JPH0343121B2 - - Google Patents

Info

Publication number
JPH0343121B2
JPH0343121B2 JP60041232A JP4123285A JPH0343121B2 JP H0343121 B2 JPH0343121 B2 JP H0343121B2 JP 60041232 A JP60041232 A JP 60041232A JP 4123285 A JP4123285 A JP 4123285A JP H0343121 B2 JPH0343121 B2 JP H0343121B2
Authority
JP
Japan
Prior art keywords
heat
container
resin
sealing
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60041232A
Other languages
Japanese (ja)
Other versions
JPS61203302A (en
Inventor
Tadahiko Kuzura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP60041232A priority Critical patent/JPS61203302A/en
Publication of JPS61203302A publication Critical patent/JPS61203302A/en
Publication of JPH0343121B2 publication Critical patent/JPH0343121B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3604Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint
    • B29C65/3608Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements
    • B29C65/3616Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements comprising discontinuous fibre-reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/3408Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements
    • B29C65/3416Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements comprising discontinuous fibre-reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3672Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint
    • B29C65/3676Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint being metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • B29C66/1312Single flange to flange joints, the parts to be joined being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/542Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles joining hollow covers or hollow bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/545Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles one hollow-preform being placed inside the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7232General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer
    • B29C66/72321General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer consisting of metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3672Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint
    • B29C65/3676Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint being metallic
    • B29C65/368Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint being metallic with a polymer coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Closing Of Containers (AREA)
  • Packages (AREA)
  • Package Closures (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、ヒートシール容器の製造方法に関す
るもので、より詳細には包装容器の開口端部とヒ
ートシール蓋との高周波誘導加熱によるヒートシ
ールを効率良く且つ円滑に行うための改良に関す
る。 従来の技術及び発明の技術的課題 金属罐は、ほぼ完全な密封性、ガスバリヤー性
を有し且つ形態保持性に優れた包装容器として長
年使用されてきたが、近年廃棄処理が困難なこと
から所謂罐公害の問題を生じるに至つている。 この金属罐に代わるものとして、近年プラスチ
ツクを構成素材とした各種包装用立体容器が広く
使用されるに至つている。しかしながら、プラス
チツク製の立体容器では、罐のような巻締による
蓋体との密封が困難であることから、容器開口端
部と蓋体との密封は、ヒートシール(熱封緘)に
より一般に行われている。ヒートシール操作は高
周波誘導加熱により行うことが、ヒートシール時
間の短縮、樹脂類の熱劣化防止及び作業性等の点
で有利であり、このためにヒートシール蓋として
は、金属箔から成る基体にヒートシール性樹脂内
面材を積層したものが使用されているが、容器開
口端側からの加熱ができないために、ヒートシー
ルに未だ比較的長時間を必要としたり、或いはヒ
ートシールの確実さや一様性に欠けるという欠点
を生じる。 また、プラスチツク製の透明立体容器の場合、
蓋体も透明であることが要求されることが多い。
このような透明プラスチツク製蓋体のヒートシー
ルには高周波誘導加熱を利用することが不可能で
あるため、従来のヒートバーによるヒートシール
を行わねばならず、ヒートシールに長時間を必要
とした。 発明の目的 従つて、本発明の目的は、上述した従来のヒー
トシール法における上記欠点が解消され、容器開
口端部と蓋材との間で、高周波誘導加熱により、
比較的短時間の内に確実なヒートシールによる密
封構造が導入される方法を提供するにある。 本発明の他の目的は、ヒートシールされるべき
容器開口端部或いは蓋材周辺において、高周波誘
導加熱に必要な効率的な発熱と、ヒートシール面
への優れた熱伝導性とが維持されるヒートシール
方法を提供するにある。 発明の構成 本発明によれば、包装容器と蓋材とのヒートシ
ールに際して、少なくともヒートシールされるべ
き容器開口端部又はヒートシールされるべき蓋材
の周辺部のいずれか一方、或いは両方として、ア
スペクト比(l/d)が2以上の金属繊維と熱可
塑性樹脂との複合物から形成されたものを用い、
前記蓋材と前記包装容器の開口端部とを重ね合せ
た状態で、高周波誘導加熱に付することを特徴と
するヒートシール容器の製造方法が提供される。 発明の特徴及び作用効果 本発明は、アスペクト比が一定の範囲、即ち2
以上の範囲にある金属繊維を熱可塑性樹脂中に配
合したもので、包装容器のヒートシールされるべ
き開口端部又は蓋体周辺部を形成させ、これを高
周波誘導加熱によるヒートシールに用いると、こ
の金属繊維が誘導加熱の際の極めて効率的な発熱
体となり、しかもヒートシール面への良好な熱伝
導状態も得られるという知見に基づくものであ
る。 一般に、交番電磁場中に金属のような 導体を
置くと、電磁誘導作用によりウズ電流が流れ、ウ
ズ電流損で発熱する。また、金属が磁性体の場合
には、これに更に磁気ヒステリシス損失が加わつ
て一層強く発熱する。このウズ電流は金属の表面
部分で優先的に発生し、かくして発熱も金属の表
面部分で顕著に生ずる。 本発明においては、アスペクト比が2以上の金
属繊維を用いるため、単位重量当りの表面積、即
比表面積が著しく増大し、樹脂中への配合量を一
定にして比較した場合、誘導加熱による発熱を著
しく増大させてヒートシールするべき容器開口端
部或いは蓋材周辺部の加熱を効率良く行い得ると
いう利点がある。 また、金属繊維を配合した熱可塑性樹脂の電気
伝導性は金属繊維のアスペクト比によつて大きく
かわる。即ち、アスペクト比が大きいほど金属繊
維間の接触点が多くなるため、樹脂中への配合量
を一定にして比較した場合、電気伝導性が極めて
良好となる。 従つて、アスペクト比の大きい金属繊維を用い
た場合、配合量を少くして、且つ高周波誘導加熱
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing a heat-sealing container, and more specifically to a method for efficiently and smoothly heat-sealing the open end of a packaging container and a heat-sealing lid by high-frequency induction heating. Regarding improvements. Prior Art and Technical Problems of the Invention Metal cans have been used for many years as packaging containers that have almost perfect sealing properties, gas barrier properties, and excellent shape retention, but in recent years metal cans have become difficult to dispose of. This has led to the problem of so-called can pollution. As an alternative to metal cans, various three-dimensional packaging containers made of plastic have come into wide use in recent years. However, since it is difficult to seal a three-dimensional plastic container with a lid by seaming like a can, the opening end of the container and the lid are generally sealed by heat sealing. ing. It is advantageous to perform the heat-sealing operation using high-frequency induction heating in terms of shortening the heat-sealing time, preventing thermal deterioration of the resin, and improving workability. Laminated heat-sealing resin inner materials are used, but because heating cannot be performed from the open end of the container, heat-sealing still requires a relatively long time, or heat-sealing is not reliable or uniform. It has the disadvantage of lacking sex. In addition, in the case of transparent three-dimensional containers made of plastic,
The lid is also often required to be transparent.
Since it is impossible to use high-frequency induction heating to heat-seal such a transparent plastic lid, heat-sealing must be performed using a conventional heat bar, which requires a long time for heat-sealing. OBJECTS OF THE INVENTION Therefore, an object of the present invention is to eliminate the above-mentioned drawbacks of the conventional heat sealing method, and to perform high-frequency induction heating between the open end of the container and the lid.
It is an object of the present invention to provide a method for introducing a reliable sealing structure by heat sealing within a relatively short period of time. Another object of the present invention is to maintain efficient heat generation necessary for high-frequency induction heating and excellent thermal conductivity to the heat-sealing surface at the opening end of the container to be heat-sealed or around the lid material. To provide a heat sealing method. Structure of the Invention According to the present invention, when heat-sealing a packaging container and a lid, at least one or both of the opening end of the container to be heat-sealed or the peripheral part of the lid to be heat-sealed, Using a composite of metal fiber and thermoplastic resin with an aspect ratio (l/d) of 2 or more,
There is provided a method for manufacturing a heat-sealed container, characterized in that the lid material and the open end of the packaging container are subjected to high-frequency induction heating in a superimposed state. Characteristics and Effects of the Invention The present invention is characterized in that the aspect ratio is within a certain range, that is, 2.
When the metal fibers in the above range are blended into a thermoplastic resin to form the opening end or the periphery of the lid of the packaging container to be heat-sealed, and this is used for heat-sealing by high-frequency induction heating, This is based on the knowledge that this metal fiber becomes an extremely efficient heating element during induction heating, and also provides good heat conduction to the heat sealing surface. Generally, when a conductor such as a metal is placed in an alternating electromagnetic field, a vortex current flows due to electromagnetic induction, and heat is generated due to vortex current loss. Furthermore, when the metal is a magnetic material, magnetic hysteresis loss is further added to this, resulting in even stronger heat generation. This squirt current is preferentially generated at the surface of the metal, and thus heat generation is also significant at the surface of the metal. In the present invention, since metal fibers with an aspect ratio of 2 or more are used, the surface area per unit weight and immediate specific surface area are significantly increased. There is an advantage that the heating of the opening end of the container or the surrounding area of the lid material to be heat-sealed can be significantly increased and efficiently performed. Furthermore, the electrical conductivity of a thermoplastic resin blended with metal fibers varies greatly depending on the aspect ratio of the metal fibers. That is, the larger the aspect ratio, the more contact points between metal fibers, and therefore, when compared with a constant amount of metal fibers incorporated into the resin, the electrical conductivity becomes extremely good. Therefore, when using metal fibers with a large aspect ratio, it is necessary to reduce the amount of metal fibers mixed and use high-frequency induction heating.

