JPH0341791A - Semiconductor optical element - Google Patents

Semiconductor optical element

Info

Publication number
JPH0341791A
JPH0341791A JP17546689A JP17546689A JPH0341791A JP H0341791 A JPH0341791 A JP H0341791A JP 17546689 A JP17546689 A JP 17546689A JP 17546689 A JP17546689 A JP 17546689A JP H0341791 A JPH0341791 A JP H0341791A
Authority
JP
Japan
Prior art keywords
well
band
layer
optical device
semiconductor optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17546689A
Other languages
Japanese (ja)
Other versions
JP2950853B2 (en
Inventor
Kazuhisa Uomi
魚見 和久
Shinji Sasaki
真二 佐々木
Tomonobu Tsuchiya
朋信 土屋
Naoki Kayane
茅根 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17546689A priority Critical patent/JP2950853B2/en
Priority to US07/529,245 priority patent/US5132981A/en
Priority to EP90110127A priority patent/EP0400559B1/en
Priority to DE69028734T priority patent/DE69028734T2/en
Priority to EP96104886A priority patent/EP0727821A3/en
Priority to CA002017912A priority patent/CA2017912A1/en
Publication of JPH0341791A publication Critical patent/JPH0341791A/en
Application granted granted Critical
Publication of JP2950853B2 publication Critical patent/JP2950853B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3407Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers characterised by special barrier layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To realize a laser oscillation in a low threshold current and moreover, a high quantum effect in a quantum well type laser by a method wherein the side of a conduction band has an equivalent band end discontinuous energy value, which is formed of the lowest energy state of a miniband to be formed in a barrier layer by a superlattice structure and a well layer and is larger than that on the side of a valency band. CONSTITUTION:Minibands are formed in respect to electrons and holes in a superlattice structure. Energies of the minibands in the barrier of this superlattice structure are equivalent to the depths of wells to a quantum well layer, in short, become DELTAEc and DELTAEv. The energies DELTAE of the minibands are inversely proportional to the effective masses of the electrons and the holes. In an InGaAs(P) system, the effective mass of electrons is about 1/10 of that of holes. Accordingly, a DELTAEe of the miniband of electrons on the side of a conduction band, that is, the DELTAEc becomes about 10 times as large as a DELTAEh of the miniband of holes on the side of a valency band, that is, the DELTAEv. In such a way, a superlattice type quantum barrier is used in a system of DELTAEv>DELTAEc as well. Thereby, the relation of DELTAEc>DELTAEv can be made.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野1 本発明は半導体光素子に係り、特に光フアイバ通信、光
情報処理、光計測に用いて好適な半導体光素子に関する
。 【従来の技術1 量子井戸型(QW)半導体レーザは、その量子サイズ効
果を反映して、緩和振動周波数の増大。 スペクトル線幅が低減するので、次世代光通信用半導体
レーザとして期待されている。従来の光通信用InGa
AsP系QWレーザの量子井戸層とバリア層のバンド端
不連続エネルギーの値は価電子帯側の方が伝導帯側より
も大きいものである。つまり、InGaAs (P)を
量子井戸層に、かツInPあるいはInGaAsPをバ
リア層として用いるQW4ilI造では、伝導帯側の井
戸の深さΔEcが価電子帯側の井戸の深さΔEvより小
さい(すなわちΔEc<ΔE、)。従って、電子の感じ
る井戸の深さが正孔の感じる井戸の深さより浅い。この
比率、すなわちバンド端不連続エネルギーの値、特に伝
導帯不連続の値、つまり ΔEC/(ΔEc+ΔEv)はこの系では約0.3〜0
.4である。−例としてアプライド、フィジクス、レタ
ーズ 51.P、24 (1987年)(Appl、 
Phys、 Lett、、 51 、 P、24(19
87))を掲げる。この従来例では0.38となってい
る。 【発明が解決しようとする課題] 上記従来技術の如くΔEv>ΔEcなる関係のQW構造
では、正孔が各井戸層へ注入されにくいという問題があ
る。 これを第3図のバンドダイアグラムを用いて説明する。 (aOb)共、この例では量子井戸層としてTnGaA
sを用いた場合で、バリア層として(a)はInP、(
b)InGaAsPを用いたものを示しである。まず、
(a)では、量子井戸層とバリア層の禁制帯幅の差は大
きく(約610rneV)、ΔEcは約232 meV
、ΔEvは378meVとなる。この場合、電子、及び
正孔は充分量子化されるが、有効質量の大きい正孔側の
井戸の深さ、すなわちΔEvは大き過ぎて、正孔は1番
目の井戸層には注入されるが2番目、3番目の井戸層に
は注入されにくくなる。これは価電子帯側の井戸の深さ
ΔEvが大き過ぎるため正孔がこれを乗り越えられない
ためである。これは、ひいてはしきい電流かつ大幅に増
大することになる。 そこで、従来はバリア層をInGaAsPにしてΔEv
を下げることが行なわれてきた(同図(b))。 こうすると(b)に示したように正孔は各井戸に注入さ
れるようになるが、一方伝導帯側の井戸の深さΔEcも
共に小さくなる。こうなると、有効質量の軽い電子の分
