JPH0342073B2 - - Google Patents

Info

Publication number
JPH0342073B2
JPH0342073B2 JP690887A JP690887A JPH0342073B2 JP H0342073 B2 JPH0342073 B2 JP H0342073B2 JP 690887 A JP690887 A JP 690887A JP 690887 A JP690887 A JP 690887A JP H0342073 B2 JPH0342073 B2 JP H0342073B2
Authority
JP
Japan
Prior art keywords
enzyme
membrane
immobilized
water
regenerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP690887A
Other languages
Japanese (ja)
Other versions
JPS63177790A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP690887A priority Critical patent/JPS63177790A/en
Publication of JPS63177790A publication Critical patent/JPS63177790A/en
Publication of JPH0342073B2 publication Critical patent/JPH0342073B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は酵素固定膜の再生方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for regenerating an enzyme-immobilized membrane.

〈従来の技術〉 近年、酵素反応を利用した工業的規模での実施
は医薬品や食品工業の分野で盛んに行なわれてい
るが、酵素自体の価格が高価なことや、溶液状態
にて使用した場合に反応後における生成物と酵素
の分離や回収が困難であることなどの問題点か
ら、担持体に酵素を固定する。所謂固定化酵素の
手法が種々検討されている。
<Prior art> In recent years, industrial-scale implementation using enzyme reactions has been actively carried out in the pharmaceutical and food industries. In some cases, the enzyme is immobilized on a carrier due to problems such as difficulty in separating and recovering the product and enzyme after the reaction. Various methods using so-called immobilized enzymes have been studied.

反応生成物と酵素の分離を酵素反応と同時に処
理できる方法として限外濾過膜の如き膜を利用し
た方法が研究されており、精密分離精製の前処理
として分子分画による粗分離処理が極めて容易に
なるものとして注目されている。その一つとし
て、酵素を固定したメンブレンリアクターが提案
され、酵素を異方性限外濾過膜の多孔質部に閉じ
込めて被覆を施こす方法(特開昭59−25686号公
報)や、多孔質部に酵素をゲルと共に封入包括す
る方法(特公昭57−41238号公報)などが開示さ
れているが、いずれも酵素を安定に保持すること
ができず、安定に保持できる膜が開発されていな
いのが現状である。
Methods using membranes such as ultrafiltration membranes are being researched as a method for separating reaction products and enzymes at the same time as the enzymatic reaction, and crude separation processing using molecular fractionation is extremely easy as a pretreatment for precise separation and purification. It is attracting attention as something that will become a reality. As one such method, a membrane reactor in which enzymes are immobilized has been proposed. A method of enclosing and enclosing an enzyme together with a gel in a membrane (Japanese Patent Publication No. 57-41238) has been disclosed, but none of these methods can stably retain the enzyme, and no membrane that can stably retain the enzyme has been developed. is the current situation.

一方、酵素を安定に保持した酵素固定膜とし
て、異方性限外濾過膜の多孔質層に少なくとも2
個の官能基を有する水溶性高分子を架橋状態に保
持し且つ該官能基を介して酵素を共有結合してな
る酵素固定膜も既に提案されている(特願昭60−
225435号)。
On the other hand, as an enzyme-immobilized membrane that stably retains enzymes, at least two
An enzyme-immobilized membrane has already been proposed in which a water-soluble polymer having several functional groups is maintained in a cross-linked state and an enzyme is covalently bonded via the functional groups.
225435).

〈発明が解決しようとする問題点〉 しかし、上記いずれの方法で得られる酵素固定
膜を採用しても長期間にわたつて連続酵素反応を
行なつた場合には酵素活性の低下や膜面へ付着す
るケーク層による透過流束の低下が徐々に生じる
ようになり、その結果酵素反応阻害が起こるよう
になる。
<Problems to be solved by the invention> However, even if an enzyme-immobilized membrane obtained by any of the above methods is used, if continuous enzyme reactions are carried out over a long period of time, the enzyme activity will decrease and the membrane surface will deteriorate. The permeation flux gradually decreases due to the adhering cake layer, and as a result, enzymatic reaction inhibition occurs.

通常、ケーク層の付着等は逆洗浄を行なうこと
によつてある程度解消され透過流束の回復を行な
えるが、酵素が失活した場合は回復の術がなく膜
交換もしくは酵素の除去、再固定する必要が生じ
る。ところが、膜交換においてはモジユール内か
ら取り外して交換を行なうため作業が煩雑、且つ
コスト高となり、また、酵素の除去および再固定
においては共有結合法にて膜担体に酵素固定をし
ていると酵素を除去する際に膜担体を損傷し、酵
素の再固定に支障をきたすようになり、好ましく
ないとされている。
Normally, the adhesion of the cake layer can be resolved to some extent by backwashing and the permeation flux can be restored, but if the enzyme is deactivated, there is no way to recover and the membrane must be replaced, the enzyme removed, or refixed. The need arises. However, when replacing the membrane, the work is complicated and costly because it has to be removed from the module and replaced.Also, when removing and reimmobilizing the enzyme, the enzyme is immobilized on the membrane carrier using a covalent bonding method. It is considered undesirable because it damages the membrane carrier when removing the enzyme, which interferes with the re-immobilization of the enzyme.