【表】 上記式から、アスペクト比の大きい金属繊維を
樹脂中に配合すると、比較的少ない配合量で、熱
伝導率の大巾な向上が可能となるという事実が明
白である。 かくして、本発明に従い、金属繊維を配合した
樹脂複合物で容器のヒートシールすべき開口端部
又は蓋体の周辺部を形成させると、誘導加熱によ
り、ヒートシール面を容器開口端部側から、迅速
にしかも効率よく加熱することが可能となるので
ある。 しかも、樹脂中に配合された金属繊維は、配合
組成物の剛性、寸法安定性及び耐熱性を高めると
いう付加的な利点をもたらす。この利点により、
本発明方法によるヒートシール容器では、密封上
最も重要な開口端部に容器の形態保持上必要な剛
性、寸法安定性や更に耐熱性が付与されるもので
ある。 本発明をその実施の態様について以下に詳細に
説明する。 発明の実施の態様 本発明において、金属繊維としては、溶融紡糸
法、伸展法、押出法、切削法、びびり振動切削法
等のそれ自体公知の任意の方法で得られる金属繊
維が使用される。繊維を構成する金属の種類は、
鋼、鋳鉄、ステンレススチール、黄銅、銅、アル
ミニウム等の任意のものであつてもよく、式l/
d(式中lは金属繊維の長さ、dは金属繊維の径)
で定義されるアスペクト比は、2以上、一層好適
には10乃至5000の範囲にあることが、本発明の目
的に関して重要である。 即ち、配合する金属繊維の量を比較的低い範囲
の一定値とし、且つ金属繊維のアスペクト比を変
化させた場合、配合樹脂組成物の熱伝導率は或る
基準のアスペクト比を越えると、急激に大きくな
る傾向を示す。これは、充填した金属繊維のアス
ペクト比が或る基準値を越えるとマトリツクス内
でほぼ均一に接触し、安定した熱の伝導路を形成
するためと考えられる。 金属繊維の好適なものは、径が1乃至1000μ
m、特に5乃至100μmであり、そのステーブル
長は0.1乃至1000mm、特に0.5乃至100mmのもので
ある。 金属繊維を配合する樹脂は熱成形可能でヒート
シール可能な熱可塑性樹脂であれは、特に制限な
しに使用可能であり、例えば、低−、中−または
高−密度ポリエチレン、結晶性ポリプロピレン、
結晶性エチレン−プロピレン共重合体、プロピレ
ン−ブテン−共重合体、イオン架橋オレフイン共
重合体等のオレフイン系樹脂;ポリスチレン、ス
チレン−ブタジエン共重合体、スチレン−ブタジ
エン−アクリロニトリル共重合体等のスチレン系
樹脂;ポリカーボネート;ポリエステル;ポリア
ミド;アクリル系樹脂;ポリアセタール樹脂等が
使用される。これらの内でも、経済性及び製造の
容易さの点では、オレフイン系樹脂が好ましく、
レトルト殺菌性の点ではポリプロピレンが最も望
ましい。 熱可塑性樹脂への金属繊維の配合量は、金属繊
維のアスペクト比や径によつても相違するが、樹
脂を基準にして1乃至60容積%、特に5乃至40容
積%の範囲内にあるのが望ましい。即ち、この範
囲を下廻ると熱伝導性での顕著な改善が期待され
ず、一方上記範囲を越えると、容器への熱成形性
が悪くなり、容器の機械的性質等も低下するよう
になる。 樹脂と金属繊維との混合は、両者をドライブレ
ンドし、必要によりこの混合物を樹脂の溶融条件
下に混練することにより容易に行われる。混練操
作は、例えばロール、ニーダー、ペレタイザー等
を用いて行つてもよいし、また押出機、射出機等
のシリンダー内で行うこともできる。 本発明方法に用いる容器本体は、ヒートシール
すべき開口端部のみが金属繊維配合樹脂複合物か
ら形成されていてもよいし、またこの開口端部を
含めて容器本体全体が金属繊維配合樹脂複合物か
ら形成されていてもよい。 前者の場合、例えばプラスチツクを構成素材と
するそれ自体公知の容器本体に対して、前述した
金属繊維配合樹脂複合物を、ヒートシール用フラ
ンジの形で設ける。或いは、このようなフランジ
が形成されている容器の場合には、フランジ上に
ヒートシーラント層として設ける。この場合容器
本体はプラスチツク単独から成る容器であつても
よいし、またプラスチツクと紙及び/又は金属箔
とから成る複合容器であつてもよい。 また、後者の場合容器本体の成形は、金属繊維
配合樹脂を用いる点を除けば、それ自体公知の手
段で製造できる。また、容器自体の構成も、金属
繊維配合樹脂組成物の単層容器であつてもよい
し、また金属繊維配合樹脂組成物の層と、他の樹
脂層及び/又は金属箔層との積層容器であつても
よい。 例えば、容器の成形は、前記組成物をパリソン
の形に溶融押出し次いでこれをボトル形状にブロ
ー成形することによつても行い得るし、また直接
容器形状のキヤビテイを備えた金型内に射出する
ことによつても行い得る。更に、上記組成物のシ
ートを作成し、このシートを真空成形、圧空成
形、プラグアシスト成形、張出し成形等に付する
ことによつて、カツプ状のフランジ付有底容器と
することができる。また、押出或いは射出によ
り、一旦パイプ或いは有底プリフオームを形成
し、このパイプ或いは有底プリフオームを、樹脂
の延伸温度において、軸方向の引張延伸と周方向
への膨脹延伸とに付することにより、樹脂マトリ
ツクスが二軸方向に分子配向された容器を得るこ
ともできる。更にまた、前記組成物をパイプの形
に溶融押出し、これを所定寸法に裁断し、両開口
密封形の容器胴とすることができる。 本発明方法に用いる蓋体は、ヒートシールすべ
き周辺部のみが金属繊維配合樹脂複合物から形成
されていてもよいし、また蓋体全体が金属繊維配
合樹脂複合物から形成されていてもよい。このよ
うな金属繊維配合樹脂複合物から成るヒートシー
ル部が設けられた蓋体を用いる場合、容器本体の
フランジ部等のヒートシール部は金属繊維配合樹
脂複合物から形成されている必要はない。 本発明に用いる容器の一例を示す第1図及び第
2図において、この容器1はプラスチツクシート
の絞り成形で形成されたカツプ状の容器であり、
無継目の胴部2、胴部の下端に継目なしに連なる
底部3及び胴部の上端に設けられたフランジ部4
から成つている。フランジ部4の上面には、金属
繊維配合樹脂組成物の層5が、ヒートシールの目
的のために、リング状に設けられている。この層
5は、第2図の拡大断面図に示す通り、熱可塑性
樹脂から成るマトリツクス6と、このマトリツク
ス中に分散された金属繊維ステーブル7とから成
つている。 この容器の密封に使用される蓋体を示す第3図
において、この蓋体8は金属箔基体9、金属箔基
体の外面側にウレタン系接着剤のような適当な接
着剤(図示せず)を介して貼合された二軸延伸ポ
リエステルフイルムのような保護樹脂層10及び
金属箔基体の内面側に施されたオレフイン樹脂フ
イルムのようなヒートシール性樹脂内面材層11
から成つている。図示していないが、この蓋体に
は、例えば特開昭57−194958号公報に示すような
それ自体公知の易開封性機構が設けられていても
よい。 容器本体1と蓋体8とのヒートシールによる密
封を説明するための第4図において、容器本体1
と蓋体8とは、容器本体1の開口端に位置する金
属繊維配合樹脂層5と蓋体8のヒートシーラント
内面材層11とが対面するように重ね合される。
容器本体1のフランジ部4の下面側及び蓋体8の
周縁部とは、高周波誘導加熱コイル12を備えた
下方支持部材14及び上方押圧部材15で押圧下
保持される。次いで高周波誘導加熱コイル12へ
の通電が行われ、金属繊維7及び金属箔9に夫々
ウズ電流が発生して、樹脂マトリツクス6及びヒ
ートシール性樹脂層11の加熱が効率良く行わ
れ、その結果として、容器本体と蓋とのヒートシ
ールが全面にわたつて一様に且つ短時間の内に効
率良く行われることになる。尚、ヒートシール後
のフランジ部や蓋体の冷却は、冷風或いは冷水を
吹付けるか、或いは前述した部材14,15に冷
却機構(図示せず)を設けることにより容易に行
うことができる。 容器本体のヒートシールすべき部分のみを金属
繊維配合樹脂組成物で形成する代りに、第5図に
示す通り、容器全体を金属繊維配合樹脂組成物6
で形成し得ることが理解されるべきである。 本発明の容器の製造に用いる好適な積層体を示
す第6図において、この積層体16は、金属繊維
配合樹脂組成物から成る基体層17と、その両方
の面に施された金属繊維末配合の保護樹脂層18
及び19とから成る。保護樹脂層18及び19
は、基体層17を構成する樹脂層に対し、熱接着
性を有する樹脂であることが好ましく、最も好適
には基体層17を構成する樹脂層と同種である。 保護樹脂層18及び19は、基体層17の厚み
の1/100乃至1/5の厚みでしかも最終容器の形で3
乃至400μm、特に5乃至100μmの厚みを有する
ことが、優れた熱伝導性を損わずに、金属腐食及
び金属溶出を防止する点で望ましい。 この種の積層体は、金属繊維配合樹脂組成物と
金属繊維末配合の樹脂とを、多層多重ダイスを通
して共押出することにより容易に形成され、この
積層体を用いることにより、第6図の断面形状を
有するボトル等の中空成形容器、パイプ状容器胴
及び有底カツプ状容器が得られる。また、別法と
して金属繊維末配合の樹脂フイルム間に金属繊維
配合樹脂溶融物を押出し、所謂サンドイツチラミ
ネーシヨンによつても、真空成形等に用いる積層
シートが容易に得られる。 本発明のこの積層構造の容器においては、金属
繊維の外面への露出が有効に防止され、外観特性
や腐食防止の点で顕著な利点が達成され、更に表
面の平滑性、ヒートシール性、衛生的特性等も向
上する。特に保護樹脂層18及び19として、二
酸化チタン、酸化鉄、酸化亜鉛、硫酸バリウム、
炭酸カルシウム等の顔料を配合すると、金属繊維
配合層が隠蔽されて、外観特性が一層向上すると
いう利点がある。 本発明に用いる蓋体の他の例を示す第7図にお
いて、この蓋体20はガスバリヤー層21、外面
保護樹脂層22、内面保護樹脂層23及び金属繊
維配合樹脂組成物から成るヒートシール用リング
24から成つている。この様な蓋体を使用する場
合、容器本体としては第8図に示すようなフラン
ジ部に金属繊維配合樹脂組成物から成るリングが
設けられていないものが使用でき、ガスバリヤー
層25、外面保護樹脂層26、内面保護樹脂層2
7から成つている。 本発明方法において、ヒートシール時の条件
