JPH0341592B2 - - Google Patents

Info

Publication number
JPH0341592B2
JPH0341592B2 JP63074774A JP7477488A JPH0341592B2 JP H0341592 B2 JPH0341592 B2 JP H0341592B2 JP 63074774 A JP63074774 A JP 63074774A JP 7477488 A JP7477488 A JP 7477488A JP H0341592 B2 JPH0341592 B2 JP H0341592B2
Authority
JP
Japan
Prior art keywords
graphitizable
carbon
fibers
layer
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63074774A
Other languages
Japanese (ja)
Other versions
JPH02210060A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7477488A priority Critical patent/JPH02210060A/en
Publication of JPH02210060A publication Critical patent/JPH02210060A/en
Publication of JPH0341592B2 publication Critical patent/JPH0341592B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は、基材の被芆圢成凊理方法に関する。 埓来の技術 炭玠繊維を基材ずし、黒鉛を被芆局ずする被芆
繊維を補造する方法ずしお、特開昭59−187622号
明现曞に蚘茉された方法がある。この方法は、炭
玠繊維に盎接通電するこずによ぀おそれを加熱す
るずずもに、その炭玠繊維に化孊蒞着法CVD
法により易黒鉛化炭玠の被芆局を圢成し、次い
でその被芆化炭玠繊維を2800℃以䞊の枩床に加熱
しお、該易黒鉛化炭玠を黒鉛化するものである。 発明が解決しようずする課題 しかしながら、かかる方法は、炭玠繊維の加熱
を、それに盎接通電するこずによ぀お生ずるゞナ
ヌル熱を利甚しお行うため、炭玠繊維に易黒鉛化
炭玠の被芆局が圢成されおくるず、それに䌎぀お
被芆炭玠繊維ずしおみた熱容量や抵抗倀が連続的
に倉化しおくる。そのため、繊維軞方向においお
倧きな枩床分垃ができ、局郚的加熱が起぀お炭玠
繊維が切れおしたうのである。 たた、前蚘方法により埗られた易黒鉛化炭玠繊
維を、垞圧の䞍掻性ガス雰囲気䞭にお2800℃以䞊
の枩床で加熱し、黒鉛化を詊みたが、該繊維の切
断や矜毛等の損傷を生じお連続的な被芆黒鉛長繊
維を埗るこずが䞍可胜であ぀た。特に3500℃付近
の高枩ほど炭玠の昇化が著しく、該繊維の切断が
起り、連続的な被芆黒鉛長繊維を埗るこずができ
ない。 たた、特開昭62−6973号においおも、炭玠繊維
に化孊気盞蒞着法により易グラフアむト化炭玠の
被芆局を圢成し、次いで2500℃以䞊の枩床に加熱
し、易グラフアむト化炭玠をグラフアむト化する
技術が蚘茉されおいる。 しかしながら、かかる技術においおも、グラフ
アむトの圢成を䜎圧䞋で行うため、連続的な被芆
黒鉛長繊維を埗るこずはできなか぀た。 本発明の目的は、䞊述したような埓来の方法の
欠点を解消し、基材および被芆局に損傷を䞎える
こずなく、基材にCVD法により易黒鉛化局を被
芆圢成した埌、高黒鉛化凊理するこずのできる方
法を提䟛するこずにある。 課題を解決するための手段 本発明は、䞊蚘目的を達成するために䞋蚘の構
成を有する。 「炭玠繊維基材䞊に、赀倖線加熱による化孊気
盞蒞着法により易黒鉛化局を被芆圢成した埌、
2800℃以䞊の枩床で加熱凊理しお高黒鉛化繊維を
補造する方法であ぀お、該易黒鉛化局の圢成ず加
熱凊理ずを加圧雰囲気䞋で行うこずを特城ずする
長繊維状高黒鉛化繊維の補造方法。」 本発明の炭玠繊維基材ずしおは、炭玠含有率が
95wt以䞊の炭玠を䞻成分ずする材料であ぀お、
ポリアクリルニトリル系、ピツチ系、セルロヌズ
系、ビニロン系、リグニンポバヌル系など、ど
のようなものであ぀おもよい。しかしお、炭玠繊
維は、通垞、〜30Ό皋床の単糞埄を有するも
のを䜿甚する。なお、圢態は、モノフむラメント
であ぀おもよいし、総デニヌルが数千〜数䞇デニ
ヌルのマルチフむラメントであ぀おもよい。 本発明におけるCVD法は、炭化氎玠を気盞状
態で熱分解するこずにより、易黒鉛化炭玠ずな
る、いろいろな瞮合環をも぀化合物を基材䞊に堆
積させる方法である。本発明においおは、この
CVD法においお、赀倖線加熱を甚いるこずによ
り易黒鉛化炭玠の被芆局を圢成する。 䞊蚘、原料ガスずしおの炭化氎玠ずしおは、
C6〜C14の芳銙族炭化氎玠、䟋えば、ベンれン、
ナフタレン、アントラセンずその誘導䜓、及び
C3〜C8の脂環族炭化氎玠、䟋えば、シクロプロ
パン、シクロブタン、シクロペンタン、シクロヘ
キサン、シクロヘプタン、シクロオクタン、シク
ロブテン、シクロペンテン、シクロヘキセンずそ
の誘導䜓、あるいは、C1〜C8の脂肪族炭化氎玠、
䟋えば、メタン、゚タン、プロパン、ブタン、ペ
ンタン、ヘキサン、ヘプタン、オクタンずその誘
導䜓、さらにアセチレン、シアノアセチレン等の
アセチレン化合物を挙げるこずができる。なかで
もベンれン、シアノアセチレンが奜たしく、さら
に奜たしくはシアノアセチレンが遞ばれる。 炭化氎玠の熱分解は、基材を加圧雰囲気䞋で盎
接的たたは間接的に加熱するこずによ぀お行う。
加熱する際に加圧雰囲気内に、基材ずは別に、熱
源や高枩郚があるず、この郚分にも熱分解炭玠が
析出しお汚れるので、長期間連続しおCVDが䞍
可胜であるこず、さらに原料モノマの有効利甚の
面からも、基材のみを間接的に高枩加熱できる集