布は井戸層のエネルギーを越えてしまうものがあり、同
図(b)の斜線の如く。 井戸層に閉じ込められない電子が存在する。これにより
、電子の量子化の度合は低減され、量子井戸の量子サイ
ズ効果が充分引き出されなくなる。 この場合、しきい電流は下がるが、量子サイズ効果は低
減されてしまう。 以上のように従来のInGaAs/TnP。 InGaAs/InGaAsP量子井戸系では、量子サ
イズ効果の度合と正孔の各井戸への注入の容易差にはト
レードオフの関係が存在する。これは、本質的に有効質
量の重い正孔側の井戸の深さΔEvがΔEcよりも大き
いためである。一方、GaAQAs/GaAs系ではΔ
EcはΔEvより大きく (ΔEC/(ΔEc+ΔEv
)!0.7)、このようなトレードオフはない。つまり
、量子サイズ効果を充分に引き出して、かつキャリア(
電子、正孔)の各井戸層への注入を容易にするた・めに
は、有効質量の軽い電子側のΔEcが有効質量の重い正
孔側のΔEvよりも大きくすることが理想的となる。 本発明の目的は、InGaAs (P)系等の量子井戸
構造においてΔEC>ΔEvなる関係を人為的に作り出
すことにある。 (!i題を解決するための手段) 元々ΔEC<ΔEvなる材料系において人為的にΔEC
>ΔEvなる関係を作り出するために、本発明では、バ
リア層自体を超格子構造で形成するものを開示する。こ
れを超格子型量子障壁と名づける。超格子構造とは、禁
制帯幅の異なる2種の半導体を周期的に積層したもので
ある。各々の膜厚は約30Å以下である。この薄い膜厚
を反映して、電子、及び正孔の波動関数はトンネル1!
A象により、各禁制帯幅の小さい半導体間で結合してい
る。この構造は多重量子井戸構造によく似ているが、各
層の膜厚が薄く、トンネル効果が生じているのが特徴で
ある。これを第1のバンドダイアグラム図を用いて説明
する。−例として量子井戸層をInGaAsとし、本発
明のポイントである超格子型量子障壁はInGaAs井
戸層とInPl壁層との周期構造となっている。これら
のサイズの典型的な値として・は電子、正札が局在化す
るInGaAs量子井戸の膜厚は量子サイズ効果が充分
に現われる5〜15nm程度である。また、超格子型量
子障壁を形成するInGaAs井戸層の膜厚は約0.6
〜3 n m、InPFJ!壁層の膜厚は約0.6〜3
nmで、これらの繰り返し周期は2〜10周期程度が本
発明の特徴が特に顕著に現われる範囲である。 さらにこのバリア層全体若しくはバリア層を形成する超
格子型量子障壁層に高濃度のP型不純物ドーピングを行
うと変調ドープ効果による特性の向上と相刺され、特に
好ましい。 【作用】 以下、本発明によるΔEc、ΔEvの制御メカニズムに
ついて第1図及び第2図を用いて説明する。 超格子構造内では、第1図に示した如く、電子及び正孔
に関して、ミニバンドが形成される。このミニバンドと
は超格子構造内の量子準位である。 すなわち、超格子構造内に形成されるエネルギ帯である
。この超格子障壁内のミニバンドのエネルギーが量子井
戸層に対する井戸の深さ、っまりΔEC,ΔEvとなる
。このミニバンドは、超格子内の各井戸間の波動関数の
結合度合いにより生じるものであり、超格子内の量子化
準位に相当するものであり、超格子内の量子化準位に相
当するものである。さて、この量子化準位エネルギーΔ
Eは近似的に で表わすことができる。ここでmは有効質量、Lは超格
子内の井戸幅である。つまりミニバンドエネルギーΔE
は有効質量に反比例するのである。 InGaAs (P)系では電子の有効質量は正孔の有
効質量の約1/10である。従って伝導帯側の電子のミ
ニバンドΔEe、すなわちΔEcは、価電子帯側の正孔
のミニバンドΔEh、すなわちΔEvより約10倍大き
くなる。このようにΔEvがΔEcより大きい系におい
ても超格子型量子障壁を用いることにより、ΔE c 
>ΔEvなる関係を作れるのである。これは結局電子の
方が正孔より有効質量が軽く、量子化されやすいことに
起因している1以上は定性的に説明したが、実際に厳密
に計算した結果を第2図に示す。この計算では超格子の
ミニバンド計算においてごく一般的に使われるクローニ
ツヒ・ベニ−モデルを用いた。ここでは超格子内の井戸
をInGaAs、バリアをInPとし、図の横軸はその
井戸厚さ、パラメータはそのバリア厚さである。横軸が
Oの時はいわゆる材料のΔE c 、ΔEvを表わし、 (ΔE(:/(ΔEc+ΔEv)が0.38になってい
ることがわかる。この超格子障壁のΔE c 、ΔE。 の典型的な値を示しておくと図中のタイプ■ (井戸:
、2 n m 、バリア:3nrn)では(ΔEc/(
ΔEc+ΔEV)はo、63、タイプ■(井戸、バリア
共1nm)では0.59、タイプ■(井戸:2.5nm
、バリア:Inm)では。 0.69とΔEcの方が充分大きくなっていることがわ
かる。また、C−V法でこれらのタイプのΔEcを測定
したところ、この計算結果とほぼ同様の値となった。こ
のように、ΔEc>ΔEvなる関係をInGaAs(P
)系において初めて実現できた。これにより、量子サイ
ズ効果を十分保ったままで、かつ、正孔の注入も容易に
なった。これらを考慮した緩和振動周波数frのInG
aAs量子井戸帽依存性の計算値を第6図に示す。 縦軸は、DH(ダブルへテロ)レーザのf、で規格化し
た値である。このように本発明によりInGaAs (
P)系QWレーザにおいて2倍以上のf、が期待できる
INDUSTRIAL APPLICATION FIELD 1 The present invention relates to a semiconductor optical device, and particularly to a semiconductor optical device suitable for use in optical fiber communication, optical information processing, and optical measurement. [Conventional technology 1] A quantum well (QW) semiconductor laser has an increased relaxation oscillation frequency reflecting its quantum size effect. Because the spectral linewidth is reduced, it is expected to be used as a semiconductor laser for next-generation optical communications. Conventional InGa for optical communication
The value of the band edge discontinuity energy of the quantum well layer and the barrier layer of the AsP-based QW laser is larger on the valence band side than on the conduction band side. In other words, in a QW4I structure using InGaAs (P) as a quantum well layer and InP or InGaAsP as a barrier layer, the depth ΔEc of the well on the conduction band side is smaller than the depth ΔEv of the well on the valence band side (i.e. ΔEc<ΔE,). Therefore, the depth of the well felt by electrons is shallower than the depth of the well felt by holes. This ratio, that is, the value of the band edge discontinuity energy, especially the value of the conduction band discontinuity, that is, ΔEC/(ΔEc+ΔEv), is approximately 0.3 to 0 in this system.
.. It is 4. -Example: Applied, Physics, Letters 51. P, 24 (1987) (Appl.
Phys, Lett, 51, P, 24 (19