は、それ自体公知の条件であつてもよい。例え
ば、高周波誘導加熱の電源としては、10KHz乃至
50MHzの高周波を使用することができ、ヒートシ
ール時の圧力は、0.5乃至5Kg/cm2の範囲でよく、
またヒートシール面の加熱温度は、樹脂の融点以
上、その熱劣化温度以下の温度であればよい。本
発明によれば、ヒートシール面を間に挾んで、そ
の上下からの効率の良い加熱が可能であり、これ
によりヒートシール時間を著しく短縮し、生産速
度を向上させ得ると共に、ヒートシール樹脂等の
熱劣化をも低減させ得るものである。 本発明を次の例で説明する。 実施例 1 融点160℃、密度0.90g/cm3、MI10g/10min、
のポリプロピレンを用い射出成形法により開口部
内径65mm、外径70mm、高さ50mmで第1図に示すよ
うな形状のカツプ容器を作製した。 次に、前記ポリプロピレンに密度7.8g/cm3
平均径60μm、平均長さ3mmの鋼繊維が15vol%配
合された複合材料を用い、射出成形法により内径
65mm、外径70mm、厚さ2mmのリングを成形した。
このリングを第4図に示すものと同様の高周波誘
導加熱コイルを用い、前記ポリプロピレン製カツ
プ容器のフランジ部に熱融着させた。 一方、前記ポリプロピレンを用い、射出成形法
により外径が70mmで第3図に示すような形状の単
層の落し蓋を成形した。 このようにして得られた容器本体にワインゼリ
ーを充填し、前記蓋材を第4図に示すような高周
波誘導加熱コイルを備えたシーラーを用い、加熱
時間0.3秒、押圧時間0.8秒(加熱時間0.3秒を含
む)、押圧力2Kg/cm2でヒートシールした。得ら
れたワインゼリー充填容器を115℃で30分間熱水
式レトルト殺菌処理を行つたところ、シール部の
剥離は全く認められず、シールは完全であつた。 比較例 1 実施例1において鋼繊維充填ポリプロピレンか
ら成るリングをフランジ部に熱融着させなかつた
場合、高周波誘導加熱によるヒートシールを行う
ことが不可能であつた。また、ヒートバー式のシ
ーラーでヒートシールした場合、レトルト殺菌に
よりシート部の剥離が生じない程度のヒートシー
ル強度を得るのに必要な加熱押圧時間は3秒であ
り、ヒートシールに長時間を必要とした。
[Table] From the above equation, it is clear that when metal fibers with a large aspect ratio are blended into the resin, the thermal conductivity can be significantly improved with a relatively small amount blended. Thus, according to the present invention, when the open end of the container to be heat-sealed or the periphery of the lid is formed with a resin composite containing metal fibers, the heat-sealing surface is heated from the open end side of the container by induction heating. This makes it possible to heat quickly and efficiently. Moreover, the metal fibers incorporated into the resin provide the additional benefit of increasing the stiffness, dimensional stability, and heat resistance of the formulated composition. This advantage allows
In the heat-sealed container produced by the method of the present invention, the open end, which is most important for sealing, is provided with the rigidity, dimensional stability, and heat resistance necessary to maintain the shape of the container. The present invention will be described in detail below with respect to its embodiments. Embodiments of the Invention In the present invention, as the metal fiber, a metal fiber obtained by any method known per se such as a melt spinning method, a stretching method, an extrusion method, a cutting method, a chatter vibration cutting method, etc. is used. The types of metals that make up the fibers are
It can be of any material such as steel, cast iron, stainless steel, brass, copper, aluminum, etc. and has the formula l/
d (in the formula, l is the length of the metal fiber, d is the diameter of the metal fiber)
It is important for the purpose of the present invention that the aspect ratio defined by . That is, when the amount of metal fibers to be blended is set to a constant value in a relatively low range and the aspect ratio of the metal fibers is changed, the thermal conductivity of the blended resin composition sharply increases when the aspect ratio exceeds a certain standard. shows a tendency to increase. This is thought to be because when the aspect ratio of the filled metal fibers exceeds a certain standard value, they come into almost uniform contact within the matrix, forming a stable heat conduction path. The preferred metal fiber has a diameter of 1 to 1000μ.
m, especially from 5 to 100 μm, and the stable length is from 0.1 to 1000 mm, especially from 0.5 to 100 mm. The resin in which the metal fibers are compounded may be any thermoplastic resin that is thermoformable and heat-sealable, such as low-, medium-, or high-density polyethylene, crystalline polypropylene,
Olefin resins such as crystalline ethylene-propylene copolymers, propylene-butene copolymers, and ionically crosslinked olefin copolymers; styrenic resins such as polystyrene, styrene-butadiene copolymers, and styrene-butadiene-acrylonitrile copolymers Resin; polycarbonate; polyester; polyamide; acrylic resin; polyacetal resin, etc. are used. Among these, olefin resins are preferred in terms of economy and ease of production;