光された光゚ネルギヌによる加熱が最も望たし
い。 光゚ネルギヌ源ずしおは、䟋えば炭酞ガスレヌ
ザヌのように、倧容量でか぀赀倖ないし近赀倖領
域に非連続的なスペクトルをも぀ものや、赀倖線
ランプのように、赀倖から近赀倖領域にかけお連
続したスペクトルをも぀もの、あるいはハロゲン
ランプやキセノンアヌクランプなどを甚いるこず
ができる。たた、これらの光゚ネルギヌ源から幅
射される光゚ネルギヌを基材に集光する手段ずし
おは、回転楕円面鏡や光孊レンズなどを䜿甚する
こずができる。奜たしくは、基材を囲むように回
転楕円面鏡を配眮し、䟋えば、炭玠繊維にその繊
維軞方向ず盎亀する平面内においお党方向から光
゚ネルギヌが集光されるようにするのが良い。熱
分解枩床は、䜿甚する炭化氎玠の皮類等にもよる
が、700〜1800℃皋床が奜たしく、さらに奜たし
くは、1100〜1500℃である。すなわち、700℃未
満では易黒鉛化炭玠の被芆局の圢成速床が遅くな
る。たた、1800℃を越えるず、難黒鉛化炭玠の生
成量が倚くなり目的ずする高黒鉛化繊維の生成量
が䞍充分ずなる。 CVD原料である炭化氎玠の濃床は、䞍掻性ガ
ス共存䞋である堎合、0.05〜10䜓積の範囲で行
うのが奜たしい。さらに奜たしくは0.1〜䜓積
である。すなわち、0.05䜓積未満では易黒鉛
化炭玠の被芆局の圢成速床が遅くなる。たた、10
䜓積を越えるず、難黒鉛化炭玠ススなどの
生成量が倚くなるこず、さらには炭玠繊維以倖の
チダンバヌなどにも倚量の堆積物ススなどが
生成し、このためチダンバヌ内壁特に透明石英
反応管が汚れ、目的ずする高黒鉛化繊維を連続
的に補造するこずが難しくなる。たた、必芁に応
じお数〜数十の氎玠の共存䞋で行うこずもで
きる。この堎合、炭化氎玠濃床は0.1〜20䜓積
にするこずができる。 CVD時間は、䜿甚する炭化氎玠の皮類、炭化
氎玠の濃床、熱分解枩床などによ぀お異なるが、
通垞、数分から数時間皋床である。より均質な易
黒鉛化炭玠の被芆局を圢成するためには、熱分解
枩床や炭化氎玠濃床を䜎くしお、CVD時間を長
くするのが奜たしい。 易黒鉛化炭玠の被芆局の厚みは、炭化氎玠の濃
床、熱分解枩床、CVD時間などによ぀お調節で
きる。䟋えば、被芆炭玠繊維の堎合では、黒鉛化
埌の可撓性が著しく損なわれないように、10〜
200Ό皋床であるのが奜たしい。なお、基材ず
しおの炭化繊維をマルチフむラメントの圢態で䟛
する堎合には、堆積した易黒鉛化炭玠によ぀お単
繊維同士が結着され、被芆炭玠繊維、ひいおは最
終的に埗られる被芆黒鉛繊維の可撓性が倱われが
ちになるので、被芆の圢成速床を極力遅くし、被
芆局の厚みをあたり厚くしない方が奜たしい。 本発明においおは、次いで、䞊述した、易黒鉛
化炭玠被芆基材を加圧雰囲気䞋で加熱凊理しおそ
の易黒鉛化炭玠を黒鉛化し、炭玠を基質ずし、黒
鉛を倖皮局ずしおも぀被芆黒鉛を埗る。 本発明においお黒鉛ずは、SP2結合によ぀お結
合した員環炭玠で構成される面がπ結合により
結合しおなる構造が発達しおできた炭玠を䞻成分
ずする化合物である。そのような化合物は、Cu
−Kα線を䜿甚した線回折によ぀お002面から求
めた面間隔が3.363Å以䞋であるずいうこずによ
぀お特城づけられる。 前蚘黒鉛化における加熱の方法は、加圧雰囲気
䞋で加熱できる方法であれば特に限定されない。
䟋えば、抵抗加熱、誘導加熱や光゚ネルギヌ等に
よ぀お可胜である。その堎合、加圧凊理が特に有
効な黒鉛化枩床は、2800℃以䞊、奜たしくは3400
℃以䞊で、䞊限は特に限定されないが3700℃皋床
である。雰囲気圧力はKgcm2・以䞊であるこ
ずが奜たしく、さらに奜たしくはKgcm2・以
䞊高い皋良い。 たた、本発明における雰囲気ガスは、䞍掻性ガ
ス即ち、Ar、He、N2等を䜿甚するこずができ
る。 本発明は、CVD法による易黒鉛化局の被芆圢
成ず黒鉛化凊理を、連続的に行なうこずが可胜で
あり、生産工皋䞊の顕著な効果である。もちろ
ん、倫々バツチ的に行぀おも良い。 たた、このようにしお埗られた高黒鉛化長繊維
の電気䌝導床以䞋、電導床ず蚘すは1.5×104
〜2.1×104Scmず非垞に高く、黒鉛単結晶の電
導床に近い。 次に、本発明を、炭玠繊維基材䞊に連続的に加
圧雰囲気䞋で、被芆圢成凊理する奜たしい䞀䟋を
図面に基づいお、以䞋詳现に説明する。 図においお、炭玠繊維は、パツケヌゞから
繰り出され、CVDを行うための赀倖線加熱手段
を経お、被芆局圢成繊維ず成し、次いでこれ
を別の加熱手段ぞ通しお黒鉛化凊理し、黒鉛被
芆繊維を埗お、モヌタによ぀お駆動される
ボビンに巻き取り、パツケヌゞを圢成す
るようにした。本䟋においお、反応管′、
炭玠繊維䟛絊手段を収玍するチダンバヌ、
黒鉛被芆繊維巻取手段を速床コントロヌラ
を陀いお収玍するチダンバヌおよび䞭間チダ
ンバヌが耐圧性を有する加圧雰囲気系を構成
する。反応管′は耐熱性がある材料から成
り、党䜓ずしお円筒圢状を呈しおいる。 加熱手段が、誘導加熱であれば、反応管や
′は非金属䜓、光゚ネルギヌであれば透光性を
有する物質が奜たしく、石英ガラスやセラミツク
等が良い。 雰囲気ガスは匁を経お、導入孔から䟛絊
され、導出孔から匁を介しお排気されお、
党䜓ずしおガスが黒鉛化域からCVD域の方向ぞ
流れるように構成した。 原料ガスは、䞭間チダンバヌに蚭けられた
原料ガス導入孔から匁を介しお単独に、
あるいはキダリダガスAr、He、N2等ずずもに䟛
絊する。 実斜䟋 実斜䟋  炭玠繊維ずしお、米囜ナニオンカヌバむド瀟補
ピツチ系炭玠繊維“Thornel”P75モノフむラメ
ント、盎埄10Όを甚い、加熱手段ずしおハ
ロゲンランプを甚いた光゚ネルギヌ集光加熱を、
加熱手段ずしおキセノンアヌクランプを甚いた
光゚ネルギヌ集光加熱によ぀お、それぞれの枩床
が1300℃、3500℃ずなるように蚭定した状態で、
匁を介しお雰囲気ガス導入孔からArを900
c.c.分の流量で、匁を介しお原料ガス導入孔
から原料ガスずしおベンれンをガス換算で