〈問題点を解決するための手段〉 そこで、本発明者らは上記問題点に鑑み、長期
間にわたる連続酵素反応を行なうに際し、膜交換
を行なわずとも通常の逆洗浄工程によつて酵素固
定膜の再生を簡単に行なえる方法を見い出すべく
検討を重ねた結果、異方性限外濾過膜の多孔質層
に、酵素が有するアミノ基もしくはカルボキシル
基と反応する少なくとも2個のイミノ基またはア
ミノ基を有する水溶性高分子が一部官能基を残し
た架橋状態で保持され、且つ該官能基を介して酵
素が共有結合されてなる酵素固定膜においては次
亜塩素酸ナトリウム処理、場合によりさらに塩酸
処理を行なうことで水溶性高分子および酵素が比
較的簡単に除去でき、膜担体の損傷も生じないこ
とが判明した。
<Means for Solving the Problems> Therefore, in view of the above problems, the present inventors have developed an enzyme-immobilized membrane using a normal backwashing process without replacing the membrane when performing continuous enzyme reactions over a long period of time. As a result of repeated studies to find a method to easily regenerate the An enzyme-immobilized membrane in which a water-soluble polymer having It was found that water-soluble polymers and enzymes can be removed relatively easily by treatment, and the membrane carrier is not damaged.

従つて、本発明の目的は長期間の連続酵素反応
に使用して固定化された酵素の失活や膜汚染のた
めに生産性の低下した酵素固定膜を、使用前と同
程度の高活性で且つ高い透過流束を有する酵素固
定膜に再生する方法を提供することにある。
Therefore, the purpose of the present invention is to restore enzyme-immobilized membranes that have been used for long-term continuous enzyme reactions and whose productivity has decreased due to deactivation of immobilized enzymes and membrane contamination to high activity levels comparable to those before use. An object of the present invention is to provide a method for regenerating an enzyme-immobilized membrane with high permeation flux.

本発明において再生可能な酵素固定膜に用いる
異方性限外濾過膜は、分画分子量が1000〜
1000000の性能を有する緻密層と、該層を担持す
る孔径が数μm〜100μmの多孔質層とからなる
ものであり、その形状は平板状、管状、中空糸状
など任意に選択することができる。好ましくは有
効膜面積を大きくし、固定化された酵素と基質と
の接触面積を大きくするために中空糸状膜とする
ことが望ましい。
The anisotropic ultrafiltration membrane used as the reproducible enzyme-immobilized membrane in the present invention has a molecular weight cut-off of 1000 to
It consists of a dense layer with a performance of 1,000,000 and a porous layer supporting the layer and having a pore diameter of several μm to 100 μm, and its shape can be arbitrarily selected such as a flat plate, a tube, or a hollow fiber. Preferably, a hollow fiber membrane is used in order to increase the effective membrane area and increase the contact area between the immobilized enzyme and the substrate.

上記限外濾過膜を製造するに際して用いる材料
は、後述する水溶性高分子や酵素と反応するよう
な官能基を特に有する必要はなく、耐塩素性に優
れ異方性限外濾過膜として製膜できるものであれ
ば特に制限はない。これらの膜材料のうち、食品
や医薬品お製造工程において要求される厳格な分
画分子量や耐熱性、機械的強度を満足するものと
して、ポリスルホン膜が好適に使用できる。
The materials used to manufacture the ultrafiltration membrane described above do not need to have any functional groups that react with water-soluble polymers or enzymes, which will be described later, and have excellent chlorine resistance and can be manufactured into an anisotropic ultrafiltration membrane. There are no particular restrictions as long as it is possible. Among these membrane materials, polysulfone membranes can be suitably used as they satisfy the strict molecular weight cutoff, heat resistance, and mechanical strength required in food and pharmaceutical manufacturing processes.

上記異方性限外濾過膜は既知の方法で製造する
ことができる。その一例としては上記膜材料を水
と混和しうる極性有機溶剤、例えばジメチルスル
ホキシド、ジメチルホルミアミド、ジメチルアセ
トアミド、フエノール、クレゾール、エチレンク
ロルヒドリン、エチレングリコール、プロピレン
グリコール、セルソルブ、グリセリン、メタノー
ル、エタノール、プロパノール、ブタノール、ア
セトン、ジオキサン、テトラヒドロフランなどの
うち一種以上に溶解せしめたのち、主として水か
らなる凝固液と接触させることによつて接触界面
に緻密層を有する各種形状の異方性限外濾過膜と
することができるが、緻密層と多孔質層を有する
異方性限外濾過膜であれば如何なる方法、形状の
ものであつても本発明の技術を適用することがで
きる。
The above-mentioned anisotropic ultrafiltration membrane can be manufactured by a known method. Examples include water-miscible polar organic solvents such as dimethyl sulfoxide, dimethylformamide, dimethylacetamide, phenol, cresol, ethylene chlorohydrin, ethylene glycol, propylene glycol, cellosolve, glycerin, methanol, By dissolving the solution in one or more of ethanol, propanol, butanol, acetone, dioxane, tetrahydrofuran, etc. and then contacting it with a coagulating liquid mainly composed of water, anisotropic particles of various shapes with a dense layer at the contact interface can be formed. Although a filtration membrane can be used, the technique of the present invention can be applied to any method and shape of an anisotropic ultrafiltration membrane having a dense layer and a porous layer.