87)). In this conventional example, it is 0.38. [Problems to be Solved by the Invention] In the QW structure in which the relationship ΔEv>ΔEc as in the prior art described above, there is a problem that holes are difficult to be injected into each well layer. This will be explained using the band diagram shown in FIG. (aOb), in this example, TnGaA is used as the quantum well layer.
(a) is InP, (
b) The one using InGaAsP is shown. first,
In (a), the difference in the forbidden band width between the quantum well layer and the barrier layer is large (approximately 610 rneV), and ΔEc is approximately 232 meV.
, ΔEv is 378 meV. In this case, electrons and holes are sufficiently quantized, but the depth of the well on the hole side, which has a larger effective mass, that is, ΔEv, is too large, and holes are injected into the first well layer. It becomes difficult to inject into the second and third well layers. This is because the depth ΔEv of the well on the valence band side is so large that holes cannot overcome it. This in turn results in a significant increase in threshold current. Therefore, in the past, the barrier layer was made of InGaAsP and ΔEv
Efforts have been made to lower the value ((b) in the same figure). In this case, holes are injected into each well as shown in (b), but on the other hand, the depth ΔEc of the wells on the conduction band side also becomes smaller. In this case, the distribution of electrons with a light effective mass may exceed the energy of the well layer, as shown by the diagonal line in FIG. 2(b). There are electrons that are not confined in the well layer. As a result, the degree of quantization of electrons is reduced, and the quantum size effect of the quantum well cannot be sufficiently exploited. In this case, the threshold current is reduced, but the quantum size effect is reduced. As described above, conventional InGaAs/TnP. In the InGaAs/InGaAsP quantum well system, there is a trade-off relationship between the degree of quantum size effect and the ease with which holes can be injected into each well. This is because the depth ΔEv of the well on the hole side, which essentially has a heavier effective mass, is greater than ΔEc. On the other hand, in the GaAQAs/GaAs system, Δ
Ec is larger than ΔEv (ΔEC/(ΔEc+ΔEv
)! 0.7), there is no such trade-off. In other words, the quantum size effect can be fully exploited, and the carrier (
In order to facilitate the injection of electrons, holes) into each well layer, it is ideal that ΔEc on the electron side with a lighter effective mass be larger than ΔEv on the hole side with a heavier effective mass. . An object of the present invention is to artificially create the relationship ΔEC>ΔEv in a quantum well structure such as an InGaAs (P) system. (Means for solving !i problem) In a material system where ΔEC<ΔEv, ΔEC
In order to create the relationship >ΔEv, the present invention discloses that the barrier layer itself is formed with a superlattice structure. This is called a superlattice quantum barrier. A superlattice structure is a structure in which two types of semiconductors having different forbidden band widths are periodically stacked. The thickness of each film is approximately 30 Å or less. Reflecting this thin film thickness, the wave functions of electrons and holes are tunnel 1!
Due to the A-zoom, the semiconductors each having a small forbidden band width are coupled. This structure is very similar to a multiple quantum well structure, but each layer is thin and features a tunnel effect. This will be explained using the first band diagram. - As an example, the quantum well layer is made of InGaAs, and the superlattice quantum barrier, which is the key point of the present invention, has a periodic structure of an InGaAs well layer and an InPl wall layer. Typical values of these sizes are: The film thickness of the InGaAs quantum well in which electrons and face plates are localized is about 5 to 15 nm, at which the quantum size effect is sufficiently exhibited. Furthermore, the film thickness of the InGaAs well layer forming the superlattice quantum barrier is approximately 0.6