c.c.分の流量で䟛絊し、雰囲気ガス導出孔から
匁を調敎しお排気し、凊理雰囲気圧力を
Kgcm2・に調節しながら被芆黒鉛長繊維の補造
を詊みた。 かくしお埗られた被芆黒鉛長繊維は長さで
盎埄85Όであり、党く繊維の切断がなく連続的
に黒鉛長繊維を補造するこずができた。たた、こ
の被芆黒鉛長繊維を理孊電気補RU200、線発
生装眮マむクロデフラクトメヌタMDG2193Dを
甚いた線回折によ぀お002面の面間隔を求めお
みた。結果を第衚に瀺す。黒鉛単結晶の002面
の面間隔が3.354Åであるから、これに非垞に近
く、高黒鉛化性の炭玠が生成しおいるこずが刀
る。たた、埗られた繊維の電導床を四端子法、宀
枩で枬定したずころ、1.7×104Scmず高く、黒
鉛単結晶の電導床に近い。 実斜䟋  実斜䟋の凊理雰囲気圧力をKgcm2・から
Kgcm2・に代え、他は実斜䟋ず党く同じ方
法で、被芆黒鉛長繊維の補造を詊みた。凊理雰囲
気圧力Kgcm2・においおも、繊維の切断がな
く、実斜䟋ずほが同様な黒鉛長繊維が埗られ
た。線回折による002面の面間隔及び電導床も
合せお第衚に瀺す。 比范䟋、比范䟋 比范のために実斜䟋の凊理雰囲気圧力を垞圧
比范䟋及びKgcm2・比范䟋に代
え、他は実斜䟋ず党く同様にしお凊理を詊み
た。結果を第衚に瀺す。凊理雰囲気圧力が垞圧
及びKgcm2・では繊維の糞切れが起り長繊維
が埗られなか぀た。
[Industrial Field of Application] The present invention relates to a method for forming a coating on a substrate. [Prior Art] As a method for producing coated fibers using carbon fiber as a base material and graphite as a coating layer, there is a method described in JP-A-59-187622. This method heats the carbon fibers by passing an electric current directly through them, and also applies chemical vapor deposition (CVD) to the carbon fibers.
A coating layer of easily graphitizable carbon is formed by the method), and then the coated carbon fiber is heated to a temperature of 2800° C. or higher to graphitize the easily graphitizable carbon. [Problems to be Solved by the Invention] However, in this method, carbon fibers are heated using Joule heat generated by directly applying electricity to the carbon fibers. As the coated carbon fibers are formed, the heat capacity and resistance value of the coated carbon fibers change continuously. Therefore, a large temperature distribution occurs in the fiber axis direction, causing localized heating and causing the carbon fiber to break. In addition, attempts were made to graphitize the graphitizable carbon fiber obtained by the above method by heating it at a temperature of 2,800°C or higher in an inert gas atmosphere at normal pressure, but the fibers were cut and the feathers were damaged. It was impossible to obtain continuous coated graphite long fibers. In particular, the higher the temperature is around 3500° C., the more the carbon rises and the fibers are cut, making it impossible to obtain continuous coated graphite long fibers. Furthermore, in JP-A No. 62-6973, a coating layer of easily graphitable carbon is formed on carbon fibers by chemical vapor deposition, and then heated to a temperature of 2500°C or higher to form easily graphitable carbon. The technology to turn it into an item is described. However, even in this technique, since graphite is formed under low pressure, it has not been possible to