本発明の再生方法を適用する酵素固定膜は上記
で得られた異方性限外濾過膜の多孔質層に、少な
くとも2個の官能基を有する水溶性高分子を加圧
条件下にて含浸し、架橋剤によつて架橋せしめる
が、このような水溶性高分子としては、例えばポ
リエチレンイミン、ポリプロピレンイミン、ポリ
ブチレンイミンの如きポリアルキレンイミン、ポ
リリジン、ポリアルギニンの如きポリアミノ酸、
ポリアリールアミンなどが挙げられ、通常、重量
平均分子量が約1000〜200000、官能基数が数十〜
数百のものが好ましく、使用する酵素の種類や膜
材料の種類、膜の形状に応じて適宜選択すること
が出来る。これらの水溶性高分子のうち、ポリエ
チレンイミンは官能基数の調節が容易で、反応性
も高いので好適に用いることができる。
The enzyme-immobilized membrane to which the regeneration method of the present invention is applied is obtained by impregnating the porous layer of the anisotropic ultrafiltration membrane obtained above with a water-soluble polymer having at least two functional groups under pressurized conditions. Examples of such water-soluble polymers include polyalkylene imines such as polyethylene imine, polypropylene imine, and polybutylene imine; polyamino acids such as polylysine and polyarginine;
Examples include polyarylamines, which usually have a weight average molecular weight of about 1000 to 200000 and a number of functional groups ranging from several dozen to
A number of hundreds is preferable, and can be selected as appropriate depending on the type of enzyme used, the type of membrane material, and the shape of the membrane. Among these water-soluble polymers, polyethyleneimine can be preferably used because the number of functional groups can be easily controlled and the reactivity is high.

上記水溶性高分子の溶液を異方性限外濾過膜の
多孔質層に含浸するにあたり、該溶液の溶質濃度
は1重量%以下、好ましくは0.05〜0.25重量%の
範囲に設定する。溶質濃度が1重量%を超えた場
合は溶液粘度が高くなり、含浸した水溶性高分子
が膜孔を閉塞し、基質溶液の透過水量が低下して
限外濾過性能が低下することがある。
When impregnating the porous layer of the anisotropic ultrafiltration membrane with the water-soluble polymer solution, the solute concentration of the solution is set to 1% by weight or less, preferably in the range of 0.05 to 0.25% by weight. If the solute concentration exceeds 1% by weight, the viscosity of the solution increases, the impregnated water-soluble polymer blocks the membrane pores, and the amount of permeated water of the substrate solution decreases, which may reduce ultrafiltration performance.

また、水溶性高分子の溶液を含浸する場合の加
圧条件としては限外濾過膜の多孔質層側と緻密層
の圧力差が0.1〜1Kg/cm2、さらに0.1〜0.5Kg/cm2
の範囲が好ましく、高加圧下での含浸では多孔質
層内部、特に緻密層側に水溶性高分子の圧密化が
生じ、膜孔を閉塞する恐れがある。また加圧条件
が低くすぎると水溶性高分子の多孔質層への含浸
に時間がかかつたり、多孔質層全体への均一な含
浸を行ない難く、表層部のみへの含浸となり酵素
の結合量の低下を招く恐れがある。
In addition, the pressure conditions for impregnating a water-soluble polymer solution are such that the pressure difference between the porous layer side and the dense layer of the ultrafiltration membrane is 0.1 to 1 Kg/cm 2 , and further 0.1 to 0.5 Kg/cm 2
Impregnation under high pressure may cause compaction of the water-soluble polymer inside the porous layer, particularly on the dense layer side, which may clog the membrane pores. Furthermore, if the pressure conditions are too low, it will take time to impregnate the water-soluble polymer into the porous layer, and it will be difficult to impregnate the entire porous layer uniformly, resulting in impregnation only in the surface layer, resulting in the amount of enzyme binding. This may lead to a decrease in

上記の如く含浸を行なつた水溶性高分子は異方
性限外濾過膜の多孔質層に保持されるが、数回の
膜洗浄操作によつて不純物質や極度に低分子量の
水溶性高分子が除去される。しかるのち架橋剤溶
液を前記水溶性高分子溶液含浸時の加圧条件範囲
内、通常は前記と同条件下にて多孔質層側から透
過せしめて前記水溶性高分子を架橋せしめる。こ
のような架橋手段を施こすことによつて水溶性高
分子は三次元化して不溶化し、分子のかさばりや
立体障害が大きくなるので、異方性限外濾過膜の
膜自体に結合せずとも多孔質層の孔内に保持する
ことができ、後の逆洗浄によつても流出しないも
のとなる。
The water-soluble polymer impregnated as described above is retained in the porous layer of the anisotropic ultrafiltration membrane, but several membrane cleaning operations remove impurities and extremely low molecular weight water-soluble polymers. molecules are removed. Thereafter, a crosslinking agent solution is allowed to permeate from the porous layer side within the range of pressure conditions during impregnation with the water-soluble polymer solution, usually under the same conditions as described above, to crosslink the water-soluble polymer. By applying such cross-linking means, the water-soluble polymer becomes three-dimensional and becomes insolubilized, increasing the bulk and steric hindrance of the molecule, so it can be used without bonding to the membrane itself of the anisotropic ultrafiltration membrane. It can be retained within the pores of the porous layer and will not flow out even during subsequent backwashing.