Polypropylene is most desirable in terms of retort sterilization. The amount of metal fibers added to the thermoplastic resin varies depending on the aspect ratio and diameter of the metal fibers, but it is within the range of 1 to 60% by volume, especially 5 to 40% by volume based on the resin. is desirable. That is, if it falls below this range, no significant improvement in thermal conductivity can be expected, while if it exceeds the above range, the thermoformability into containers will deteriorate and the mechanical properties of the containers will also deteriorate. . The resin and the metal fibers are easily mixed by dry blending the two and, if necessary, kneading this mixture under conditions in which the resin is melted. The kneading operation may be performed using, for example, a roll, a kneader, a pelletizer, etc., or may be performed within a cylinder of an extruder, injection machine, etc. In the container body used in the method of the present invention, only the opening end to be heat-sealed may be made of a metal fiber-containing resin composite, or the entire container body including this open end may be made of a metal fiber-containing resin composite. It may be formed from a material. In the former case, the metal fiber-containing resin composite described above is provided in the form of a heat-sealing flange to a container body, which is known per se and is made of plastic, for example. Alternatively, in the case of a container having such a flange, a heat sealant layer is provided on the flange. In this case, the container body may be a container made solely of plastic, or a composite container made of plastic, paper and/or metal foil. In the latter case, the container body can be formed by any known method, except that a resin containing metal fibers is used. Furthermore, the structure of the container itself may be a single layer container made of a resin composition containing metal fibers, or a laminated container comprising a layer of a resin composition containing metal fibers, another resin layer and/or a metal foil layer. It may be. For example, the container can be formed by melt-extruding the composition into a parison shape and then blow-molding it into a bottle shape, or by directly injecting it into a mold with a container-shaped cavity. It can also be done by Furthermore, by preparing a sheet of the above composition and subjecting this sheet to vacuum forming, pressure forming, plug assist forming, stretch forming, etc., a cup-shaped flange-bottomed container can be obtained. In addition, by once forming a pipe or a bottomed preform by extrusion or injection, and subjecting this pipe or bottomed preform to axial tension stretching and circumferential expansion stretching at the resin stretching temperature, It is also possible to obtain a container in which the resin matrix has biaxial molecular orientation. Furthermore, the composition can be melt-extruded into a pipe shape and cut into a predetermined size to form a double-opening sealed container body. In the lid body used in the method of the present invention, only the peripheral portion to be heat-sealed may be formed from a metal fiber-containing resin composite, or the entire lid body may be formed from a metal fiber-containing resin composite. . When using a lid provided with a heat-sealed portion made of such a resin composite containing metal fibers, the heat-sealed portion such as the flange portion of the container body does not need to be formed from the resin composite containing metal fibers. In FIGS. 1 and 2 showing an example of a container used in the present invention, the container 1 is a cup-shaped container formed by drawing a plastic sheet,
A seamless body 2, a bottom 3 seamlessly connected to the lower end of the body, and a flange 4 provided at the upper end of the body.
It consists of A layer 5 of a resin composition containing metal fibers is provided in a ring shape on the upper surface of the flange portion 4 for the purpose of heat sealing. This layer 5, as shown in the enlarged sectional view of FIG. 2, consists of a matrix 6 made of thermoplastic resin and metal fiber stables 7 dispersed in this matrix. In FIG. 3, which shows a lid used for sealing this container, this lid 8 has a metal foil base 9, and a suitable adhesive such as urethane adhesive (not shown) is applied to the outer surface of the metal foil base. A protective resin layer 10 such as a biaxially oriented polyester film laminated through the metal foil substrate and a heat-sealable resin inner material layer 11 such as an olefin resin film applied to the inner surface of the metal foil substrate.
It consists of Although not shown in the drawings, the lid may be provided with a known easy-to-open mechanism as shown in, for example, Japanese Unexamined Patent Publication No. 57-194958. In FIG. 4 for explaining the sealing by heat sealing between the container body 1 and the lid 8, the container body 1 is