obtain continuous coated graphite long fibers. The purpose of the present invention is to eliminate the drawbacks of the conventional methods as described above, and to form a highly graphitizable layer on a base material by CVD method without damaging the base material and the coating layer. The purpose is to provide a method that can handle this. [Means for Solving the Problems] The present invention has the following configuration to achieve the above object. “After forming an easily graphitizable layer on the carbon fiber base material by chemical vapor deposition using infrared heating,
A method for producing highly graphitized fibers by heat treatment at a temperature of 2800°C or higher, characterized in that the formation of the easily graphitized layer and the heat treatment are performed in a pressurized atmosphere. Method for producing synthetic fibers. ” The carbon fiber base material of the present invention has a carbon content of
A material whose main component is 95wt% or more of carbon,
It may be of any type, such as polyacrylonitrile type, pitch type, cellulose type, vinylon type, lignin/poval type, etc. Therefore, the carbon fiber used usually has a single yarn diameter of about 5 to 30 ÎŒm. Note that the shape may be a monofilament or a multifilament with a total denier of several thousand to tens of thousands of deniers. The CVD method in the present invention is a method in which compounds having various condensed rings, which become easily graphitized carbon, are deposited on a substrate by thermally decomposing hydrocarbons in a gaseous state. In the present invention, this
In the CVD method, a coating layer of graphitizable carbon is formed by using infrared heating. The hydrocarbons used as raw material gases are as follows:
C6 to C14 aromatic hydrocarbons, e.g. benzene,
naphthalene, anthracene and its derivatives, and
C 3 to C 8 alicyclic hydrocarbons, such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclobutene, cyclopentene, cyclohexene and its derivatives, or C 1 to C 8 aliphatic carbonization hydrogen,
Examples include methane, ethane, propane, butane, pentane, hexane, heptane, octane and derivatives thereof, and acetylene compounds such as acetylene and cyanoacetylene. Among them, benzene and cyanoacetylene are preferred, and cyanoacetylene is more preferred. Thermal decomposition of hydrocarbons is carried out by directly or indirectly heating the substrate under a pressurized atmosphere.
