JPH0342034A - Method for predicting chemical structure of organic compound - Google Patents

Method for predicting chemical structure of organic compound

Info

Publication number
JPH0342034A
JPH0342034A JP17625389A JP17625389A JPH0342034A JP H0342034 A JPH0342034 A JP H0342034A JP 17625389 A JP17625389 A JP 17625389A JP 17625389 A JP17625389 A JP 17625389A JP H0342034 A JPH0342034 A JP H0342034A
Authority
JP
Japan
Prior art keywords
partial
information
partial structure
substance
candidate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17625389A
Other languages
Japanese (ja)
Inventor
Kimito Funatsu
公人 船津
Shinichi Sasaki
佐々木 愼一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNO SYST KK
Original Assignee
TECHNO SYST KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNO SYST KK filed Critical TECHNO SYST KK
Priority to JP17625389A priority Critical patent/JPH0342034A/en
Publication of JPH0342034A publication Critical patent/JPH0342034A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate input work and to reduce the calculating time by accumulating the partial structure of an org. compd., position of its absorption spectrum and magnitude of energy to the spectral information in the partial structure estimating part. CONSTITUTION:The sample information A used for prediction is inputted to a computer C. The information A is resolved into an estimated partial structure by the partial structure estimating part 1 in the computer C, and preassembled into a candidate structure in the candidate structure assembling part 2. The inadequate part is then rejected in a structure testing part 3, and all the desired structural isomers are outputted from the output parts 4 of the cathode-ray tube, printer, etc. When the partial structure IA of the material is known, the information is immediately inputted to the candidate structure assembling part 2 without passing through the partial structure estimating part 1.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は有機化学の分野において、天然に存する物質
、合成や反応過程において得られた物質の構造を予測す
るのに用いる有機化合物の化学構造予測法に関するもの
で、特に、コンピュータを用いて有機化合物の化学構造
を予測する場合に好適な化学構造予測法に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention is used in the field of organic chemistry to predict the chemical structure of organic compounds used to predict the structure of naturally occurring substances or substances obtained in synthesis or reaction processes. The present invention relates to a prediction method, and particularly to a chemical structure prediction method suitable for predicting the chemical structure of an organic compound using a computer.

〔従来の技術〕[Conventional technology]

一般に、同一の分子式を持つ物質であっても、その構造
は必ずしも一個に限らず、数種の結合構造があることは
知られている。未知の物質の化学構造を認識し理解する
ことは有機合成化学の分野において所望の物質を得るた
めの過程としても必要なことであり、日常の開発行為と
して行われている。
It is generally known that even substances with the same molecular formula do not necessarily have a single structure, but have several types of bonding structures. Recognizing and understanding the chemical structure of unknown substances is a necessary process for obtaining desired substances in the field of organic synthetic chemistry, and is carried out as a daily development activity.

また、その解析作業には多くの労力を要するため、作業
の迅速と正確を期するためコンピュータを利用すること
も種々検討されている。すなわち、多数ある既知の化学
構造の物質とその生成に供された試料と反応過程をデー
タとして蓄積し、その中から該当する化学構造を有する
試料を検索することも考慮されたが、無数にある物質の
化学構造を情報として持つことは、いかにコンピュータ
といえども記憶装置の浪費となり、化学的にも情報の完
全は期し難かった。
Further, since the analysis work requires a lot of labor, various studies are being conducted on the use of computers to ensure speedy and accurate work. In other words, it has been considered to accumulate data on a large number of substances with known chemical structures, the samples used to produce them, and the reaction processes, and search for samples with the corresponding chemical structure from among them, but there are countless Having the chemical structure of a substance as information would be a waste of memory, no matter how computer-oriented, and it was difficult to expect complete information in terms of chemistry.