and the lid 8 are stacked so that the metal fiber-containing resin layer 5 located at the open end of the container body 1 and the heat sealant inner surface material layer 11 of the lid 8 face each other.
The lower surface side of the flange portion 4 of the container body 1 and the peripheral edge of the lid body 8 are held under pressure by a lower support member 14 equipped with a high-frequency induction heating coil 12 and an upper pressing member 15 . Next, the high-frequency induction heating coil 12 is energized, and eddy currents are generated in the metal fibers 7 and the metal foils 9, respectively, and the resin matrix 6 and the heat-sealable resin layer 11 are efficiently heated, and as a result, , heat sealing between the container body and the lid can be efficiently performed uniformly over the entire surface and within a short time. Incidentally, the flange portion and the lid body after heat sealing can be easily cooled by blowing cold air or cold water, or by providing a cooling mechanism (not shown) in the aforementioned members 14 and 15. Instead of forming only the portion of the container body to be heat-sealed with a metal fiber-containing resin composition, the entire container is made of a metal fiber-containing resin composition 6, as shown in FIG.
It should be understood that it can be formed by In FIG. 6 showing a laminate suitable for manufacturing the container of the present invention, this laminate 16 includes a base layer 17 made of a metal fiber-containing resin composition, and a metal fiber powder compound applied to both surfaces of the base layer 17. protective resin layer 18
and 19. Protective resin layers 18 and 19
is preferably a resin that has thermal adhesion to the resin layer constituting the base layer 17, and most preferably is the same type of resin as the resin layer constituting the base layer 17. The protective resin layers 18 and 19 have a thickness of 1/100 to 1/5 of the thickness of the base layer 17, and have a thickness of 3 mm in the final container shape.
A thickness of 400 μm to 400 μm, particularly 5 to 100 μm is desirable in order to prevent metal corrosion and metal elution without impairing excellent thermal conductivity. This type of laminate can be easily formed by coextruding a resin composition containing metal fibers and a resin containing powdered metal fibers through a multilayer die, and by using this laminate, the cross section shown in FIG. A hollow-molded container such as a bottle, a pipe-shaped container body, and a cup-shaped container with a bottom are obtained. Alternatively, a laminated sheet for use in vacuum forming or the like can be easily obtained by extruding a resin melt containing metal fibers between resin films containing powdered metal fibers and by so-called Sand-German lamination. In this laminated structure container of the present invention, the exposure of metal fibers to the outer surface is effectively prevented, and significant advantages are achieved in terms of appearance characteristics and corrosion prevention, as well as surface smoothness, heat sealability, and hygiene. physical characteristics etc. are also improved. In particular, as the protective resin layers 18 and 19, titanium dioxide, iron oxide, zinc oxide, barium sulfate,
Blending a pigment such as calcium carbonate has the advantage that the metal fiber blended layer is hidden and the appearance characteristics are further improved. In FIG. 7 showing another example of the lid used in the present invention, this lid 20 is a heat-sealable lid made of a gas barrier layer 21, an outer surface protection resin layer 22, an inner surface protection resin layer 23, and a metal fiber blended resin composition. It consists of a ring 24. When using such a lid, the container body may be one in which the flange part is not provided with a ring made of a resin composition containing metal fibers, as shown in FIG. Resin layer 26, inner surface protection resin layer 2
It consists of 7. In the method of the present invention, the conditions during heat sealing may be per se known conditions. For example, the power source for high frequency induction heating is 10KHz to
A high frequency of 50MHz can be used, and the pressure during heat sealing can be in the range of 0.5 to 5Kg/ cm2 .
