JPH0342695B2 - - Google Patents

Info

Publication number
JPH0342695B2
JPH0342695B2 JP11595086A JP11595086A JPH0342695B2 JP H0342695 B2 JPH0342695 B2 JP H0342695B2 JP 11595086 A JP11595086 A JP 11595086A JP 11595086 A JP11595086 A JP 11595086A JP H0342695 B2 JPH0342695 B2 JP H0342695B2
Authority
JP
Japan
Prior art keywords
acid
electrolytic solution
gluconic acid
water
lactone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11595086A
Other languages
Japanese (ja)
Other versions
JPS62272514A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11595086A priority Critical patent/JPS62272514A/en
Publication of JPS62272514A publication Critical patent/JPS62272514A/en
Publication of JPH0342695B2 publication Critical patent/JPH0342695B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Primary Cells (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電解コンデンサ駆動用電解液(以下単
に電解液と称する)に関し、特に優れた電気伝導
度を有する電解液に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electrolytic solution for driving an electrolytic capacitor (hereinafter simply referred to as an electrolytic solution), and particularly to an electrolytic solution having excellent electrical conductivity.

(従来の技術とその問題点) 一般に電解コンデンサは、高純度アルミニウム
箔をエツチングして表面積を増大し、その表面を
陽極酸化して誘電体化せしめた陽極箔と、この陽
極箔と対向するエツチングされた陰極箔との間に
隔離紙を介在させて巻き取つた構造の素子に電解
液を含浸させたものである。
(Prior art and its problems) In general, electrolytic capacitors include an anode foil, which is made by etching a high-purity aluminum foil to increase its surface area, and then anodizing the surface to make it a dielectric material, and an etched electrode facing the anode foil. The element is wound up with a separator paper interposed between it and the cathode foil, and is impregnated with an electrolyte.

このような電解コンデンサにおいては、電解液
の特性が電解コンデンサの性能を決定する大きな
要因をなす。
In such electrolytic capacitors, the characteristics of the electrolytic solution are a major factor in determining the performance of the electrolytic capacitor.

特に近年の電解コンデンサの小型化に伴い、陽
極箔あるいは陰極箔はエツチング培率の高いもの
が使用されるようになり、コンデンサ本体の抵抗
率が大きくなつていることから、これに用いる電
解液としては、抵抗率(比抵抗)の小さな高電導
度のものが常に要求される。
In particular, with the miniaturization of electrolytic capacitors in recent years, anode foils or cathode foils with a high etching rate are being used, and the resistivity of the capacitor body is increasing. High conductivity with low resistivity (specific resistance) is always required.

ところで従来の電解液は、エチレングリコール
を主溶媒としてこれに水(1重量%〜30重量%)
を加え、さらに電解質としてアジピン酸、安息香
酸等のカルボン酸アンモニウムを溶解したものが
多い。
By the way, conventional electrolyte solutions use ethylene glycol as the main solvent and water (1% to 30% by weight).
In many cases, ammonium carboxylate such as adipic acid or benzoic acid is dissolved as an electrolyte.

この電解質としてカルボン酸アンモニウムを用
いたものは、従来のホウ酸を電解質として用いる
ものに比べれば比抵抗が300〜400Ωcmと格段に低
いものとなる。
An electrolyte using ammonium carboxylate as an electrolyte has a specific resistance of 300 to 400 Ωcm, which is much lower than that using conventional boric acid as an electrolyte.

しかしながらこのカルボン酸アンモニウムを用
いるものにあつてその比抵抗は80Ωcm程度まで低
下させるのが限度であつた。
However, in those using this ammonium carboxylate, the limit was to lower the specific resistance to about 80 Ωcm.

すなわち、電解液の比抵抗は、溶質を多くし、
かつエチレングリコール等の他の溶媒に対して水
の添加量を増すことで低下させることは可能であ
るが、水の濃度が30重量%以上になると高温下で
電解液が電極箔と反応してガスを発生させ、電解
コンデンサの内圧を上昇させるためである。
In other words, the specific resistance of the electrolyte increases as the amount of solute increases.
It is possible to reduce this by increasing the amount of water added to other solvents such as ethylene glycol, but if the water concentration exceeds 30% by weight, the electrolyte will react with the electrode foil at high temperatures. This is to generate gas and increase the internal pressure of the electrolytic capacitor.