そこで筆頭発明者らは先に化学反応の生成物とその生成
に供された試料の部分構造とそれらの結合の規則性につ
いてのデータを収容した情報ファイルを準備し、そのフ
ァイルから試料が到達し得る有機化合物の化学構造を検
索し予測する化学構造の予測法について発明し特許出願
した(特願昭62−243468号)。
Therefore, the lead inventors first prepared an information file that contained data about the chemical reaction products, the partial structures of the samples used to generate them, and the regularity of their bonds, and from that file the samples arrived. He invented and filed a patent application for a chemical structure prediction method for searching and predicting the chemical structure of organic compounds to be obtained (Japanese Patent Application No. 1983-243468).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、その試料についての入力は専ら既知の分
子式や部分構造に頼り、試料が未知の材料であるときに
試料データを入力できない不具合があった。
However, input for the sample relies exclusively on known molecular formulas and partial structures, and there is a problem in that sample data cannot be input when the sample is an unknown material.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は上記不具合を解決し、既知の部分構造や分子
式の他、試料の赤外線吸収スペクトルや核磁気共鳴スペ
クトルなど化学的特性を数値化して入力可能となし、入
力されるデータの豊富化を図ることを目的とするもので
あり、入力された物質情報から有機化合物の部分構造を
情報ファイルの中から検索して推定する部分構造推定部
と、そこで得られた部分構造を組み合わせて物質構造を
組立てる候補構造組立部およびそこで得られた候補化合
物のうち入力された物質情報の特性に該当し得ないもの
を排除する構造検定部とを経て所望の物質構造を出力す
るものにおいて、前記部分構造推定部のスペクトル情報
には有機化合物の部分構造とその吸収スペクトルの位置
およびエネルギーの大きさが蓄積されており、且つ、前
記部分構造推定部は少なくとも分子式かスペクトル情報
のいずれが数値によって入力可能に構成された点に特徴
がある。
This invention solves the above-mentioned problems and makes it possible to numerically input chemical properties such as known partial structures and molecular formulas, as well as infrared absorption spectra and nuclear magnetic resonance spectra of samples, thereby enriching the input data. The purpose is to combine the partial structure estimator, which searches the information file for the partial structure of an organic compound based on the input material information and estimates it, and assembles the material structure by combining the partial structures obtained there. The partial structure estimation unit outputs a desired substance structure through a candidate structure assembly unit and a structure verification unit that excludes candidate compounds obtained therefrom that do not correspond to the properties of the input substance information. The spectral information stores the partial structure of the organic compound and the position and energy of its absorption spectrum, and the partial structure estimator is configured to be able to input at least either the molecular formula or the spectral information numerically. It is characterized by the fact that

〔作用〕[Effect]

コンピュータCには各部分構造毎に吸収やシグナルの位
置、強度によって数値化され情報として蓄積される。
In computer C, each partial structure is digitized based on absorption, signal position, and intensity and stored as information.

物質情報Aがスペクトル情報1bとして与えられると、
蓄積された情報の中から適合するもの\みが選択され部
分構造が推定される。
When material information A is given as spectrum information 1b,
Only suitable information is selected from the accumulated information and the partial structure is estimated.

次いで、その部分構造が次の構造組立部において、蓄積
された結合に関する情報の中から優先順位に従って他の
部分構造との組合せがなされ、不適当なものを除去して
出力される。
Then, in the next structure assembly section, that partial structure is combined with other partial structures according to the priority order from among the accumulated connection information, and inappropriate ones are removed and output.

〔実施例〕〔Example〕

以下、図示の実施例によってこの発明を説明する。第1
図はこの化学構造予測法の流れ図であり、予測に供され
る試料情報AはコンピュータCへ入力される。試料情報
AはコンピュータCの内部で部分構造推定部1で推定部
分構造に分解され、候補構造組立部2において候補構造
に仮組立てされた後、構造検定部3において不適当なも
のが除去され、所望の構造異性体の全てがブラウン管や
プリンタ等の出力部4から出力される。なお、Ciはコ
ンピュータCの内部メモリであり、後述する部分構造の
情報や試料情報Aの推定部分構造などを蓄積する情報フ
ァイルをなしている。
The present invention will be explained below with reference to illustrated embodiments. 1st
The figure is a flowchart of this chemical structure prediction method, and sample information A used for prediction is input to computer C. The sample information A is decomposed into estimated substructures in a substructure estimating section 1 in a computer C, tentatively assembled into a candidate structure in a candidate structure assembling section 2, and then inappropriate parts are removed in a structure verification section 3. All desired structural isomers are outputted from an output section 4 such as a cathode ray tube or printer. Note that Ci is an internal memory of the computer C, and constitutes an information file that stores information on partial structures, estimated partial structures of sample information A, etc., which will be described later.