~3 nm, InPFJ! The thickness of the wall layer is approximately 0.6-3
In nanometers, the repeating period of these is about 2 to 10 periods, which is the range in which the features of the present invention are particularly noticeable. Further, it is particularly preferable to dope the entire barrier layer or the superlattice type quantum barrier layer forming the barrier layer with a high concentration of P-type impurity, since the characteristics are improved by the modulation doping effect. [Operation] The control mechanism of ΔEc and ΔEv according to the present invention will be explained below with reference to FIGS. 1 and 2. Within the superlattice structure, as shown in FIG. 1, mini-bands are formed regarding electrons and holes. This miniband is a quantum level within the superlattice structure. That is, it is an energy band formed within the superlattice structure. The energy of the miniband within this superlattice barrier becomes the depth of the well with respect to the quantum well layer, that is, ΔEC and ΔEv. This mini-band is generated by the degree of coupling of wave functions between each well in the superlattice, and corresponds to the quantization level in the superlattice. It is something. Now, this quantization level energy Δ
E can be approximately expressed as. Here, m is the effective mass and L is the well width in the superlattice. In other words, mini band energy ΔE
is inversely proportional to the effective mass. In the InGaAs (P) system, the effective mass of electrons is about 1/10 of the effective mass of holes. Therefore, the electron mini-band ΔEe, ie, ΔEc, on the conduction band side is about 10 times larger than the hole mini-band ΔEh, ie, ΔEv, on the valence band side. In this way, even in a system where ΔEv is larger than ΔEc, by using a superlattice quantum barrier, ΔE c
>ΔEv relationship can be created. This is due to the fact that electrons have a smaller effective mass than holes and are more easily quantized.The above points have been explained qualitatively, but the results of actual rigorous calculations are shown in FIG. In this calculation, we used the Kronitzg-Benny model, which is very commonly used in superlattice miniband calculations. Here, the well in the superlattice is made of InGaAs, and the barrier is made of InP, and the horizontal axis of the figure is the well thickness, and the parameter is the barrier thickness. When the horizontal axis is O, it represents the so-called ΔE c and ΔEv of the material, and it can be seen that (ΔE(:/(ΔEc+ΔEv)) is 0.38. Typical ΔE c and ΔE of this superlattice barrier. If you indicate the value, type ■ (well:
, 2 nm, barrier: 3nrn), (ΔEc/(
ΔEc+ΔEV) is o, 63, 0.59 for type ■ (well and barrier both 1 nm), and 0.59 for type ■ (well: 2.5 nm).
, Barrier: Inm). It can be seen that ΔEc is sufficiently larger at 0.69. Further, when the ΔEc of these types was measured by the CV method, the values were almost the same as the calculated results. In this way, the relationship ΔEc>ΔEv can be expressed as InGaAs(P
) system was realized for the first time. This made it possible to easily inject holes while maintaining a sufficient quantum size effect. InG with relaxation oscillation frequency fr taking these into account
FIG. 6 shows the calculated value of the aAs quantum well cap dependence. The vertical axis is a value normalized by f of a DH (double hetero) laser. In this way, according to the present invention, InGaAs (
P) system QW laser can be expected to have f more than double.