Further, the heating temperature of the heat-sealing surface may be any temperature above the melting point of the resin and below its thermal deterioration temperature. According to the present invention, it is possible to sandwich the heat-sealing surface in between and perform efficient heating from above and below, thereby significantly shortening the heat-sealing time and increasing the production speed. It can also reduce thermal deterioration of. The invention is illustrated by the following example. Example 1 Melting point 160°C, density 0.90g/cm 3 , MI 10g/10min,
A cup container having the shape shown in Fig. 1 with an opening inner diameter of 65 mm, outer diameter of 70 mm, and height of 50 mm was fabricated using polypropylene by injection molding. Next, the polypropylene was given a density of 7.8 g/cm 3 ,
Using a composite material containing 15 vol% of steel fibers with an average diameter of 60 μm and an average length of 3 mm, the inner diameter was
A ring with a diameter of 65 mm, an outer diameter of 70 mm, and a thickness of 2 mm was molded.
This ring was heat-sealed to the flange of the polypropylene cup using a high-frequency induction heating coil similar to that shown in FIG. On the other hand, a single-layer drop lid having an outer diameter of 70 mm and a shape as shown in FIG. 3 was molded by injection molding using the polypropylene. The container body thus obtained was filled with wine jelly, and the lid material was sealed using a sealer equipped with a high-frequency induction heating coil as shown in Fig. 4 for a heating time of 0.3 seconds and a pressing time of 0.8 seconds (heating time (including 0.3 seconds) and heat sealing with a pressing force of 2 Kg/cm 2 . When the obtained wine jelly filled container was subjected to hot water retort sterilization treatment at 115° C. for 30 minutes, no peeling of the seal portion was observed and the seal was complete. Comparative Example 1 In Example 1, when the ring made of steel fiber-filled polypropylene was not heat-sealed to the flange, it was impossible to perform heat sealing by high-frequency induction heating. Furthermore, when heat-sealing with a heat bar type sealer, the heating and pressing time required to obtain heat-sealing strength that does not cause peeling of the sheet part due to retort sterilization is 3 seconds, which means that heat-sealing requires a long time. did.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に用いられる金属繊維配合熱
可塑性樹脂から成るフランジ部を有する成形容器
の断面図であり、第2図は、第1図のフランジ部
の拡大断面図であり、第3図は、本発明に用いら
れる蓋体の断面図であり、第4図は、本発明のヒ
ートシールによる密封を説明するための説明図で
あり、第5図は、本発明に用いられる他の具体例
の容器の断面図であり、第6図は、本発明に用い
られるさらに他の具体例の容器の一部拡大断面斜
視図であり、第7図は、本発明に用いられる他の
具体例の蓋体の断面図であり、第8図は、第7図
の蓋体と共に用いられる本発明の具体例の容器の
断面図である。 引照数字1は容器本体、2は無継目の胴部、3
は底部、4はフランジ部、5は金属繊維配合樹脂
組成物層、6はマトリツクス樹脂、7は金属繊
維、8は蓋体、9は金属箔基体、10は保護樹脂
層、11はヒートシール性樹脂内面材層、12は
高周波誘導加熱コイル、14は下方支持部材、1
5は上方押圧部材、17は基体層、18及び19
は保護樹脂層、21及び25はガスバリヤー層、
22及び26は外面保護樹脂層、23及び27は
内面保護樹脂層、24は金属繊維配合樹脂リング
を示す。
FIG. 1 is a sectional view of a molded container having a flange made of a metal fiber-containing thermoplastic resin used in the present invention, FIG. 2 is an enlarged sectional view of the flange of FIG. 1, and FIG. The figure is a sectional view of the lid body used in the present invention, FIG. 4 is an explanatory diagram for explaining the sealing by heat sealing of the present invention, and FIG. FIG. 6 is a partially enlarged cross-sectional perspective view of still another specific example of the container used in the present invention, and FIG. 7 is a partially enlarged sectional view of another specific example of the container used in the present invention. FIG. 8 is a cross-sectional view of an exemplary container of the present invention for use with the lid of FIG. 7; Reference number 1 is the container body, 2 is the seamless body, 3
4 is a bottom part, 4 is a flange part, 5 is a metal fiber blended resin composition layer, 6 is a matrix resin, 7 is a metal fiber, 8 is a lid body, 9 is a metal foil base, 10 is a protective resin layer, 11 is heat sealability 1 is a resin inner material layer, 12 is a high frequency induction heating coil, 14 is a lower support member, 1
5 is an upper pressing member, 17 is a base layer, 18 and 19
is a protective resin layer, 21 and 25 are gas barrier layers,
22 and 26 are outer protective resin layers, 23 and 27 are inner protective resin layers, and 24 is a metal fiber-containing resin ring.