試料情報Aは部分構造式1a、赤外線吸収スペクトル或
いは核磁気共鳴スペクトルなどのスペクトル情報1b、
分子式1cなどである。物質の部分構造式1aが判明し
ているときは前記部分構造推定部1を経ることなく、直
ちに候補構造組立部2に対して入力されるが、スペクト
ル情報1b或いは分子式lcによるときは、候補構造組
立部2へ過程に先立ち部分構造推定部lにおいて部分構
造の解析に付され部分構造式1aが推定される。
The sample information A includes a partial structural formula 1a, spectral information 1b such as an infrared absorption spectrum or a nuclear magnetic resonance spectrum,
The molecular formula is 1c, etc. When the partial structural formula 1a of a substance is known, it is immediately inputted to the candidate structure assembly section 2 without going through the partial structure estimating section 1, but when it is based on the spectrum information 1b or the molecular formula lc, the candidate structure Prior to the process to the assembly section 2, the partial structure is analyzed in a partial structure estimating section 1, and a partial structural formula 1a is estimated.

こ\で、試料情報Aの部分構造式1aとは、無限に近い
有機化合物の構造を組立てるに足りる要部の構造であり
、部分構造推定部1では試料情報Aを以下に示す過程を
経て構造式に分解し整理される。構造式はこの実施例で
は3種の階層からなっている。第1層は基礎となる部分
構造であり第2図で示すように、C,H,O,N、S、
ハロゲンなどからなる15種の部分構造が経験的に選定
され、第2層にはそれらの結合相手をさがすときの属性
により、すなわち、各部分構造中の自由結合手を持つ原
子の結合の性質により第3図で示すように86種が選定
され、第3層には更に相手片の結合を属性を考慮し自由
結合手を持つ第2層の部分構造が結合相手として選択す
る優先順位に従って選定して第4図で示すように合計6
30種の部分構造が設定されている。
Here, the partial structural formula 1a of the sample information A is the structure of the main part that is sufficient to assemble the structure of an almost infinite number of organic compounds, and the partial structure estimation unit 1 calculates the structure from the sample information A through the process shown below. It is broken down and organized into formulas. In this example, the structural formula consists of three types of hierarchies. The first layer is the basic partial structure, and as shown in Figure 2, it consists of C, H, O, N, S,
Fifteen types of substructures consisting of halogens, etc. were selected empirically, and the second layer was created based on the attributes when searching for their bonding partners, that is, the properties of the bonds of atoms with free bonding hands in each substructure. As shown in Figure 3, 86 types were selected, and in the third layer, the partial structures of the second layer with free bonds are selected according to the priority order of selection as a bonding partner, taking into account the attributes of the bonding of the partner piece. total of 6 as shown in Figure 4.
Thirty types of partial structures are set.

結合相手を見つけるための属性は第5図で示すように、
沃素、窒素、酸素、芳香族炭素、カルボニル炭素、s 
p 2炭素、sp炭素およびs p 3炭素などIから
CSに至る12種が優先順位に従って列挙されている。
The attributes for finding a binding partner are as shown in Figure 5.
Iodine, nitrogen, oxygen, aromatic carbon, carbonyl carbon, s
Twelve species ranging from I to CS, such as p 2 carbon, sp carbon, and sp 3 carbon, are listed in order of priority.

これら630種の部分構造により、スペクトルデータか
ら存在が推定できること、互いに重なり会う部分のない
こと、およびその組合せによって対象とする化学物質を
カバーできること等の条件がすべて網羅されることにな
る。第6図は部分構造式を整理して示す特性表の例を示
した。そこには各部分構造毎に自らの結合手の性質と結
合相手に求める性質とが対応して整理しである。
These 630 types of partial structures cover all conditions such as being able to estimate their existence from spectral data, having no overlapping parts, and being able to cover the target chemical substances by combining them. FIG. 6 shows an example of a property table that organizes the partial structural formulas. For each substructure, the properties of the bond itself and the properties required of the bond partner are arranged in correspondence.

