inventors have discovered that mordenite can be obtained in a form that is easy to clean, and that the SiO 2 /Al 2 O 3 ratio of the mordenite obtained is higher than that of natural mordenite, leading to the present invention. That is, the present invention uses SiO 2 source, Al 2 O 3 source, Na + source and the following composition ratio in terms of molar ratio: SiO 2 /Al 2 O 3 = 50 to 120 OH - /SiO 2 = 0.5 to 0.8 Na + / A mixture of SiO 2 = 0.5 to 1.8 H 2 O/SiO 2 = 50 to 150 was heated at 160 to 200°C for 10 to 10 minutes.
This invention relates to a method for producing high-silica mordenite fine powder with uniform crystal size, which is characterized by hydrothermal treatment under autogenous pressure for 50 hours. Next, the method for producing high silica mordenite of the present invention will be specifically described. In this method, SiO 2 source,
Mix Al2O3 source , Na + source and water in a predetermined ratio,
By treating this mixture under hydrothermal conditions that yield zeolite, washing the resulting solid product with water, and drying it, it is possible to produce high-silica mordenite in the form of a fine powder with uniform crystal grain size. I can do it. Water glass, silica sol, silica gel, and silica can be used as the SiO 2 source, and water glass and silica sol are preferably used. As the Al 2 O 3 source, aluminum sulfate, aluminum nitrate, aluminum chloride, sodium aluminate, alumina sol, alumina, metallic aluminum, etc. can be used, but aluminum sulfate and sodium aluminate are preferable. As the sodium source, in addition to sodium hydroxide, it is also possible to use SiO 2 sources and Al 2 O 3 sources, such as sodium oxide and sodium aluminate contained in water glass. Furthermore, in order to adjust the proportion of OH - , that is, hydroxyl groups in the mixture, a mineral acid such as sulfuric acid or hydrochloric acid or an inorganic base such as sodium hydroxide may be added as appropriate. When mixing the above-mentioned SiO 2 source, Al 2 O 3 source, etc. in a predetermined ratio, the mixing order and mixing method are not particularly limited. The mixture thus obtained becomes a homogeneous and transparent solution, which is convenient to handle, and has the advantage of omitting the ripening operation to make it uniform, which is required when the mixture is viscous. This mixture is then hydrothermally treated under conditions such that zeolite is produced. i.e. 10 at 160-200℃
Hydrothermally treat in a closed container for ~50 hours under autogenous pressure with stirring. After hydrothermal treatment, the solid components of the reaction product are separated by filtration or centrifugation, excess ionic substances are removed by washing with water, and high silica mordenite with uniform crystal size is obtained by drying at 100°C. . The mordenite of the present invention has a higher SiO 2 /Al 2 O 3 ratio than natural mordenite, and because it is obtained as a fine powder with uniform crystal size, it is easy to perform cleaning operations after the reaction is completed. have Table 1 shows the X-ray diffraction pattern of one example of high silica mordenite obtained according to the present invention. Note that this is similar to Example 1 (SiO 2 /
Al 2 O 3 = 98, H 2 O/SiO 2 = 130).
The diffraction data was obtained by standard X-ray techniques with K-alpha irradiation of the copper, and the peak height I is recorded on a recorder as a function of twice the Bragg angle θ, 2θ. I/I. is the relative intensity, and is a relative value when 2θ = 25.74°, which indicates the strongest peak, is set as 100.