If there is a heat source or high-temperature part in the pressurized atmosphere during heating, apart from the base material, pyrolytic carbon will precipitate and become dirty in this part, making continuous CVD impossible for a long period of time. Furthermore, from the standpoint of effective use of raw material monomers, heating using concentrated light energy that can indirectly heat only the base material to a high temperature is most desirable. Examples of light energy sources include carbon dioxide lasers, which have a large capacity and a discontinuous spectrum in the infrared to near-infrared region, and infrared lamps, which have a discontinuous spectrum in the infrared to near-infrared region. A device with a continuous spectrum, a halogen lamp, a xenon arc lamp, etc. can be used. Further, as a means for condensing the light energy radiated from these light energy sources onto the base material, a spheroidal mirror, an optical lens, or the like can be used. Preferably, a spheroidal mirror is arranged to surround the base material so that, for example, light energy is focused on the carbon fiber from all directions within a plane perpendicular to the fiber axis direction. The thermal decomposition temperature is preferably about 700 to 1800°C, more preferably 1100 to 1500°C, although it depends on the type of hydrocarbon used. That is, below 700°C, the formation rate of the graphitizable carbon coating layer becomes slow. Furthermore, if the temperature exceeds 1800°C, the amount of non-graphitizable carbon produced increases, and the amount of the desired highly graphitized fiber produced becomes insufficient. The concentration of hydrocarbon, which is a CVD raw material, is preferably in the range of 0.05 to 10% by volume in the presence of an inert gas. More preferably, it is 0.1 to 5% by volume. That is, if the amount is less than 0.05% by volume, the formation rate of the graphitizable carbon coating layer becomes slow. Also, 10
If the volume % is exceeded, a large amount of non-graphitizable carbon (such as soot) will be generated, and a large amount of deposits (such as soot) will also be generated on the chamber other than carbon fibers, and this will cause the inner wall of the chamber (especially (transparent quartz reaction tube) becomes dirty, making it difficult to continuously produce the desired highly graphitized fiber. Moreover, it can also be carried out in the coexistence of several percent to several tens of percent of hydrogen, if necessary. In this case, the hydrocarbon concentration is 0.1-20% by volume
It can be done. CVD time varies depending on the type of hydrocarbon used, hydrocarbon concentration, thermal decomposition temperature, etc.