このような架橋剤としては、グリオキサール、
グルタルアルデヒド、アジピンアルデヒド、マロ
ンジアルデヒド、ジアルデヒド澱粉の如きジアル
デヒド類、ヘキサメチレンジイソシアネート、ト
ルエンジイソシアネートの如きジイソシアネート
類、ヘキサメチレンジイソチオシアネートの如き
ジイソチオシアネート類などが挙げられ、水溶性
高分子にポリアミノ酸を使用した場合には水溶性
カルボジイミドなどの縮合試薬を用いることもで
きる。これらのうち、特にジアルデヒド類は水溶
液中で比較的安定で反応性も高いために好適に用
いることができる。
Such crosslinking agents include glyoxal,
Examples include dialdehydes such as glutaraldehyde, adipine aldehyde, malondialdehyde, and dialdehyde starch, diisocyanates such as hexamethylene diisocyanate and toluene diisocyanate, and diisothiocyanates such as hexamethylene diisothiocyanate. When a polyamino acid is used, a condensation reagent such as a water-soluble carbodiimide can also be used. Among these, dialdehydes are particularly suitable for use because they are relatively stable in aqueous solution and have high reactivity.

上記架橋剤は溶液状態で使用するが、水溶性高
分子中の官能基量と該架橋剤中の官能基量とのモ
ル濃度比を2〜50、好ましくは6〜20とすること
によつて、のちに酵素と結合する官能基量を充分
に残存させることができる。また、用いた架橋剤
の官能基を一部利用してのちに酵素を結合させる
こともできるが、この場合は上記量の1.5〜20倍
量の架橋剤を用いることが望ましい。
The above crosslinking agent is used in a solution state, and the molar concentration ratio between the amount of functional groups in the water-soluble polymer and the amount of functional groups in the crosslinking agent is 2 to 50, preferably 6 to 20. , it is possible to leave a sufficient amount of functional groups that will later bind to the enzyme. It is also possible to use some of the functional groups of the crosslinking agent used to later bind the enzyme, but in this case, it is desirable to use 1.5 to 20 times the amount of the crosslinking agent as described above.

次に異方性限外濾過膜の多孔質層に水溶性高分
子を含浸、架橋したのち、緻密層側から通常の洗
浄処理である逆洗浄によつて多孔質層に残存する
未架橋の水溶性高分子を除去する。しかるのち酵
素溶液を多孔質層側より透過させて前記水溶性高
分子の官能基を介して共有結合させる。
Next, the porous layer of the anisotropic ultrafiltration membrane is impregnated with a water-soluble polymer and cross-linked, and then the non-crosslinked water solution remaining in the porous layer is backwashed from the dense layer side, which is a normal cleaning process. removes harmful polymers. Thereafter, an enzyme solution is allowed to permeate through the porous layer side and covalently bond through the functional groups of the water-soluble polymer.

前記水溶性高分子はその分子末端や側鎖にアミ
ノ基、カルボキシル基、ヒドロキシル基などの官
能基を有しているので、既知の手法を用いて酵素
が有する官能基と直接、または前記架橋剤やカツ
プリング剤によつて間接的に共有結合させる。さ
らに、固定化された酵素の可動性を大きくし、酵
素反応を高めるためにスペーサーを介在させるこ
ともできる。
Since the water-soluble polymer has a functional group such as an amino group, a carboxyl group, or a hydroxyl group at its molecular end or side chain, it can be directly connected to the functional group of the enzyme using a known method or the crosslinking agent. indirectly covalently bonded by a coupling agent or a coupling agent. Furthermore, a spacer can be interposed to increase the mobility of the immobilized enzyme and enhance the enzymatic reaction.

酵素固定膜に固定される酵素としては特に限定
されるものではないが、限外濾過膜としての分離
特性を充分に発揮するためには多糖類や蛋白質の
加水分解に用いる酵素が有用であり、例えばα−
アミラーゼ、グルコアミラーゼ、ペクチナーゼ、
セルラーゼ、ムラミダーゼの如き多糖類加水分解
酵素、パパイン、ペプシン、トリプシン、キモト
リプシン、ブロメライン、プロテアーゼの如き蛋
白質加水分解酵素などが高分子基質から低分子物
質を生成するものとして挙げられる。
Although there are no particular restrictions on the enzymes that can be immobilized on the enzyme-immobilized membrane, enzymes used for hydrolyzing polysaccharides and proteins are useful in order to fully exhibit the separation characteristics of an ultrafiltration membrane. For example α−
amylase, glucoamylase, pectinase,
Polysaccharide hydrolases such as cellulases and muramidases, protein hydrolases such as papain, pepsin, trypsin, chymotrypsin, bromelain, and protease are examples of those that produce low-molecular substances from high-molecular substrates.

上記酵素を含む溶液を透過させるに際しての加
圧条件は、前記水溶性高分子や架橋剤を含浸する
時の条件、即ち0.1〜1Kg/cm2の範囲に設定し、
且つ前記含浸時の加圧条件以下とする。加圧度合
が大きすぎると、既に保持されている水溶性高分
子が圧密化された層を新たに形成するために、基
質溶液を透過させて酵素反応をさせる場合に、基
質の透過移動の障害となり、固定化した酵素を反
応に有効活用することができなくなる。
The pressure conditions for permeating the solution containing the enzyme are set to the conditions for impregnating the water-soluble polymer and crosslinking agent, that is, in the range of 0.1 to 1 Kg/ cm2 ,
In addition, the pressure applied during the impregnation is equal to or lower than the pressure applied during the impregnation. If the degree of pressurization is too large, the already retained water-soluble polymer will form a new compacted layer, which will impede the permeation movement of the substrate when the substrate solution is permeated for enzymatic reaction. Therefore, the immobilized enzyme cannot be used effectively for the reaction.