この発明ではコンピュータCへ入力される試料情報Aの
形態として、特に、赤外線吸収スペクトル(IR)或い
は核磁気共鳴スペクトル(NMR)などのスペクトル情
報1bの入力が可能となっている。第7図で示すイソホ
ロン(C9H140)のスペクトルによれば、左端に示
す赤外線吸収スペクトル(IR)は下方へ突出した谷部
の位置(am)と吸収強さ(%T)が下欄で示すように
データ化される。同様に水素による核磁気共鳴スペクト
ル(HNMR)では山部の位置とその面積強度が、更に
(BCNMR)では山部の位置とその面積強度の他、山
の多重度がデータ化される。
In the present invention, as the sample information A input to the computer C, in particular, spectrum information 1b such as an infrared absorption spectrum (IR) or a nuclear magnetic resonance spectrum (NMR) can be input. According to the spectrum of isophorone (C9H140) shown in Figure 7, the infrared absorption spectrum (IR) shown at the left end has the position (am) of the downward protruding valley and the absorption intensity (%T) as shown in the lower column. will be converted into data. Similarly, in hydrogen nuclear magnetic resonance spectrum (HNMR), the position of the peak and its area intensity are converted into data, and in addition, in (BCNMR), the multiplicity of the peak is converted into data in addition to the position of the peak and its area intensity.

次に、コンピュータCによる有機化合物の化学構造予測
法の動作を説明する。試料情報AがコンピュータCに入
力されると、部分構造推定部1では前記部分構造式の特
性表に記載された630種の部分構造のうち入力された
試料情報Aの分子式1cやスペクトル情報1bと矛盾す
るものを除去する消去法によって部分構造の推定が行わ
れる。供された試料情報Aのうち吸収の行われる位置や
強度等が内部メモリCiに蓄積された数値データに対し
て所定の公差内に入っていない部分構造が消去され、残
余のものが推定された部分構造として次過程へ出力され
る。
Next, the operation of the method for predicting the chemical structure of organic compounds using computer C will be explained. When the sample information A is input to the computer C, the partial structure estimating unit 1 calculates the molecular formula 1c and spectrum information 1b of the input sample information A from among the 630 types of partial structures listed in the characteristic table of the partial structural formulas. The substructure is estimated by an elimination method that removes contradictions. Among the provided sample information A, partial structures that do not fall within predetermined tolerances based on the numerical data stored in the internal memory Ci, such as the position and intensity of absorption, are erased, and the remaining structures are estimated. It is output to the next process as a partial structure.

入力が分子式1cによってなされるときは前記部分構造
式の情報ファイルCiに蓄積された化学構造のうち、分
子式に適合し、ない部分構造が消去され所要の部分構造
が推定されて、次の候補構造組立部2へ出力される。
When input is made using the molecular formula 1c, among the chemical structures accumulated in the information file Ci of the partial structural formula, partial structures that do not match the molecular formula are deleted, the desired partial structure is estimated, and the next candidate structure is generated. It is output to the assembly section 2.

なお、以上のルーチンとは別に試料情報A中に存在し得
ない部分構造や、必ず存在する部分構造が既知であると
きは、それを情報ファイル(内部メモリ)C1へ入力す
ることにより部分構造の推定やの精度が向上することは
勿論である。
In addition, apart from the above routine, if a partial structure that cannot exist in the sample information A or a partial structure that always exists is known, the partial structure can be inputted into the information file (internal memory) C1. Of course, the accuracy of estimation is improved.

候補構造組立部2では前記第2層と第3層のデータから
相互に求める結合手を有する部分構造が結合の優先順位
に従って結合され構造異性体の候補として出力される。
In the candidate structure assembling unit 2, partial structures having mutually determined bonds from the data of the second layer and the third layer are combined in accordance with the bonding priority order and output as structural isomer candidates.

すなわち、第6図の中欄に示す自らの性質と、右端の欄
に示す結合相手の性質とが単純に比較され一致するもの
覧みが結合の優先順位に従って結合され出力される。
That is, the property shown in the middle column of FIG. 6 is simply compared with the property of the binding partner shown in the rightmost column, and the matching properties are combined and output according to the priority order of combination.