したがつて従来においては水を最大限30重量%
程度添加することで比抵抗を80Ωcm程度にまでは
低下できたが、それ以上の比抵抗の低下は望むべ
くもなく、しかも105℃以上の高温下での使用は
困難であつた。
Therefore, in the past, the maximum amount of water was 30% by weight.
Although it was possible to reduce the specific resistance to about 80 Ωcm by adding a certain amount, it was impossible to expect a further reduction in the specific resistance, and furthermore, it was difficult to use it at high temperatures of 105° C. or higher.

(発明の目的) 本発明は上記の問題点を解消すべくなされたも
のであり、その目的とするところは、水の濃度が
30重量%〜70重量%の高濃度であつても高温下で
のコンデンサの内圧上昇が抑制され、したがつて
高温下での使用を可能にすると共に、比抵抗の低
い電解液を提供するにある。
(Object of the invention) The present invention has been made to solve the above problems, and its purpose is to reduce the concentration of water.
Even at a high concentration of 30% to 70% by weight, the increase in the internal pressure of the capacitor at high temperatures is suppressed, making it possible to use it at high temperatures and providing an electrolytic solution with low resistivity. be.

(発明の概要) 本発明は上記問題点を解消するため次の構成を
備える。
(Summary of the Invention) The present invention includes the following configuration to solve the above problems.

すなわち、本発明は、エチレングリコール、エ
チレングリコールモノメチルエーテル、N・
N′ジメチルホルムアミド、γ−ブチロラクトン
等の有機溶媒と水とを溶媒とし、この溶媒に、ア
ジピン酸、安息香酸、サリチル酸等の有機カルボ
ン酸またはその塩を溶質として溶解し、さらに添
加剤としてグルコン酸および/またはグルコン酸
のラクトンを添加したことを特徴とする。
That is, the present invention provides ethylene glycol, ethylene glycol monomethyl ether, N.
An organic solvent such as N'dimethylformamide or γ-butyrolactone and water are used as a solvent, and an organic carboxylic acid or its salt such as adipic acid, benzoic acid, or salicylic acid is dissolved as a solute in this solvent, and gluconic acid is further added as an additive. and/or lactone of gluconic acid is added.

グルコン酸およびそのラクトンは以下に示され
る化学式の化合物であり、水溶液中では互いに他
の二者に変わり、三者の平衡混合物として存在す
る。
Gluconic acid and its lactone are compounds with the chemical formula shown below, and in an aqueous solution, each transforms into the other two, and exists as an equilibrium mixture of the three.

■■■ 亀の甲 [0016] ■■■ したがつて、例えばD−グルコン酸のみを加え
たとしても、水溶液中では上記三者の平衡混合物
となる。
■■■ Tortoise Shell [0016] ■■■ Therefore, even if only D-gluconic acid is added, an equilibrium mixture of the above three components will be formed in an aqueous solution.

本発明において、上記の添加剤であるグルコン
酸等を添加したとしても、水の濃度が30重量%以
下のときは、比抵抗は従来のものと比して大差は
ないが、高温下での安定性は従来のものに比して
格段に向上した。
In the present invention, even if the above-mentioned additive such as gluconic acid is added, when the concentration of water is 30% by weight or less, the resistivity is not much different from that of the conventional one, but Stability has been significantly improved compared to conventional models.