Claims (1)

【特許請求の範囲】[Claims] 1 包装容器と蓋材とのヒートシールに際して、
少なくともヒートシールされるべき容器開口端部
又はヒートシールされるべき蓋材の周辺部のいず
れか一方或いは両方として、アスペクト比(l/
d)が2以上の金属繊維と熱可塑性樹脂との複合
物から形成されたものを用い、前記蓋材と前記包
装容器の開口端部とを重ね合せた状態で、高周波
誘導加熱に付することを特徴とするヒートシール
容器の製造方法。
1 When heat sealing the packaging container and lid material,
The aspect ratio (l/
d) is formed from a composite of two or more metal fibers and a thermoplastic resin, and subjecting the lid material and the opening end of the packaging container to high-frequency induction heating in a state where they are overlapped. A method for producing a heat seal container characterized by:
JP60041232A 1985-03-04 1985-03-04 Manufacture of heat seal vessel Granted JPS61203302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60041232A JPS61203302A (en) 1985-03-04 1985-03-04 Manufacture of heat seal vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60041232A JPS61203302A (en) 1985-03-04 1985-03-04 Manufacture of heat seal vessel

Publications (2)

Publication Number Publication Date
JPS61203302A JPS61203302A (en) 1986-09-09
JPH0343121B2 true JPH0343121B2 (en) 1991-07-01