また、構造検定部3では候補構造組立部2から出力され
る候補組立構造のうち、スペクトル情報や部分構造が存
在するのに必要な炭素数、炭素と水素との飽和数、或い
は酸素の数などの条件、更には試料情報A中に存在し得
ない部分構造や、必ず存在する部分構造が既知であると
きはその情報に従って存在し得ないものが除去され、正
しい異性構造体のみが出力部4から出力される。
In addition, the structure verification section 3 calculates the number of carbons, the number of saturated carbons and hydrogens, the number of oxygens, etc. necessary for the existence of spectral information and partial structure among the candidate assembled structures outputted from the candidate structure assembly section 2. conditions, and furthermore, when partial structures that cannot exist in sample information A or partial structures that always exist are known, those that cannot exist are removed according to that information, and only correct isomeric structures are output to the output section 4. is output from.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、有機化合物の4゜ 部分構造について、それぞれ吸収スペクトルが位置およ
びエネルギの大きさによって数値化されているので、各
部分構造について固有のデータを情報ファイル(内部メ
モリ)C1へ蓄積しておけば、人力されるスペクトル情
報1bから迅速に推定部分構造が検索され得る。よって
、部分構造の推定が既知の部分構造や分子式の他、試料
の赤外線吸収スペクトルや核磁気共鳴スペクトルを利用
することができ、入力されるデータの豊富化を図ること
が出来る。また、そのスペクトル情報による入力方法と
して吸収の位置とそのエネルギを情報源としたので、そ
の入力作業が容易であると共に、コンピュータの記憶容
量が少なくて足り、且つその演算を短時間で終了させる
ことができるなどの効果がある。
As described above, according to the present invention, the absorption spectrum of each 4° partial structure of an organic compound is quantified by the position and energy magnitude, so unique data for each partial structure is stored in an information file (internal memory ) If stored in C1, the estimated partial structure can be quickly retrieved from the manually input spectrum information 1b. Therefore, in addition to known partial structures and molecular formulas, infrared absorption spectra and nuclear magnetic resonance spectra of the sample can be used to estimate the partial structure, making it possible to enrich the input data. In addition, since the absorption position and its energy are used as the information source as the input method using the spectrum information, the input work is easy, the storage capacity of the computer is small, and the calculation can be completed in a short time. There are effects such as being able to.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の一実施例を示すもので、第1図はこの
発明による予測法の流れ図であり、第2図、第3図およ
び第4図は部分構造表を示す、第5図は部分構造の属性
を示す特性表、第6図は部分構造を整理するための整理
表、第7図はスペクト・ル情報とその整理表とを示す特
性図図である。
The drawings show an embodiment of the present invention, and FIG. 1 is a flowchart of the prediction method according to the invention, FIGS. 2, 3, and 4 show partial structure tables, and FIG. 5 shows a partial structure table. FIG. 6 is a characteristic table showing the attributes of the structure, FIG. 6 is an arrangement table for organizing partial structures, and FIG. 7 is a characteristic chart showing spectrum information and its arrangement table.

Claims (3)

【特許請求の範囲】[Claims] (1)入力された物質情報から有機化合物の部分構造を
情報ファイルの中から検索して推定する部分構造推定部
と、そこで得られた部分構造を組み合わせて物質構造を
組立てる候補構造組立部、およびそこで得られた候補化
合物のうち入力された物質情報の特性に該当し得ないも
のを排除する構造検定部とを経て所望の物質構造を出力
するものにおいて、前記部分構造推定部のスペクトル情
報には有機化合物の部分構造とその吸収スペクトルの位
置およびエネルギーの大きさが蓄積されており、且つ、
前記部分構造推定部は少なくとも分子式かスペクトル情
報のいずれが数値によって入力可能に構成されている有
機化合物の化学構造予測法。
(1) A partial structure estimating unit that searches and estimates a partial structure of an organic compound based on input substance information from an information file; a candidate structure assembly unit that assembles a substance structure by combining the partial structures obtained there; and Among the candidate compounds obtained therein, the structure verification section eliminates those that do not correspond to the characteristics of the input material information, and the desired substance structure is output. The partial structure of the organic compound and the position and energy size of its absorption spectrum are accumulated, and
The partial structure estimation unit is configured to allow input of at least a molecular formula or spectral information numerically.
(2)前記構造組立部で使用される情報ファイルの中に
は物質の部分構造の性質を示すパラメータと、その部分
構造が結合し得る相手方の性質を示すパラメータとが蓄
積されており、それに基づいて前記部分構造推定部から
入力される部分構造を結合させ、候補物質構造を出力す
るように構成されている特許請求の範囲第1項記載の有
機化合物の化学構造予測法。
(2) In the information file used in the structure assembly section, parameters indicating the properties of the substructure of the substance and parameters indicating the properties of the other party to which the substructure can be bonded are stored, and based on these, 2. The method for predicting the chemical structure of an organic compound according to claim 1, wherein the partial structures inputted from the partial structure estimating section are combined to output a candidate substance structure.
(3)前記構造検定部は候補物質構造に、前記部分構造
推定部へ数値で入力された物質情報と合致しない特性を
有するものを除去するように構成されている特許請求の
範囲第1項記載の有機化合物の化学構造予測法。
(3) The structure verification unit is configured to remove candidate substance structures having properties that do not match the substance information numerically input to the partial structure estimation unit. A method for predicting the chemical structure of organic compounds.
JP17625389A 1989-07-07 1989-07-07 Method for predicting chemical structure of organic compound Pending JPH0342034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17625389A JPH0342034A (en) 1989-07-07 1989-07-07 Method for predicting chemical structure of organic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17625389A JPH0342034A (en) 1989-07-07 1989-07-07 Method for predicting chemical structure of organic compound