本発明の再生方法は、上記のようにして得られ
た酵素固定膜に固定されている酵素を水溶性高分
子と共に除去したのち、再び上記の方法にて酵素
を再固定するものであり、酵素および水溶性高分
子の除去には次亜塩素酸ナトリウム水溶液を用い
る。
In the regeneration method of the present invention, the enzyme immobilized on the enzyme-immobilized membrane obtained as described above is removed together with the water-soluble polymer, and then the enzyme is immobilized again by the method described above. And aqueous sodium hypochlorite solution is used to remove water-soluble polymers.

該次亜塩素酸ナトリウム水溶液は酵素固定膜の
緻密層側から多孔質層側へ逆洗浄と同様にして透
過させて膜面、特に多孔質層内に付着した汚染物
質を除去し、固定化された酵素および水溶性高分
子を除去する。この時の水溶液の透過は50〜70℃
の温度下、0.1〜1.5Kg/cm2の圧力下にて1〜20時
間程度行なうことが好ましく、温度が低すぎると
洗浄能力の低下を生じたり酵素等の除去を充分に
行ない難く、温度が高すぎると限外濾過膜自体を
傷めることになり膜劣化を早めるようになる。ま
た、上記次亜塩素酸ナトリウム水溶液の濃度によ
つて酵素等の除去効率が異なるが、有効塩素濃度
が500〜1000ppmの範囲に調製した水溶液を用い
ることが除去効率および限外濾過膜の劣化防止の
観点から好ましいものである。
The sodium hypochlorite aqueous solution is permeated from the dense layer side of the enzyme-immobilized membrane to the porous layer side in a manner similar to backwashing to remove contaminants adhering to the membrane surface, particularly within the porous layer, and to immobilize the membrane. removed enzymes and water-soluble polymers. The permeation of the aqueous solution at this time is 50 to 70℃
It is preferable to carry out the washing for about 1 to 20 hours at a temperature of If it is too high, the ultrafiltration membrane itself will be damaged and the membrane will deteriorate more quickly. In addition, although the removal efficiency of enzymes etc. differs depending on the concentration of the above sodium hypochlorite aqueous solution, using an aqueous solution prepared with an effective chlorine concentration in the range of 500 to 1000 ppm improves the removal efficiency and prevents deterioration of the ultrafiltration membrane. This is preferable from the viewpoint of

さらに、本発明においては上記次亜塩素酸ナト
リウム水溶液透過後、引き続いて塩酸を緻密層側
から透過させることによつて、より確実に水溶性
高分子および酵素を除去することができる。この
塩酸は希塩酸を使用すれば充分であり、好ましく
は0.005〜0.05規定の濃度のものを用いる。また、
透過条件としては次亜塩素酸ナトリウム水溶液の
透過時と同様でよく、透過時間は酵素等の除去率
や膜汚染物質の除去の程度によつて任意に設定す
る。
Further, in the present invention, after passing through the sodium hypochlorite aqueous solution, by subsequently passing hydrochloric acid from the dense layer side, water-soluble polymers and enzymes can be removed more reliably. It is sufficient to use dilute hydrochloric acid as this hydrochloric acid, preferably one having a concentration of 0.005 to 0.05 normal. Also,
The permeation conditions may be the same as those for permeation of an aqueous sodium hypochlorite solution, and the permeation time is arbitrarily set depending on the removal rate of enzymes and the like and the degree of removal of membrane contaminants.

本発明においては以上のようにして透過流束の
低下や酵素反応効率の低下が生じた酵素固定膜か
ら水溶性高分子と共に酵素を除去し、固定化前の
限外濾過膜の状態まで戻し、次に該膜の多孔質層
側から再度少なくとも2個の官能基を有する水溶
性高分子を含浸したのち、架橋剤水溶液によつて
架橋せしめ、さらに酵素水溶液を透過させ共有結
合によつて酵素を再固定するのである。
In the present invention, the enzyme is removed together with the water-soluble polymer from the enzyme-immobilized membrane in which the permeation flux has decreased and the enzyme reaction efficiency has decreased as described above, and the state of the ultrafiltration membrane before immobilization is restored. Next, the porous layer side of the membrane is again impregnated with a water-soluble polymer having at least two functional groups, and then cross-linked with an aqueous cross-linking agent solution, and an aqueous enzyme solution is allowed to permeate through the membrane to bind the enzyme through covalent bonds. It will be re-fixed.

本発明の再生方法によつて得られる再生後の酵
素固定膜は高活性および高い透過流束を有する膜
となる。
The regenerated enzyme-immobilized membrane obtained by the regeneration method of the present invention has high activity and high permeation flux.

〈発明の効果〉 以上のように本発明の酵素固定膜の再生方法
は、比較的安定性が高く再生が困難とされていた
共有結合法によつて得られる酵素固定膜を再生可
能としたものである。
<Effects of the Invention> As described above, the enzyme-immobilized membrane regeneration method of the present invention makes it possible to regenerate the enzyme-immobilized membrane obtained by the covalent bonding method, which is relatively stable and difficult to regenerate. It is.