また本発明において特筆すべきは、上記のグル
コン酸等を添加剤として添加することによつて、
水の濃度が30重量%以上であつても、高温化での
電解液と電極箔との反応が抑制され、ガスの発生
がほとんどみられないことである。したがつて高
温下でもコンデンサの内圧が上昇せず、高温下で
の使用が可能となつた。また期待通り比抵抗は低
下し、水の濃度が50重量%の場合、比抵抗が20Ω
cmと充分に低いものとなつた。水の濃度は最大70
重量%程度であつても高温下での電解液と電極箔
との反応は抑制された。
In addition, what should be noted in the present invention is that by adding the above-mentioned gluconic acid etc. as an additive,
Even if the water concentration is 30% by weight or more, the reaction between the electrolytic solution and the electrode foil at high temperatures is suppressed, and almost no gas is generated. Therefore, the internal pressure of the capacitor does not increase even at high temperatures, making it possible to use it at high temperatures. Also, as expected, the resistivity decreases, and when the water concentration is 50% by weight, the resistivity is 20Ω.
cm, which is sufficiently low. Water concentration up to 70
Even at about % by weight, the reaction between the electrolytic solution and the electrode foil at high temperatures was suppressed.

グルコン酸、グルコン酸のラクトンの添加量は
0.1〜0.2重量%程度の微量でも有効であつた。
The amount of gluconic acid and gluconic acid lactone added is
Even a trace amount of about 0.1 to 0.2% by weight was effective.

グルコン酸等を添加することで電解液と電極箔
との反応が抑制されるのは定かではないが、グル
コン酸等が電極箔表面を不活性にするためと考え
られる。
Although it is not certain that the reaction between the electrolytic solution and the electrode foil is suppressed by adding gluconic acid or the like, it is thought that the gluconic acid or the like makes the surface of the electrode foil inert.

溶媒としては、エチレングリコール、エチレン
グリコールモノメチルエーテル、NN・N′ジメチ
ルホルムアミド、γ−ブチロラクタン等の有機溶
媒と水との混合物を用いる。
As the solvent, a mixture of water and an organic solvent such as ethylene glycol, ethylene glycol monomethyl ether, NN/N' dimethylformamide, or γ-butyrolactane is used.

また溶媒は、アジピン酸、安息香酸、サリチル
酸、セバシン酸、アゼライン酸等の有機カルボン
酸またはその塩を用いる。
Further, as the solvent, an organic carboxylic acid such as adipic acid, benzoic acid, salicylic acid, sebacic acid, azelaic acid, or a salt thereof is used.

また添加剤としては上記のグルコン酸、グルコ
ン酸のラクトンに加え、エチレンジアミン四酢酸
あるいはその塩を加えれば一層電解液と電極箔と
の高温下での反応を抑制できた。
In addition to the gluconic acid and gluconic acid lactone mentioned above, the addition of ethylenediaminetetraacetic acid or its salt as an additive made it possible to further suppress the reaction between the electrolytic solution and the electrode foil at high temperatures.

(実施例) 以下に本発明による実施例について説明する。(Example) Examples according to the present invention will be described below.

表1にエチレングリコールを主溶媒とし、アジ
ピン酸アンモニウム、安息香酸アンモニウムを主
溶質として溶解した従来例の組成と、エチレング
リコールと水を主溶媒とし、アジピン酸アンモニ
ウムを主溶質とし、添加剤としてエチレンジアミ
ン四酢酸とD−グルコン酸−δラクトンを溶解し
た本発明実施例を示す。
Table 1 shows the composition of a conventional example in which ethylene glycol is the main solvent, ammonium adipate and ammonium benzoate are dissolved as the main solutes, and ethylene glycol and water are the main solvents, ammonium adipate is the main solute, and ethylene diamine is used as the additive. An example of the present invention is shown in which tetraacetic acid and D-gluconic acid-δ lactone are dissolved.

電解液の組成は重量%であり、比抵抗は液温が
30℃のものである。
The composition of the electrolyte is expressed in weight%, and the specific resistance depends on the temperature of the electrolyte.
It is at 30℃.

■■■ 亀の甲 [0010] ■■■ また表1のそれぞれの組成に基づく電解コンデ
ンサ(10V 2200μF)について105℃中で1000時
間の負荷試験を実施した結果を表2に示した。
■■■ Turtle Shell [0010] ■■■ Table 2 also shows the results of a 1000-hour load test at 105° C. for electrolytic capacitors (10V 2200 μF) based on each composition in Table 1.