Usually, it takes from several minutes to several hours. In order to form a more homogeneous graphitizable carbon coating layer, it is preferable to lower the thermal decomposition temperature and hydrocarbon concentration and to lengthen the CVD time. The thickness of the graphitizable carbon coating layer can be adjusted by adjusting the hydrocarbon concentration, thermal decomposition temperature, CVD time, etc. For example, in the case of coated carbon fiber, the
The thickness is preferably about 200 ÎŒm. In addition, when carbonized fibers as a base material are provided in the form of a multifilament, the deposited graphitizable carbon binds the single fibers to each other, and the coated carbon fibers and ultimately the coated graphite fibers obtained are bonded together. Since flexibility tends to be lost, it is preferable to slow down the coating formation rate as much as possible and to not increase the thickness of the coating layer too much. In the present invention, the above-mentioned easily graphitizable carbon-coated substrate is then heat-treated in a pressurized atmosphere to graphitize the easily graphitizable carbon, thereby producing coated graphite having carbon as a substrate and graphite as an outer layer. obtain. In the present invention, graphite is a compound whose main component is carbon, which has developed a structure in which surfaces composed of six-membered ring carbons bonded by SP 2 bonds are bonded by π bonds. Such compounds include Cu
It is characterized by the interplanar spacing determined from the 002 plane by X-ray diffraction using −Kα rays to be 3.363 Å or less. The heating method for graphitization is not particularly limited as long as it can be heated under a pressurized atmosphere.
For example, resistance heating, induction heating, light energy, etc. can be used. In that case, the graphitization temperature at which pressure treatment is particularly effective is 2800°C or higher, preferably 3400°C or higher.
℃ or higher, and the upper limit is not particularly limited, but is about 3700℃. The atmospheric pressure is preferably 3 kg/cm 2 ·G or more, more preferably 5 kg/cm 2 ·G or more, the better. Further, as the atmospheric gas in the present invention, an inert gas such as Ar, He, N2 , etc. can be used. According to the present invention, it is possible to continuously perform the coating formation of the easily graphitizable layer and the graphitization treatment by the CVD method, which is a remarkable effect on the production process. Of course, you can do it in batches. In addition, the electrical conductivity (hereinafter referred to as electrical conductivity) of the highly graphitized long fiber obtained in this way is 1.5×10 4
The conductivity is extremely high at ~2.1×10 4 S/cm, close to that of single crystal graphite. Next, a preferred example of the present invention in which a coating is continuously formed on a carbon fiber base material under a pressurized atmosphere will be described in detail with reference to the drawings. In the figure, carbon fiber A is unwound from a package 7, passes through infrared heating means 2 for CVD, forms coating layer forming fiber B, and then passes through another heating means 3 for graphitization treatment. , a graphite-coated fiber C was obtained and wound onto a bobbin 11 driven by a motor 13 to form a package 18. In this example, reaction tubes 1, 1',
a chamber 21 that houses the carbon fiber supply means 8;
The graphite-coated fiber winding means 9 is controlled by a speed controller 14.
The chamber 22 and the intermediate chamber 34, which accommodate all but one part, constitute a pressurized atmosphere system having pressure resistance. The reaction tubes 1, 1' are made of a heat-resistant material and have a cylindrical shape as a whole. If the heating means 3 is induction heating, the reaction tubes 1 and 1' are preferably made of a non-metallic material, and if the heating means 3 is used for optical energy, it is preferably made of a translucent material, such as quartz glass or ceramic. Atmospheric gas is supplied from the inlet hole 4 via the valve 31, and exhausted from the outlet hole 5 via the valve 32.
The overall configuration was such that gas flows from the graphitization region to the CVD region. The raw material gas is supplied individually from the raw material gas introduction hole 30 provided in the intermediate chamber 34 via the valve 33.
Alternatively, it is supplied together with carrier gas Ar, He, N2 , etc. [Example] Example 1 Pitch-based carbon fiber “Thornel” P75 (monofilament, diameter 10 ÎŒm) manufactured by Union Carbide Company, USA was used as the carbon fiber, and light energy condensed heating was performed using a halogen lamp as the heating means 2.
With the respective temperatures set to 1300°C and 3500°C by optical energy condensing heating using a xenon arc lamp as the heating means 3,
900 ml of Ar is supplied from the atmospheric gas introduction hole 4 through the valve 31.
At a flow rate of cc/min, benzene is supplied as a raw material gas from the raw material gas introduction hole 30 via the valve 33 at a gas conversion rate of 5 cc/min.