即ち、異方性限外濾過膜を固定用担体として用
い、多官能性の水溶性高分子を介して酵素を共有
結合した酵素固定膜においては次亜塩素酸ナトリ
ウム水溶液もしくは該水溶液と塩酸を併用して逆
洗浄透過させることによつて簡単に水溶性高分子
を共に酵素を除去することができ、長期間連続酵
素反応によつて酵素活性の低下等が生じた酵素固
定膜を再生することができるものである。
That is, in the case of an enzyme immobilization membrane in which an anisotropic ultrafiltration membrane is used as an immobilization carrier and an enzyme is covalently bonded via a polyfunctional water-soluble polymer, a sodium hypochlorite aqueous solution or a combination of the aqueous solution and hydrochloric acid is used. Water-soluble polymers and enzymes can be easily removed by backwashing and permeation, and enzyme-immobilized membranes that have lost enzyme activity due to long-term continuous enzyme reactions can be regenerated. It is possible.

また、上記再生方法は膜自体の劣化や他の要因
により劣化、変性するまでは繰り返し採用するこ
とができるものである。
Furthermore, the above regeneration method can be repeatedly employed until the membrane itself deteriorates or degenerates due to other factors.

〈実施例〉 以下に本発明の実施例を示し、さらに詳細に説
明するが、本発明の技術的思想を逸脱しない範囲
で種々の応用が可能である。
<Examples> Examples of the present invention will be shown below and explained in more detail, but various applications are possible without departing from the technical idea of the present invention.

実施例 1 ポリスルホン製限外濾過用中空糸状膜(日東電
工(株)製、NTU−3250)の小型モジユール(2φ×
20cm、57本入、膜面積約275cm2)の多孔質層側か
ら0.1%重量%濃度のポリエチレンイミン水溶液
(重量平均分子量70000、1分子当りのアミノ基数
約400)を0.3Kg/cm2の加圧下にて約30分透過させ
た。
Example 1 A small module (2φ×
Add 0.3 kg/cm 2 of polyethyleneimine aqueous solution (weight average molecular weight 70,000, number of amino groups per molecule approximately 400) with a concentration of 0.1% by weight from the porous layer side of a 20 cm, 57 pieces, membrane area approximately 275 cm 2 ). It was allowed to permeate for about 30 minutes under pressure.

さらに大量の水を用い同圧下にて洗浄したの
ち、モジユール全体を40℃に維持しながら架橋剤
として0.1重量%のグルタルアルデヒド溶液(り
ん酸緩衝液PH7.0)を同加圧下で透過し、多孔質
層に保持されているポリエチレンイミンを架橋し
た。
After further washing with a large amount of water under the same pressure, while maintaining the entire module at 40°C, a 0.1% by weight glutaraldehyde solution (phosphate buffer pH 7.0) as a crosslinking agent was permeated under the same pressure. The polyethyleneimine held in the porous layer was crosslinked.

室温下にて逆洗浄を行ない多孔質層に保持され
ないポリエチレンイミンを除去し、次に40℃にて
多孔質層側から2.5重量%のグルタルアルデヒド
溶液(りん酸緩衝液PH7.0)を0.1Kg/cm2の加圧条
件にて透過し、ポリエチレンイミンのアミノ基を
活性化した。同加圧条件にて洗浄したのち0.2重
量%のグルコアミラーゼ溶液(酢酸緩衝液PH6.0)
を2℃で前記加圧下にて透過し共有結合によつて
固定化を行ない、酵素固定膜を得た。
Backwashing is performed at room temperature to remove polyethyleneimine that is not retained in the porous layer, and then 0.1 kg of 2.5% by weight glutaraldehyde solution (phosphate buffer pH 7.0) is added from the porous layer side at 40°C. The amino groups of polyethyleneimine were activated by permeation under a pressurized condition of /cm 2 . After washing under the same pressure conditions, 0.2% by weight glucoamylase solution (acetate buffer PH6.0)
was permeated under the above-mentioned pressure at 2°C and immobilized by covalent bonding to obtain an enzyme-immobilized membrane.

得られた酵素固定膜に1重量%の可溶性澱粉溶
液(酢酸緩衝液PH6.0)を0.5Kg/cm2の加圧下で供
給し、一定期間毎に緻密層側からの逆洗浄を行な
つて透過流束を出来る限り維持しながら、40℃に
て連続的に酵素反応を続け、透過流束および生成
グルコース量を測定した。結果を第1図に示し
た。
A 1% by weight soluble starch solution (acetate buffer pH 6.0) was supplied to the obtained enzyme-immobilized membrane under a pressure of 0.5 Kg/ cm2 , and backwashing from the dense layer side was performed at regular intervals. The enzyme reaction was continued continuously at 40°C while maintaining the permeation flux as much as possible, and the permeation flux and amount of glucose produced were measured. The results are shown in Figure 1.

第1図から明らかなように、時間の経過と共に
生成グルコース量および透過流束が徐々に低下し
てくるので、生成グルコース量および透過流束が
初期の約1/2に減少した時(酵素活性低下時)に、
酵素固定膜の緻密層側から次亜塩素酸ナトリウム
水溶液(有効塩素濃度約600ppm、1)を60℃
に加温し、1.0Kg/cm2の加圧条件にて循環しなが
ら約8時間逆洗浄透過した。次に、0.01規定の希
塩酸を上記と同様の加温、加圧条件にて循環しな
がら約2時間逆洗浄透過し、膜洗浄および水溶性
高分子、酵素の除去を行なつた。
As is clear from Figure 1, the amount of glucose produced and the permeation flux gradually decrease over time, so when the amount of glucose produced and the permeation flux decrease to about half of the initial value (enzyme (at the time of decline),
Add a sodium hypochlorite aqueous solution (available chlorine concentration approximately 600 ppm, 1) to the dense layer side of the enzyme-immobilized membrane at 60°C.
The sample was heated to 1.0 kg/cm 2 and circulated under a pressurized condition of 1.0 kg/cm 2 for about 8 hours for backwashing and permeation. Next, 0.01 N diluted hydrochloric acid was circulated under the same heating and pressurizing conditions as above and backwashed and permeated for about 2 hours to wash the membrane and remove water-soluble polymers and enzymes.