■■■ 亀の甲 [0011] ■■■ 表1の従来例3にみられるように、水とアジピ
ン酸アンモニウムの濃度を高めることにより比抵
抗は大幅に低下させることができるが、表2の実
施例3にみられるように負荷試験においてガス発
生が多く、短時間で防爆弁が作動してしまう。
■■■ Tortoise Shell [0011] ■■■ As seen in Conventional Example 3 in Table 1, the specific resistance can be significantly lowered by increasing the concentration of water and ammonium adipate; As seen in No. 3, a lot of gas was generated during the load test, and the explosion-proof valve was activated in a short period of time.

しかし表2の実施例からわかるように、更に水
とアジピン酸アンモニウムの濃度を高め比抵抗を
下げても、少量の本発明の添加剤を加える事によ
り105℃、1000時間後においても安定した特性を
示している。
However, as can be seen from the examples in Table 2, even if the specific resistance was lowered by increasing the concentration of water and ammonium adipate, the properties remained stable even after 1000 hours at 105°C by adding a small amount of the additive of the present invention. It shows.

このように高濃度の水の存在下でもすぐれた高
温負荷特性が得られるが従来の低濃度の水を含む
組成の電解液に本発明の添加剤を加えることでさ
らに高温負荷特性が改良される事は言うまでもな
い。
Although excellent high-temperature load characteristics can be obtained even in the presence of a high concentration of water, the high-temperature load characteristics can be further improved by adding the additive of the present invention to a conventional electrolytic solution containing a low concentration of water. Needless to say.

(発明の効果) 以上のように本発明に係る電解液によれば高温
下での安定性に優れ、特に水の濃度が30重量%以
上であつても105℃程度の高温下での電解液と電
極箔との反応が抑制でき、水の濃度の高い、比抵
抗の小さな電解液として提供しうる。
(Effects of the Invention) As described above, the electrolytic solution according to the present invention has excellent stability at high temperatures, and in particular, even when the water concentration is 30% by weight or more, the electrolytic solution can be used at high temperatures of about 105°C. The reaction between the electrolyte and the electrode foil can be suppressed, and an electrolytic solution with high water concentration and low resistivity can be provided.

また本発明の電解液を使用することにより、低
損失で高信頼性のアルミ電解コンデンサを提供し
うる。
Further, by using the electrolyte of the present invention, an aluminum electrolytic capacitor with low loss and high reliability can be provided.

以上本発明につき好適な実施例を挙げて種々説
明したが、本発明はこの実施例に限定されるもの
ではなく、発明の精神を逸脱しない範囲内で多く
の改変を施し得るのはもちろんのことである。
Although the present invention has been variously explained above with reference to preferred embodiments, the present invention is not limited to these embodiments, and it goes without saying that many modifications can be made without departing from the spirit of the invention. It is.

Claims (1)