【実施例1 以下、本発明の詳細な説明する。 実施例1゜ 第4図において、n−InP基板3上に多重量子井戸活
性[94,p−InPのクラッドM5゜n−InPキャ
ップN6をMOCVD法により結晶成長する。ここで多
重量子井戸活性M4は膜厚5〜15nmのInGaAs
量子井戸層と超格子型量子′R壁の周期構造(周期:1
〜20)である。 また、この超格子型量子障壁は膜厚0.6〜3nmのI
nGaAsあるいはInGaAsP(1g>1.5μm
)井戸層と膜厚0.6〜3nmのInPあるいはInG
aAsP (1g>1.15μrn)バリア層の周期構
造(周期=2〜20)で形成する。この後、5in2膜
7を形威し、部分的に除去し、Zn拡散8を行い、スト
ライプ領域(11g:2〜10μm)を作成する。この
後、キャリア注入手段であるp電極9、n電極1oを形
成する。 試作した素子はしきい電流は10〜20mAとΔEv低
減を反映して極めて低く、また、十分な量子サイズ効果
を反映して、緩和振動周波数f。 は5mW出力時において約30 G Hzと極めて高い
ものである。 実施例2゜ 第5図は本発明を分布帰還型(DFB)レーザに適用し
たものである。回折格子1工を形成したn−InP基板
3上に膜厚0.05〜0.25μmのn −InGaA
sP (λg’= 1 、1〜1 、3 μm )光ガ
イド層12、実施例工と同様の多重量子井戸活性N4、
及びp−InPクラッド層を選別ガスソースMBE法に
より結晶成長する。この後、上記成長層を突き抜ける凸
状のストライプを形成した後、p−InPn土層、n−
InPn土層で埋め込む。この後、p電極9、n電極1
0を形成する。 ここで活性層幅は約0.5〜3μmとする。 試作した素子はしきい電流5〜15mAで発振し、また
DFB構造を反映して副モード50dBの縦単一モード
となる。また、5mW時のf、は約30GHzと極めて
高いものとなる。第7図に各種QWレーザのしきいm流
とfr(5om)時)の実験値のまとめを示す。まずI
nPバリアの場合、QW効果は太きくf、は高いが(約
25 G I−Iz)正孔の各量子井戸への注入が不充
分なのでしきい電流は約100mAと極めて高い。一方
、λg=1.3μmのInGaAsPバリアを用いたQ
WレーザではΔEvを小さくできるので正孔の各量子井
戸への注入は容易でしきい電流は低いが、ΔEcが同時
に低いため、電子がバリア層にもれてQW効果が低く、
frは10GHzと低くなってしまう。またλ、=1.
15μmのInGaAsPバリアのQWレーザはその中
間である。つまり、従来の方式だと高いf、と低しきい
電流を同時に満足するのは不可能であった。これらに比
べて超格子型量子障壁を用いたQWレーザでは、高いf
、と低しきい電流を両方共初めて実現できる。また、高
速変調時のチャーピングも従来のQWレーザの約30%
と極めて小さくなる。 実施例3゜ 第8図において、n−InP基板上に実施例−1゜2と
同様の構造であるが、超格子型障壁層のみにZnを2 
X 10”〜I X 10”cm−3ドーピングして、
p型の変調ドープ構造多重量子井戸活性層15とp−I
nPクラッド層をMOCVD法により成長する。その後
、凸状のストライプ(活性層幅として0.5〜3μm)
を形成した後、Feドープ高抵抗InpH6で埋め込み
、さらにp側電極9、n側W1極10を形成する。 試作した素子の寄生容量は高抵抗InP導入のために低
く、かつ、frは変調ドープ効果とQW効果により、5
0GHzを達成できる。 実施例4゜ 本発明を半導体光位相変調器に適用した第実施例を第9
図を用いて説明する。n−InP基板3上に実施例1,
2と同様の多重量子井戸構造およびp−InPクラッド
層5を順次成長させたのち、第9図に示すようにリッジ
型のストライプを、典型的な幅の2〜10μmにエツチ
ングによって形成する。その後、p側電極9とn側電極
10とを形成したのち、へき関して素子に分離する。 試作した光位相変調器に、波長1.3μmのレーザ光を
片端面から入射させ、p側電極への電流注入量、すなわ
ち多重量子井戸層4へのキャリア注入量を変化させるこ
とにより、光位相変調器からの出力光の位相を制御する
。本光位相変調器の屈折率変化は高いQW効果を反映し
て5X10−”と大きいため、位相をπ変化させるため
の変調器の長さは約30μmと、従来に例がない程短く
することができる。 さらに、本光位相変調器をマツハチェンダ型変3A器な
どの基本素子として用いることができることは言うまで
もない。 【発明の効果】 本発明は、ΔEc<ΔEvなる材料系において、人為的
にΔEC>ΔEvなる関係を作ることができる。これに
より、例えばInGaAsP系のqw4を造においてこ
れが適用でき、これをもって、高い量子効果を保ちなが
ら、正孔の各ウェル層への注入をスムーズに行なうこと
ができる。この結果。 この系のQWレーザにおいて低しきい電流でかつ高い量
子効果(高いfr、低チャーピング)を実現することが
できる。
Example 1 The present invention will be described in detail below. Example 1 In FIG. 4, a multi-quantum well active [94,p-InP cladding M5]n-InP cap N6 is grown on an n-InP substrate 3 by MOCVD. Here, the multi-quantum well active M4 is made of InGaAs with a film thickness of 5 to 15 nm.
Periodic structure of quantum well layer and superlattice type quantum 'R wall (period: 1
~20). Moreover, this superlattice quantum barrier has a film thickness of 0.6 to 3 nm.
nGaAs or InGaAsP (1g>1.5μm
) Well layer and InP or InG with a film thickness of 0.6 to 3 nm
Formed with a periodic structure (period = 2 to 20) of aAsP (1g>1.15μrn) barrier layer. Thereafter, the 5in2 film 7 is shaped and partially removed, and Zn diffusion 8 is performed to create a stripe region (11g: 2 to 10 μm). After this, a p-electrode 9 and an n-electrode 1o, which serve as carrier injection means, are formed. The prototype device has an extremely low threshold current of 10 to 20 mA, reflecting the reduction in ΔEv, and a relaxation oscillation frequency f, reflecting the sufficient quantum size effect. is extremely high at approximately 30 GHz at 5 mW output. Embodiment 2 FIG. 5 shows the present invention applied to a distributed feedback (DFB) laser. A film of n-InGaA with a thickness of 0.05 to 0.25 μm is formed on an n-InP substrate 3 on which a diffraction grating is formed.
sP (λg' = 1, 1 to 1, 3 μm) light guide layer 12, multiple quantum well activity N4 similar to the example construction,
Then, a p-InP cladding layer is crystal-grown by selective gas source MBE. After that, after forming a convex stripe penetrating the growth layer, a p-InPn soil layer, an n-
Embed with InPn soil layer. After this, p electrode 9, n electrode 1
form 0. Here, the active layer width is approximately 0.5 to 3 μm. The prototype device oscillates at a threshold current of 5 to 15 mA, and reflects the DFB structure to become a longitudinal single mode with a sub-mode of 50 dB. Furthermore, f at 5 mW is extremely high at approximately 30 GHz. FIG. 7 shows a summary of the experimental values of the threshold m current and fr (at 5 ohm) for various QW lasers. First I