【表】 本発明によつて得られる高シリカモルデナイト
は通常のモルデナイトと同様に吸着剤や触媒とし
て使用できる。触媒としての用途の1つにメタノ
ールおよび/又はジメチルエーテルの分解反応用
触媒があげられる。 触媒として使用する場合は合成後のカチオンと
してのNaイオンをイオン交換法により全部また
は部分的にプロトンに交換した水素型であること
が好ましい。この交換は公知のイオン交換技術を
利用してアンモニウム水溶液、例えば塩化アンモ
ニウム水溶液で処理して、Naイオンをアンモニ
ウムイオンに変換し、しかるに後焼成によつてア
ンモニアを追い出し、プロトン型に変換できる。
また直接塩化水溶液で処理することによりプロト
ンに変換することも可能である。アンモニア水溶
液又は塩化水素水溶液で処理した後充分水洗浄を
行い、乾燥し、しかる後焼成によつてメタノール
及び/又はジメチルエーテル転化反応の触媒とし
て供することができる。反応は原料と触媒とが十
分接触するような方式を用いて、広い範囲の条件
で行うことができる。 次に本発明の実施例を具体的に説明するが、本
発明はその要旨を越えない限り、これに限定され
るものではない。 実施例 1 硫酸アルミニウム16〜18水和物4.23gと水酸化
ナトリウム(純度95%)27.3gを水600gに溶か
しA液とし、4号水ガラス(SiO224%、Na2O6.5
%)160gを水600gに溶かし、これをB液とし
た。攪拌しながらA液にB液を加え、次に、これ
に2.5N硫酸水溶液212mlを加え、混合物を得た。
この混合物のモル比はSiO2/Al2O3=98、OH-
SiO2=0.65、Na+/SiO2=1.54、2SO2- 4/SiO2
0.89、H2O/SiO2=130であつた。 内容積2のオートクレーブに混合物を仕込
み、自己圧力下180℃で16時間攪拌しながら
(500r.p.m.)水熱処理を行なつた。反応混合物は
遠心分離機を用いて固体成分と液体成分に分け、
固体成分は充分洗浄をほどこし、100℃で乾燥し
た。得られた白色粉末の生成物をX線回折で分析
したところ表1及び図1のパターンを示してお
り、他のゼオライトやゲルのないことを確認し
た。また走査型電子顕微鏡により生成物をしらべ
たところ、結晶は長径3μm,短径1μmの葉巻型
であり、個々の結晶サイズがそろつているのが観
察された。 この生成物を空気中で530℃、8時間焼成した
後、水を飽和吸着させた。これを化学分析した結
果、組成は1.10Na2O・16.0SiO2・9.4H2Oであつ
た。なお水分量は500℃、1時間の焼成時の重量
減より求めた。 比較例 1 硫酸アルミニウム16〜18水和物1.64gと水酸化
ナトリウム11.1gを水51gに溶かしA液とし、4
号水ガラス62gを水30gに溶かし、これをB液と
した。攪拌しながらA液にB液を加え、次に、こ
れに2.5N硫酸水溶液82mlを加え、混合物を得た。
この混合物のモル比はSiO2/Al2O3=98、OH-
SiO2=0.65、Na+/SiO2=1.54、2SO2- 4/SiO2
0.89、H2O/SiO2=44であつた。内容積300mlの
オートクレーブに混合物を仕込み、自己圧力下
180℃で16時間攪拌しながら(500r.p.m.)水熱処
理を行なつた。大きな固形物が反応液中に得られ
た。これを粉砕し、充分洗浄をほどこし100℃で
乾燥した。得られた生成物をX線回折で分析した
ところ表1と同じ特徴のパターンを示し、モルデ
ナイトであるのが確認された。また走査型電子顕
微鏡による観察で0.5〜5μm程度の、大きさの不
ぞろいの結晶が集積し、大きな結晶をつくつてい
るのがわかつた。生成物を実施例1と同様の操作
で化学分析した結果、組成は1.2Na2O・Al2O3
11.2SiO2・7.0H2Oであつた。 実施例 2〜4 原料組成を表2記載のごとく変えた以外は実施
例1と同様の操作をほどこした。実施例2〜4、
いずれも結晶サイズ、及び、化学分析による生成
物組成を表2にあわせ記載する。 比較例 2 特開昭56−160316号公報に記載された実施例1
の追試を行なつた。 水150gに硫酸アルミニウム16〜18水和物9.1
g、濃硫酸1.1g、塩化ナトリウム14gを溶かし、
これに3号水ガラス(SiO229%、Na2O9.5%)49
gを添加し、水性混合物を得た。この混合物のモ
ル組成はSiO2/Al2O3=17、OH-/SiO2=019、
Na+/SiO2=1.64、(2SO2- 4+Cl-)/SiO2=38で
あつた。この混合物を室温で1時間攪拌熟成後、
オートクレーブに仕込み自己圧力下180℃、20時
間水熱処理を行なつた。得られた固体成分を充分
水洗後、100℃で乾燥した。これをX線回折で分
析したところ、モルデナイトとZSM−5型の結
晶の混つた混合物であつた。
[Table] The high silica mordenite obtained by the present invention can be used as an adsorbent or a catalyst in the same way as ordinary mordenite. One of the uses as a catalyst is as a catalyst for the decomposition reaction of methanol and/or dimethyl ether. When used as a catalyst, it is preferably a hydrogen type in which Na ions as cations after synthesis are completely or partially exchanged with protons by an ion exchange method. This exchange can be carried out using known ion exchange techniques by treating with an aqueous ammonium solution, such as an aqueous ammonium chloride solution, to convert the Na ions into ammonium ions, which can then be post-calcined to drive off the ammonia and convert it into the proton form.
It is also possible to convert it into protons by direct treatment with an aqueous chloride solution. After being treated with an ammonia aqueous solution or a hydrogen chloride aqueous solution, it is thoroughly washed with water, dried, and then calcined to serve as a catalyst for methanol and/or dimethyl ether conversion reaction. The reaction can be carried out under a wide range of conditions using a method that allows sufficient contact between the raw materials and the catalyst. Next, examples of the present invention will be described in detail, but the present invention is not limited thereto unless it exceeds the gist thereof. Example 1 4.23 g of aluminum sulfate 16-18 hydrate and 27.3 g of sodium hydroxide (purity 95%) were dissolved in 600 g of water to make solution A, and No. 4 water glass (SiO 2 24%, Na 2 O 6.5