上記操作により透過流束が回復したポリスルホ
ン製限外濾過用中空糸状膜に前記と同様の操作に
よつてグルコアミラーゼを再固定化して酵素固定
膜を再生した。
The enzyme-immobilized membrane was regenerated by re-immobilizing glucoamylase on the polysulfone ultrafiltration hollow fiber membrane whose permeation flux had been recovered by the above-described operation in the same manner as above.

再生した酵素固定膜を用いて前記と同様の酵素
反応を行ない、透過流束および生成グルコース量
を測定し、その結果を第1図に示した。
The same enzyme reaction as above was carried out using the regenerated enzyme-immobilized membrane, and the permeation flux and amount of glucose produced were measured. The results are shown in FIG.

第1図から明らかなように、長期間にわたつて
酵素反応を連続的に行なつた場合、酵素活性が次
第に低下してくるが、本発明の再生方法によつて
再び初期と同様の酵素活性および透過流束が得ら
れることが明らかであり、優れた再生方法である
ことが判明した。
As is clear from Figure 1, when enzymatic reactions are carried out continuously over a long period of time, the enzyme activity gradually decreases, but by the regeneration method of the present invention, the enzyme activity can be restored to the same level as the initial level. It was clear that a high permeation flux could be obtained, and it was found to be an excellent regeneration method.

実施例 2 実施例1と同様にして得られた酵素固定膜に、
1重量%のマルトース溶液(酢酸緩衝液PH6.0)
を0.5Kg/cm2の加圧下で供給し、50℃にて連続的
に酵素反応を続け、透過液中のマルトース量およ
びグルコース量を測定した。結果を第2図に示し
た。
Example 2 An enzyme-immobilized membrane obtained in the same manner as in Example 1 was coated with
1% by weight maltose solution (acetate buffer PH6.0)
was supplied under a pressure of 0.5 Kg/cm 2 , the enzyme reaction was continued continuously at 50°C, and the amount of maltose and glucose in the permeate was measured. The results are shown in Figure 2.

実施例1と比較して酵素活性の低下は緩やかで
あるが、次第に低下してくるので、生成グルコー
ス量が初期量の7割程度となつたところで、酵素
固定膜の緻密層側から次亜塩素酸ナトリウム水溶
液(有効塩素濃度約600ppm、1)を60℃に加
温し、0.5Kg/cm2の加圧条件下にて循環しながら
約8時間逆洗浄透過し、膜洗浄および水溶性高分
子、酵素の除去を行なつた。
The decrease in enzyme activity is gradual compared to Example 1, but it gradually decreases, so when the amount of glucose produced is about 70% of the initial amount, hypochlorite is added from the dense layer side of the enzyme-immobilized membrane. An aqueous solution of sodium chloride (available chlorine concentration of approximately 600 ppm, 1) was heated to 60°C and was backwashed and permeated for approximately 8 hours while circulating under a pressurized condition of 0.5 kg/cm 2 to clean the membrane and remove water-soluble polymers. , the enzyme was removed.

上記操作により透過流束が回復したポリスルホ
ン製限外濾過用中空糸状膜に前記と同様の操作に
よつてグルコアミラーゼを再固定化して酵素固定
膜を再生した。
The enzyme-immobilized membrane was regenerated by re-immobilizing glucoamylase on the polysulfone ultrafiltration hollow fiber membrane whose permeation flux had been recovered by the above-described operation in the same manner as above.

再生した酵素固定膜を用いて前記と同様の酵素
反応を行ない、透過液中のマルトース量およびグ
ルコース量を測定し、その結果を第2図に示し
た。
An enzyme reaction similar to that described above was carried out using the regenerated enzyme-immobilized membrane, and the amounts of maltose and glucose in the permeate were measured, and the results are shown in FIG.

第2図から明らかなように、本発明の再生方法
によれば酵素活性が初期のものと同程度に回復
し、優れた酵素活性を有する酵素固定膜が得られ
た。
As is clear from FIG. 2, according to the regeneration method of the present invention, the enzyme activity was recovered to the same level as the initial value, and an enzyme-immobilized membrane having excellent enzyme activity was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1にて得られた酵素固定膜を再
生しながら酵素反応に使用して透過流束およびグ
ルコース生成量を測定した結果を示し、第2図は
実施例2にて得られた酵素固定膜を再生しながら
酵素反応に使用して透過液中のグルコース量およ
びマルトース量を測定した結果である。
Figure 1 shows the results of measuring the permeation flux and amount of glucose produced by using the enzyme-immobilized membrane obtained in Example 1 in an enzyme reaction while regenerating it, and Figure 2 shows the results of measuring the permeation flux and amount of glucose produced. These are the results of measuring the amount of glucose and maltose in the permeate by using the enzyme-immobilized membrane in an enzyme reaction while regenerating it.