Publications (1)

Publication Number Publication Date
JPH0342034A true JPH0342034A (en) 1991-02-22

Family

ID=16010332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17625389A Pending JPH0342034A (en) 1989-07-07 1989-07-07 Method for predicting chemical structure of organic compound

Country Status (1)

Country Link
JP (1) JPH0342034A (en)

Similar Documents

Publication Publication Date Title
Chhantyal-Pun et al. Criegee intermediate reactions with carboxylic acids: A potential source of secondary organic aerosol in the atmosphere
Liu Crossed-beam studies of neutral reactions: State-specific differential cross sections
Keith Identification and analysis of organic pollutants in water
Currie Detection in analytical chemistry. Importance, theory, and practice
Bremser Hose—a novel substructure code
Michelitsch et al. Efficient simulation of near-edge x-ray absorption fine structure (NEXAFS) in density-functional theory: Comparison of core-level constraining approaches
Lu et al. What is the effect of variational optimization of the transition state on. alpha.-deuterium secondary kinetic isotope effects? A prototype: CD3H+ H. dblarw. CD3+ H2
McLafferty et al. Retrieval and interpretative computer programs for mass spectrometry
CA2843648C (en) Chemical identification using a chromatography retention index
Thornton et al. A near-explicit mechanistic evaluation of isoprene photochemical secondary organic aerosol formation and evolution: simulations of multiple chamber experiments with and without added NO x
JPH0342034A (en) Method for predicting chemical structure of organic compound
Álvarez-Barcia et al. The interaction of Al atoms with water molecules: A theoretical study
Ferré et al. Constructing D-optimal designs from a list of candidate samples
CN116759000A (en) Method, device, medium and equipment for predicting deep inverse synthetic reaction based on byproducts
WO2003058499A1 (en) Knowledge search apparatus, knowledge search method, program, and recording medium
Sparkman Informatics and mass spectral databases in the evaluation of environmental mass spectral data
Sandström et al. Data‐Driven Compound Identification in Atmospheric Mass Spectrometry
Seeman Revolutions in Chemistry: Assessment of Six 20th Century Candidates (The Instrumental Revolution; Hückel Molecular Orbital Theory; Hückel’s 4 n+ 2 Rule; the Woodward–Hoffmann Rules; Quantum Chemistry; and Retrosynthetic Analysis)
Funatsu et al. Application of infrared data analysis based on symbolic logic in automated structure elucidation by CHEMICS
JPS59137854A (en) Inverse search for mass spectrum library
Spanton et al. The development of an NMR chemical shift prediction application with the accuracy necessary to grade proton NMR spectra for identity
Egli et al. Computer‐Assisted Structural Interpretation of 1H‐NMR. Spectral Data
Gómez et al. Analysis of User’s Behaviour in Very Large Business Application Systems with Methods of the Web Usage Mining—A Case Study on SAP® R/3®
Gold et al. Principal component and decomposition analysis of multicomponent mixtures of carcinogenic fluorophores
KR20080099559A (en) Method to predict protein secondary structure using nmr spectroscopy