%) was dissolved in 600 g of water and this was used as Solution B. Solution B was added to solution A while stirring, and then 212 ml of a 2.5N sulfuric acid aqueous solution was added thereto to obtain a mixture.
The molar ratio of this mixture is SiO 2 /Al 2 O 3 = 98, OH - /
SiO 2 = 0.65, Na + /SiO 2 = 1.54, 2SO 2- 4 /SiO 2 =
0.89, H 2 O/SiO 2 =130. The mixture was charged into an autoclave with an internal volume of 2, and hydrothermal treatment was performed at 180°C under autogenous pressure for 16 hours with stirring (500 rpm). The reaction mixture is separated into solid and liquid components using a centrifuge.
The solid components were thoroughly washed and dried at 100°C. When the obtained white powder product was analyzed by X-ray diffraction, it showed the pattern shown in Table 1 and FIG. 1, and it was confirmed that there was no other zeolite or gel. When the product was examined using a scanning electron microscope, it was observed that the crystals were cigar-shaped with a major axis of 3 μm and a minor axis of 1 μm, and that the individual crystal sizes were uniform. After this product was calcined in air at 530°C for 8 hours, water was saturated and adsorbed. As a result of chemical analysis, the composition was 1.10Na 2 O, 16.0SiO 2 , and 9.4H 2 O. The moisture content was determined from the weight loss during firing at 500°C for 1 hour. Comparative Example 1 1.64 g of aluminum sulfate 16-18 hydrate and 11.1 g of sodium hydroxide were dissolved in 51 g of water to make solution A.
62 g of No. 1 water glass was dissolved in 30 g of water, and this was used as liquid B. Solution B was added to solution A while stirring, and then 82 ml of 2.5N sulfuric acid aqueous solution was added thereto to obtain a mixture.
The molar ratio of this mixture is SiO 2 /Al 2 O 3 = 98, OH - /
SiO 2 = 0.65, Na + /SiO 2 = 1.54, 2SO 2- 4 /SiO 2 =
0.89, H 2 O/SiO 2 =44. Pour the mixture into an autoclave with an internal volume of 300 ml and place it under autoclave pressure.
Hydrothermal treatment was carried out at 180° C. with stirring (500 rpm) for 16 hours. A large solid was obtained in the reaction solution. This was crushed, thoroughly washed, and dried at 100°C. When the obtained product was analyzed by X-ray diffraction, it showed a pattern with the same characteristics as in Table 1, and was confirmed to be mordenite. Furthermore, observation using a scanning electron microscope revealed that irregularly sized crystals of about 0.5 to 5 μm were accumulated to form large crystals. As a result of chemical analysis of the product in the same manner as in Example 1, the composition was 1.2Na 2 O・Al 2 O 3
It was 11.2SiO 2 .7.0H 2 O. Examples 2 to 4 The same operations as in Example 1 were performed except that the raw material composition was changed as shown in Table 2. Examples 2 to 4,
In each case, the crystal size and product composition determined by chemical analysis are listed in Table 2. Comparative Example 2 Example 1 described in JP-A-56-160316
I conducted a follow-up test. Aluminum sulfate 16-18 hydrate 9.1% in 150g of water
Dissolve g, 1.1 g of concentrated sulfuric acid, and 14 g of sodium chloride,
To this, No. 3 water glass (SiO 2 29%, Na 2 O 9.5%) 49
g was added to obtain an aqueous mixture. The molar composition of this mixture is SiO 2 /Al 2 O 3 = 17, OH - /SiO 2 = 019,
Na + /SiO 2 =1.64, (2SO 2- 4 +Cl - )/SiO 2 = 38. After stirring and aging this mixture at room temperature for 1 hour,
The mixture was placed in an autoclave and subjected to hydrothermal treatment at 180°C for 20 hours under self-pressure. The obtained solid component was thoroughly washed with water and then dried at 100°C. When this was analyzed by X-ray diffraction, it was found to be a mixture of mordenite and ZSM-5 type crystals.