Claims (1)

【特許請求の範囲】 1 異方性限外濾過膜の多孔質層に、酵素が有す
るアミノ基もしくはカルボキシル基と反応する少
なくとも2個のイミノ基またはアミノ基を有する
水溶性高分子が一部官能基を残した架橋状態で保
持され、且つ該官能基を介して酵素が共有結合さ
れてなる酵素固定膜の再生方法であつて、該固定
膜の緻密層側から多孔質層側へ次亜塩素酸ナトリ
ウム水溶液を、場合により塩酸を続けて透過させ
て水溶性高分子および酵素を除去したのち、多孔
質層側から上記水溶性高分子、架橋剤水溶液、酵
素水溶液を順次透過させることを特徴とする酵素
固定膜の再生方法。 2 異方性限外濾過膜がポリスルホン膜である特
許請求の範囲第1項記載の酵素固定膜の再生方
法。 3 水溶性高分子がポリエチレンイミンである特
許請求の範囲第1項記載の酵素固定膜の再生方
法。 4 架橋剤がジアルデヒド類である特許請求の範
囲第1項記載の酵素固定膜の再生方法。 5 次亜塩素酸ナトリウム水溶液が有効塩素濃度
500〜1000ppmである特許請求の範囲第1項記載
の酵素固定膜の再生方法。 6 塩酸が0.005〜0.05規定の濃度である特許請
求の範囲第1項記載の酵素固定膜の再生方法。
[Scope of Claims] 1. A water-soluble polymer having at least two imino groups or amino groups that reacts with amino groups or carboxyl groups possessed by an enzyme is partially functionalized in the porous layer of the anisotropic ultrafiltration membrane. A method for regenerating an enzyme-immobilized membrane in which the enzyme is maintained in a cross-linked state with a group remaining, and an enzyme is covalently bonded through the functional group, and the method comprises injecting hypochlorite from the dense layer side of the immobilized membrane to the porous layer side. The method is characterized in that after the water-soluble polymer and enzyme are removed by passing a sodium acid aqueous solution and, if necessary, hydrochloric acid in succession, the water-soluble polymer, crosslinking agent aqueous solution, and enzyme aqueous solution are sequentially passed through from the porous layer side. A method for regenerating enzyme-immobilized membranes. 2. The method for regenerating an enzyme-immobilized membrane according to claim 1, wherein the anisotropic ultrafiltration membrane is a polysulfone membrane. 3. The method for regenerating an enzyme-immobilized membrane according to claim 1, wherein the water-soluble polymer is polyethyleneimine. 4. The method for regenerating an enzyme-immobilized membrane according to claim 1, wherein the crosslinking agent is a dialdehyde. 5 The effective chlorine concentration of sodium hypochlorite aqueous solution
The method for regenerating an enzyme-immobilized membrane according to claim 1, wherein the concentration is 500 to 1000 ppm. 6. The method for regenerating an enzyme-immobilized membrane according to claim 1, wherein the hydrochloric acid has a concentration of 0.005 to 0.05 normal.
JP690887A 1987-01-14 1987-01-14 Regeneration of enzyme immobilizing membrane Granted JPS63177790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP690887A JPS63177790A (en) 1987-01-14 1987-01-14 Regeneration of enzyme immobilizing membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP690887A JPS63177790A (en) 1987-01-14 1987-01-14 Regeneration of enzyme immobilizing membrane

Publications (2)

Publication Number Publication Date
JPS63177790A JPS63177790A (en) 1988-07-21
JPH0342073B2 true JPH0342073B2 (en) 1991-06-26

Family

ID=11651335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP690887A Granted JPS63177790A (en) 1987-01-14 1987-01-14 Regeneration of enzyme immobilizing membrane

Country Status (1)

Country Link
JP (1) JPS63177790A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02238880A (en) * 1989-03-10 1990-09-21 Ngk Insulators Ltd Regeneration of bioreactor

Also Published As

Publication number Publication date
JPS63177790A (en) 1988-07-21

Similar Documents

Publication Publication Date Title
EP0223389B1 (en) Enzyme-immobilized membrane and process for producing the same
CN107837689B (en) Preparation method of composite nanofiltration membrane with ultrathin separation layer
US4229536A (en) Process for preparing immobilized enzymes
Vanangamudi et al. Surface-engineered biocatalytic composite membranes for reduced protein fouling and self-cleaning
JPS638749B2 (en)
Marpani et al. In situ formation of a biocatalytic alginate membrane by enhanced concentration polarization
US3849253A (en) Process of immobilizing enzymes
JPH0342073B2 (en)
US4206259A (en) Support matrices for immobilized enzymes
HU202415B (en) Method for producing membrane structures having through pores and changing the effective pore size
US4248969A (en) Regeneration of a immobilized enzyme system
US4193910A (en) Preparation of support matrices for immobilized enzymes
JPH0344756B2 (en)
JP2781990B2 (en) Manufacturing method of immobilized enzyme
JPH02245190A (en) Enzymatic reaction
JPH02219575A (en) Production of membrane for immobilizing enzyme
JPH01141587A (en) Method for enzymic reaction using immobilized enzyme membrane
JPH0372881A (en) Production of hollow fiber membrane for enzyme immobilization
CN1125635A (en) Modified polysulphone super-filter membrane and its preparation and application
JPS61111687A (en) Immobilized enzyme membrane and preparation thereof
PL102119B1 (en) A PROCESS OF PRODUCING THE BASE FOR IMMOBILIZING ENZYMES
JPS62296876A (en) Immobilized enzyme membrane
JPH0566108B2 (en)
JPS6344885A (en) Enzyme immobilized dynamic membrane
JPH02109986A (en) Method and apparatus for carrying out enzymic reaction using enzyme immobilized membrane