In the case of an nP barrier, the QW effect is large and f is high (about 25 GI-Iz), but the injection of holes into each quantum well is insufficient, so the threshold current is extremely high at about 100 mA. On the other hand, Q using an InGaAsP barrier with λg = 1.3 μm
With a W laser, ΔEv can be made small, so holes can be easily injected into each quantum well, and the threshold current is low. However, since ΔEc is also low, electrons leak into the barrier layer, resulting in a low QW effect.
fr becomes as low as 10 GHz. Also, λ,=1.
A 15 μm InGaAsP barrier QW laser is in between. In other words, with the conventional method, it was impossible to simultaneously satisfy high f and low threshold current. Compared to these, QW lasers using superlattice quantum barriers have high f
, and low threshold current can be achieved for the first time. Additionally, chirping during high-speed modulation is approximately 30% that of conventional QW lasers.
becomes extremely small. Example 3゜ In Fig. 8, the structure is similar to Example 1゜2 on an n-InP substrate, but Zn is added only to the superlattice barrier layer.
X 10"~I X 10"cm-3 doping,
P-type modulation doped structure multi-quantum well active layer 15 and p-I
An nP cladding layer is grown by MOCVD. After that, a convex stripe (0.5 to 3 μm as active layer width)
After forming, it is filled with Fe-doped high-resistance InpH6, and further a p-side electrode 9 and an n-side W1 electrode 10 are formed. The parasitic capacitance of the prototype device is low due to the introduction of high resistance InP, and fr is 5 due to the modulation doping effect and QW effect.
0GHz can be achieved. Example 4 A ninth example in which the present invention is applied to a semiconductor optical phase modulator is described below.
This will be explained using figures. Example 1 on the n-InP substrate 3,
After sequentially growing a multi-quantum well structure similar to 2 and a p-InP cladding layer 5, ridge-type stripes with a typical width of 2 to 10 .mu.m are formed by etching as shown in FIG. After that, a p-side electrode 9 and an n-side electrode 10 are formed, and then separated into elements. A laser beam with a wavelength of 1.3 μm is incident on one end surface of the prototype optical phase modulator, and by changing the amount of current injected into the p-side electrode, that is, the amount of carriers injected into the multi-quantum well layer 4, the optical phase can be changed. Controls the phase of the output light from the modulator. Since the refractive index change of this optical phase modulator is as large as 5X10-'' reflecting the high QW effect, the length of the modulator for changing the phase by π is approximately 30 μm, which is unprecedentedly short. Furthermore, it goes without saying that the optical phase modulator of the present invention can be used as a basic element of a Matsuha Cender type transformer, etc. >ΔEv can be created.This can be applied, for example, to the fabrication of InGaAsP-based qw4, and with this, holes can be smoothly injected into each well layer while maintaining a high quantum effect. As a result, it is possible to realize a low threshold current and a high quantum effect (high fr, low chirping) in a QW laser of this system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第6図及び第7図は本発明の原理的構
成及び効果を説明するための図5第3図(a)及び(b
)は従来のQW槽構造バンドダイアグラム、第4図、第
5図(a、)及び第8図は本発明による実施例の断面図
、第5図(b)は同図(a)のA−A’線断面図、第9
図は本発明による一実施例の鳥かん図である。 1・・・超格子型量子障壁。 2・・・ウェル層、 4・・・多 重量子井戸活性層。 番 図 (α) (b 正札 第3 図 第 団 竿S 図 A′ (沈) (b+ 第 図 5    1015 J、I&aA、s i7社/′幅(九飢)第 団 し さ し・ 電 ヅ六i (労J) 第 ? 図 第q図
Figures 1, 2, 6 and 7 are for explaining the principle structure and effects of the present invention. Figures 3 (a) and (b) are
) is a conventional QW tank structure band diagram, FIGS. 4, 5(a, ), and 8 are cross-sectional views of the embodiment according to the present invention, and FIG. 5(b) is a band diagram of the conventional QW tank structure. A' line sectional view, No. 9
The figure is a bird's eye diagram of an embodiment according to the present invention. 1...Superlattice quantum barrier. 2...well layer, 4...multi-quantum well active layer. Number (α) (b) Figure 3 Figure 3 S Figure A' (Sink) (b+ Figure 5 1015 J, I&aA, si7 company/' width (9 star) 3rd group rod S Figure A' (sink) (b+ Figure 5 1015 i (Labor J) Figure q