【特許請求の範囲】 1 エチレングリコール、エチレングリコールモ
ノメチルエーテル、N・N′ジメチルホルムアミ
ド、γ−ブチロラクトン等の有機溶媒と水とを溶
媒とし、この溶媒に、アジピン酸、安息香酸、サ
リチル酸等の有機カルボン酸またはその塩を溶質
として溶解し、さらに添加剤としてグルコン酸お
よび/またはグルコン酸のラクトンを添加して成
る電解コンデンサ駆動用電解液。 2 添加剤としてさらにエチレンジアミン四酢酸
あるいはその塩を添加して成る特許請求の範囲第
1項記載の電解コンデンサ駆動用電解液。 3 水の濃度が1重量%〜70重量%である特許請
求の範囲第1項または第2項記載の電解コンデン
サ駆動用電解液。 4 グルコン酸のラクトンは、D−グルコン酸−
γ−ラクトン、あるいはD−グルコン酸−δ−ラ
クトンである特許請求の範囲第1項、第2項また
は第3項記載の電解コンデンサ駆動用電解液。
[Scope of Claims] 1. An organic solvent such as ethylene glycol, ethylene glycol monomethyl ether, N/N' dimethylformamide, or γ-butyrolactone and water are used as a solvent, and an organic solvent such as adipic acid, benzoic acid, or salicylic acid is added to this solvent. An electrolytic solution for driving an electrolytic capacitor, comprising dissolving a carboxylic acid or a salt thereof as a solute, and further adding gluconic acid and/or lactone of gluconic acid as an additive. 2. The electrolytic solution for driving an electrolytic capacitor according to claim 1, further comprising ethylenediaminetetraacetic acid or a salt thereof as an additive. 3. The electrolytic solution for driving an electrolytic capacitor according to claim 1 or 2, wherein the concentration of water is 1% to 70% by weight. 4 Gluconic acid lactone is D-gluconic acid-
The electrolytic solution for driving an electrolytic capacitor according to claim 1, 2 or 3, which is γ-lactone or D-gluconic acid-δ-lactone.
JP11595086A 1986-05-20 1986-05-20 Electrolyte for driving electrolytic capacitor Granted JPS62272514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11595086A JPS62272514A (en) 1986-05-20 1986-05-20 Electrolyte for driving electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11595086A JPS62272514A (en) 1986-05-20 1986-05-20 Electrolyte for driving electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS62272514A JPS62272514A (en) 1987-11-26
JPH0342695B2 true JPH0342695B2 (en) 1991-06-28

Family

ID=14675165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11595086A Granted JPS62272514A (en) 1986-05-20 1986-05-20 Electrolyte for driving electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS62272514A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185458A (en) * 1999-12-27 2001-07-06 Elna Co Ltd Electrolytic solution for driving aluminum electrolytic capacitor and aluminum electrolytic capacitor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG97822A1 (en) 1998-12-01 2003-08-20 Rubycon Corp Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JP4570804B2 (en) * 2001-03-30 2010-10-27 ニチコン株式会社 Electrolytic capacitor drive electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185458A (en) * 1999-12-27 2001-07-06 Elna Co Ltd Electrolytic solution for driving aluminum electrolytic capacitor and aluminum electrolytic capacitor

Also Published As

Publication number Publication date
JPS62272514A (en) 1987-11-26

Similar Documents

Publication Publication Date Title
JPH0342695B2 (en)
JPS62210615A (en) Electrolyte for electrolytic capacitor
JPS62219908A (en) Electrolyte for electrolytic capacitor
JP4570804B2 (en) Electrolytic capacitor drive electrolyte
JP2921363B2 (en) Electrolyte for electrolytic capacitors
JPH09115782A (en) Electrolyte for driving electrolytic capacitor
JP3963575B2 (en) Electrolytic solution for electrolytic capacitor drive
JPH09213581A (en) Electrolyte for driving electrolytic capacitor
JP3625235B2 (en) Electrolytic solution for driving electrolytic capacitors
JP3732067B2 (en) Electrolytic capacitor element shape fixing adhesive and electrolytic capacitor manufactured using the same
JP3625234B2 (en) Electrolytic solution for driving electrolytic capacitors
JPH09213579A (en) Electrolyte for driving electrolytic capacitor
JPH09213582A (en) Electrolyte for driving electrolytic capacitor
JP2000173867A (en) Electrolytic solution for driving aluminum electrolytic capacitor
JPH09115779A (en) Electrolyte for driving electrolytic capacitor
JPS63213918A (en) Electrolyte for driving electrolytic capacitor
JP2673438B2 (en) Electrolyte
JPH09213578A (en) Electrolyte for driving electrolytic capacitor
JPS6016744B2 (en) Electrolyte for driving electrolytic capacitors
JPH09115780A (en) Electrolyte for driving electrolytic capacitor
JPH09115781A (en) Electrolyte for driving electrolytic capacitor
JPH0636973A (en) Electrolyte for driving electrolytic capacitor
JP2000306779A (en) Electrolyte for activating aluminum electrolytic capacitor
JPS631021A (en) Electrolyte for capacitor
JPH05152165A (en) Electrolyte for electrolytic capacitor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term