【表】 実施例 5 実施例1で得られた焼成済モルデナイト1gに
対し、5%塩化アンモニウム水溶液50mlの割合で
両者を混合し、室温で1時間攪拌処理をする操作
を3回繰返し、ナトリウムイオンをアンモニウム
イオン交換した。その後充分洗浄を行ない、100
℃で乾燥し、次いで、500℃で16時間空気中で焼
成を行い、水素型に変換した。これを圧力400
Kg/cm2で打錠し、次いで、これを粉砕し、10×20
メツシユにそろえたもの2mlを内径10mmの反応管
に充填した。液状メタノールを4ml/hrの速度で
気化器に送り、ここで45ml/minで送られてくる
アルゴンガスと混合して反応管に導き、300℃で
4時間、次いで昇温し、320℃で2時間、340℃で
2時間反応を行なつた。生成物の分析はガスクロ
マトグラフを用いて行なつた。結果を表3に示
す。
[Table] Example 5 1 g of calcined mordenite obtained in Example 1 was mixed with 50 ml of a 5% ammonium chloride aqueous solution, and the operation of stirring at room temperature for 1 hour was repeated three times to remove sodium ions. was ammonium ion exchanged. After that, wash thoroughly and
It was dried at ℃ and then calcined in air at 500 ℃ for 16 hours to convert it into a hydrogen form. Pressure 400
Compressed into tablets at Kg/cm 2 and then crushed into 10 x 20
2 ml of the mesh was filled into a reaction tube with an inner diameter of 10 mm. Liquid methanol was sent to the vaporizer at a rate of 4 ml/hr, where it was mixed with argon gas sent at 45 ml/min, led to the reaction tube, heated to 300°C for 4 hours, then heated to 320°C for 2 hours. The reaction was carried out at 340°C for 2 hours. Analysis of the product was performed using a gas chromatograph. The results are shown in Table 3.