Claims (1)

【特許請求の範囲】 1、価電子帯側のバンド端不連続エネルギー値が伝導帯
側のバンド端不連続エネルギー値よりも大きいウェル層
及び超格子構造を有するバリア層との組合せからなる多
重量子井戸構造であって、上記超格子構造により上記バ
リア層に形成されるミニバンドの最低エネルギー状態と
上記ウェル層とで形成される等価的バンド端不連続エネ
ルギー値が伝導帯側で価電子帯側よりも大きいものを有
することを特徴とする半導体光素子。 2、請求項1に記載の半導体光素子が、前記多重量子井
戸構造にキャリアを注入するための手段を有することを
特徴とする半導体素子。 3、請求項1に記載の半導体光素子において、前記超格
子構造は層厚が5〜30Åの複数の半導体層により形成
されていることを特徴とする半導体光素子。 4、請求項1に記載の半導体光素子において、前記バリ
ア層が2×10^1^8cm^−^2以上の密度で導電
型不純物をドーピングした領域を有することを特徴とす
る半導体光素子。 5、複数のウェル層及びバリア層からなる多重量子井戸
構造のバリア層を複数の半導体層からなる超格子構造に
より形成し、この超格子構造内に形成されるミニバンド
によってキャリアの上記ウェル層間の移動度を大きくし
たことを特徴とする半導体光素子。 6、請求項6に記載の半導体光素子において、前記ウェ
ル層とバリア層とにより形成されるエネギーバンド構造
は価電子帯側のバンド端不連続エネルギー値が伝導帯側
のバンド端不連続エネルギー値よりも大きい多重量子井
戸構造であることを特徴とする半導体光素子。 7、キャリアの再結合発光のための複数のウェル層とこ
れらのウェル層を分離するバリア層とから構成される多
重量子井戸構造を有し、上記バリア層を複数の半導体層
からなる超格子構造により構成することにより、上記多
重量子井戸構造内のキャリアが上記複数のウェル層間を
上記超格子構造の内部に形成されるミニバンドを介して
移動するようにしたことを特徴とする半導体光素子。 8、請求項7に記載の半導体光素子において、前記ミニ
バンドと前記ウェル層とにより形成される等価的バンド
端不連続エネルギー値を、価電子帯側で伝導帯側よりも
小さくすることにより、価電子帯の正孔の前記ウェル層
への注入を容易にしたことを特徴とする半導体光素子。
[Scope of Claims] 1. A multiple quantum composed of a well layer in which the band edge discontinuity energy value on the valence band side is larger than the band edge discontinuity energy value on the conduction band side and a barrier layer having a superlattice structure. The well structure is such that the equivalent band edge discontinuity energy value formed between the lowest energy state of the mini-band formed in the barrier layer by the superlattice structure and the well layer is on the conduction band side and on the valence band side. What is claimed is: 1. A semiconductor optical device characterized by having a diameter larger than . 2. The semiconductor optical device according to claim 1, further comprising means for injecting carriers into the multiple quantum well structure. 3. The semiconductor optical device according to claim 1, wherein the superlattice structure is formed of a plurality of semiconductor layers having a layer thickness of 5 to 30 Å. 4. The semiconductor optical device according to claim 1, wherein the barrier layer has a region doped with a conductivity type impurity at a density of 2×10^1^8 cm^-^2 or more. 5. A barrier layer of a multi-quantum well structure consisting of a plurality of well layers and a barrier layer is formed by a superlattice structure consisting of a plurality of semiconductor layers, and mini bands formed within this superlattice structure allow carriers to be distributed between the well layers. A semiconductor optical device characterized by increased mobility. 6. In the semiconductor optical device according to claim 6, the energy band structure formed by the well layer and the barrier layer has a band edge discontinuous energy value on the valence band side and a band edge discontinuous energy value on the conduction band side. A semiconductor optical device characterized by having a multiple quantum well structure larger than . 7. It has a multi-quantum well structure consisting of a plurality of well layers for carrier recombination light emission and a barrier layer separating these well layers, and the barrier layer is a superlattice structure consisting of a plurality of semiconductor layers. A semiconductor optical device characterized in that carriers in the multiple quantum well structure move between the plurality of well layers via mini-bands formed inside the superlattice structure. 8. In the semiconductor optical device according to claim 7, by making the equivalent band edge discontinuity energy value formed by the mini band and the well layer smaller on the valence band side than on the conduction band side, A semiconductor optical device characterized in that holes in the valence band are easily injected into the well layer.
JP17546689A 1989-05-31 1989-07-10 Semiconductor optical device Expired - Lifetime JP2950853B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP17546689A JP2950853B2 (en) 1989-07-10 1989-07-10 Semiconductor optical device
US07/529,245 US5132981A (en) 1989-05-31 1990-05-25 Semiconductor optical device
EP90110127A EP0400559B1 (en) 1989-05-31 1990-05-29 Semiconductor optical device
DE69028734T DE69028734T2 (en) 1989-05-31 1990-05-29 Optical semiconductor device
EP96104886A EP0727821A3 (en) 1989-05-31 1990-05-29 Semiconductor optical device
CA002017912A CA2017912A1 (en) 1989-05-31 1990-05-30 Semiconductor optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17546689A JP2950853B2 (en) 1989-07-10 1989-07-10 Semiconductor optical device