Family

ID=12602662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60041232A Granted JPS61203302A (en) 1985-03-04 1985-03-04 Manufacture of heat seal vessel

Country Status (1)

Country Link
JP (1) JPS61203302A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023054A (en) * 1997-02-28 2000-02-08 Johnson, Jr.; Robert Harlan High efficiency heating agents
AU2002300202B2 (en) * 1997-02-28 2004-11-11 Jr. Robert Harlan Johnson High Efficiency Heating Agents
JP2002036363A (en) * 2000-07-27 2002-02-05 Asahi Tec Corp Method for repairing pipeline

Also Published As

Publication number Publication date
JPS61203302A (en) 1986-09-09

Similar Documents

Publication Publication Date Title
US3955697A (en) Multilayered hollow plastic container
US5332542A (en) Process for producing labeled hollow container
US8465817B2 (en) Polyester container
JPH06219435A (en) Formation of container of polymer and transmission preventing container
US4391863A (en) Peel resistant coextruded sheet
CA2339963A1 (en) Medium density polyethylene film having unidirectional tear
EP0084828B1 (en) Extruded longitudinal joint
JPH0343121B2 (en)
JPS6317048A (en) Filmy laminate
KR100261511B1 (en) A cork of packing film
GB2252093A (en) Gas impermeable containers
JPS61190439A (en) Solid vessel for packaging, which is easy to be heated and is made of plastic
JPS6220006B2 (en)
JPH0585424B2 (en)
JPH0554809B2 (en)
JPH07232723A (en) Composite package excellent in light shielding
JPH03108539A (en) Laminated sheet for multilayer package, multilayer package and manufacture of multilayer package
JP2000344253A (en) Tubular container and its manufacture
JPH0444961A (en) Chemical resisting tube container
JPH0873617A (en) Material for rondel film
JP2000247363A (en) Resin-made container
JPS62233224A (en) Manufacture of three-piece and two-metal end can made of polyester
JPS6313739A (en) Sheet for molding and molded form using said sheet
JP2001031139A (en) Composite container
JPH03199020A (en) Resin made container and manufacture thereof