【表】【table】

【表】 ス収率
[Table] Yield

【図面の簡単な説明】[Brief explanation of drawings]

図1は実施例1で合成したモルデナイトのX線
回折チヤートである。
FIG. 1 is an X-ray diffraction chart of mordenite synthesized in Example 1.

Claims (1)

【特許請求の範囲】 1 SiO2源、Al2O3源、Na+源および水をモル比
にして次の組成割合 SiO2/Al2O3=50〜120 OH-/SiO2=0.5〜0.8 Na+/SiO2=0.5〜1.8 H2O/SiO2=50〜150 (ここで、OH-は混合物中の遊離の水酸基であ
る。) になるように混合した混合物を、160〜200℃で10
〜50時間、自己圧力下で水熱処理することを特徴
とする、結晶サイズのそろつた高シリカモルデナ
イト微粉末の製造方法。
[Claims] 1. The following compositional ratio of SiO 2 source, Al 2 O 3 source, Na + source, and water: SiO 2 /Al 2 O 3 = 50 to 120 OH - /SiO 2 = 0.5 to 0.8 Na + /SiO 2 = 0.5 to 1.8 H 2 O / SiO 2 = 50 to 150 (Here, OH - is a free hydroxyl group in the mixture.) The mixture was heated to 160 to 200°C. in 10
A method for producing high-silica mordenite fine powder with uniform crystal size, characterized by hydrothermal treatment under autogenous pressure for ~50 hours.
JP22367783A 1983-11-28 1983-11-28 Production of high-silica mordenite having uniform crystal size Granted JPS60118624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22367783A JPS60118624A (en) 1983-11-28 1983-11-28 Production of high-silica mordenite having uniform crystal size

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22367783A JPS60118624A (en) 1983-11-28 1983-11-28 Production of high-silica mordenite having uniform crystal size

Publications (2)

Publication Number Publication Date
JPS60118624A JPS60118624A (en) 1985-06-26
JPH0343208B2 true JPH0343208B2 (en) 1991-07-01

Family

ID=16801914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22367783A Granted JPS60118624A (en) 1983-11-28 1983-11-28 Production of high-silica mordenite having uniform crystal size

Country Status (1)

Country Link
JP (1) JPS60118624A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01305811A (en) * 1988-06-01 1989-12-11 Babcock Hitachi Kk Production of high silica mordenite type zeolite
DE19707994A1 (en) 1997-02-27 1998-09-03 Sued Chemie Ag Process for the production of zeolites with a high Si / Al atomic ratio
JP2006187961A (en) * 2005-01-06 2006-07-20 Gifu Plast Ind Co Ltd Molding method of assembled box by in-mold molding

Also Published As

Publication number Publication date
JPS60118624A (en) 1985-06-26

Similar Documents

Publication Publication Date Title
RU2599745C2 (en) Emm-23 molecular sieve, its synthesis and application
US4397827A (en) Silico-crystal method of preparing same and catalytic conversion therewith
CA1283648C (en) Zeolite ssz-25
US3692470A (en) Crystalline zeolite zsm-10
US4076842A (en) Crystalline zeolite ZSM-23 and synthesis thereof
US10029247B2 (en) Chabazite-type zeolite and process for producing the same
JP6065293B2 (en) EMM-22 molecular sieve material, its synthesis and use
US5989316A (en) Separation of nitrogen from mixtures thereof with methane utilizing barium exchanged ETS-4
RU2644474C2 (en) Emm-25 molecular sieve material, its synthesis and use
US5026532A (en) Process for the preparation of an improved chabazite for the purification of bulk gases
US4632815A (en) Crystalline layered silicate
JPS6035284B2 (en) Manufacturing method of pentasil type zeolite
CA1269088A (en) Zeolite having a paulingite-like structure (ecr-18) and a method for its preparation
US4448675A (en) Silico-crystal ZSM-48 method of preparing same and catalytic conversion therewith
JPH0153206B2 (en)
US3720753A (en) Method for preparing a small pore synthetic zeolite
US5399337A (en) Synthesis of crystalline SUZ-9
JPH0343208B2 (en)
US3078645A (en) Hydrocarbon separation
JP7119128B2 (en) Synthesis of molecular sieve SSZ-109
JPH0153207B2 (en)
US3674425A (en) Process for preparing a synthetic crystalline zeolite
JPS6197130A (en) Synthesis of zsm-23 zeolite
JPH0343206B2 (en)
EP0136067A2 (en) Tailoring acid strength of ZSM-11