Publications (2)

Publication Number Publication Date
JPH0341791A true JPH0341791A (en) 1991-02-22
JP2950853B2 JP2950853B2 (en) 1999-09-20

Family

ID=15996555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17546689A Expired - Lifetime JP2950853B2 (en) 1989-05-31 1989-07-10 Semiconductor optical device

Country Status (1)

Country Link
JP (1) JP2950853B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06314839A (en) * 1993-03-03 1994-11-08 Nec Corp Semiconductor laser element of optical modulator integration type multiple quantum well structure
JP2006303147A (en) * 2005-04-20 2006-11-02 Opnext Japan Inc Optical semiconductor element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06314839A (en) * 1993-03-03 1994-11-08 Nec Corp Semiconductor laser element of optical modulator integration type multiple quantum well structure
JP2006303147A (en) * 2005-04-20 2006-11-02 Opnext Japan Inc Optical semiconductor element
JP4664725B2 (en) * 2005-04-20 2011-04-06 日本オプネクスト株式会社 Semiconductor laser element

Also Published As

Publication number Publication date
JP2950853B2 (en) 1999-09-20

Similar Documents

Publication Publication Date Title
Bimberg et al. Quantum dot lasers: breakthrough in optoelectronics
Bhowmick et al. High Performance InAs/${\rm In} _ {0.53}{\rm Ga} _ {0.23}{\rm Al} _ {0.24}{\rm As} $/InP Quantum Dot 1.55$\mu {\rm m} $ Tunnel Injection Laser
US6240114B1 (en) Multi-quantum well lasers with selectively doped barriers
US5132981A (en) Semiconductor optical device
Piprek et al. Cavity length effects on internal loss and quantum efficiency of multiquantum-well lasers
US8273585B2 (en) Optical semiconductor device and method for manufacturing the same
JP3080831B2 (en) Multiple quantum well semiconductor laser
US20080175549A1 (en) Optical semiconductor device and fabrication process thereof
JPH07235732A (en) Semiconductor laser
JPS6254489A (en) Semiconductor light emitting element
EP1202410A2 (en) Semiconductor laser device
US6853015B2 (en) Optical semiconductor device including InGaAlAs doped with Zn
US5073805A (en) Semiconductor light emitting device including a hole barrier contiguous to an active layer
Zhukov et al. Metamorphic lasers for 1.3-µm spectral range grown on GaAs substrates by MBE
Uomi et al. Dependence of relaxation oscillation frequency and damping K factor on the number of quantum wells in 1.55 mu m InGaAsP DFB lasers
Bhattacharya et al. High-speed tunnel-injection quantum well and quantum dot lasers
JPH0341791A (en) Semiconductor optical element
JP2002368342A (en) Multiplex quantum well semiconductor element
US5483547A (en) Semiconductor laser structure for improved stability of the threshold current with respect to changes in the ambient temperature
Lu et al. High-speed performance of partly gain-coupled 1.55-mu m strained-layer multiple-quantum-well DFB lasers
JP2712767B2 (en) Strained quantum well semiconductor laser
JP2556288B2 (en) Semiconductor laser
US20040136427A1 (en) Semiconductor optical device
Silfvenius et al. Hole distribution in InGaAsP 1.3-/spl mu/m multiple-quantum-well laser structures with different hole confinement energies
JP2682474B2 (en) Semiconductor laser device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 11