It is supplied at a flow rate of cc/min, and is evacuated from the atmosphere gas outlet hole 5 by adjusting the valve 32, and the processing atmosphere pressure is set to 5 cc/min.
An attempt was made to produce coated graphite long fibers while adjusting the amount of Kg/cm 2 ·G. The thus obtained coated graphite long fibers had a length of 5 m and a diameter of 85 ÎŒm, and it was possible to continuously produce graphite long fibers without cutting the fibers at all. In addition, the interplanar spacing of the 002 planes was determined by X-ray diffraction of this coated graphite long fiber using an RU200 manufactured by Rigaku Corporation and an X-ray generator micro-defractometer MDG2193D. The results are shown in Table 1. Since the interplanar spacing of the 002 plane of graphite single crystal is 3.354 Å, it is very close to this, and it can be seen that highly graphitizable carbon is produced. Furthermore, when the electrical conductivity of the obtained fiber was measured using the four-probe method at room temperature, it was as high as 1.7×10 4 S/cm, which is close to the electrical conductivity of single crystal graphite. Example 2 An attempt was made to produce coated graphite long fibers in exactly the same manner as in Example 1 except that the treatment atmosphere pressure in Example 1 was changed from 5 kg/cm 2 ·G to 3 kg/cm 2 ·G. Even at a treatment atmosphere pressure of 3 Kg/cm 2 ·G, there was no fiber breakage, and graphite long fibers almost the same as in Example 1 were obtained. Table 1 also shows the spacing and conductivity of the 002 plane as determined by X-ray diffraction. Comparative Example 1, Comparative Example 2 For comparison, the processing atmosphere pressure in Example 1 was changed to normal pressure (Comparative Example 1) and 1 Kg/cm 2 ·G (Comparative Example 2), and the other conditions were exactly the same as in Example 1. I tried to process it. The results are shown in Table 1. When the treatment atmosphere pressure was normal pressure or 1 kg/cm 2 ·G, fiber breakage occurred and long fibers could not be obtained.

【衚】 実斜䟋  実斜䟋のCVD原料ガスをベンれンからシア
ノアセチレンに代え、他は実斜䟋ず党く同じ方
法にお凊理を詊みた。結果を第衚に瀺す。原料
をシアノアセチレンに代えた堎合でも、糞切れが
なく長さ、盎埄100Όの被芆黒鉛長繊維を
連続的に補造するこずができる。線回折による
002面の面間隔もグラフアむトの理論倀に近く、
高黒鉛性炭玠が生成しおいるこずが刀る。 実斜䟋  実斜䟋の凊理雰囲気圧力をKgcm2・から
Kgcm2・に代え、他は実斜䟋ず党く同じ方
法で凊理を詊みた。002面の面間隔及び電導床の
結果も合せお第衚に瀺す。 比范䟋、比范䟋 比范のために実斜䟋の凊理雰囲気圧力を垞圧
比范䟋及びKgcm2・比范䟋に代
え、他は実斜䟋ず党く同様にしお凊理を詊み
た。結果を第衚に瀺す。凊理圧力が垞圧及び
Kgcm2・では繊維の糞切れが起り長繊維が埗ら
れなか぀た。
[Table] Example 3 A treatment was attempted in exactly the same manner as in Example 1 except that the CVD raw material gas in Example 1 was changed from benzene to cyanoacetylene. The results are shown in Table 2. Even when the raw material is replaced with cyanoacetylene, coated graphite long fibers with a length of 5 m and a diameter of 100 ÎŒm can be continuously produced without yarn breakage. by X-ray diffraction
The spacing of the 002 planes is also close to the theoretical value of graphite,
It can be seen that highly graphitic carbon is produced. Example 4 A treatment was attempted in exactly the same manner as in Example 3 except that the treatment atmosphere pressure in Example 3 was changed from 5 kg/cm 2 ·G to 3 kg/cm 2 ·G. Table 2 also shows the results of the spacing and conductivity of the 002 plane. Comparative Example 3, Comparative Example 4 For comparison, the processing atmosphere pressure in Example 3 was changed to normal pressure (Comparative Example 3) and 1 Kg/cm 2 ·G (Comparative Example 4), but the other conditions were exactly the same as in Example 3. I tried to process it. The results are shown in Table 2. Processing pressure is normal pressure and 1
At Kg/cm 2 ·G, fiber breakage occurred and long fibers could not be obtained.

【衚】【table】

【衚】 発明の効果 本発明は、加圧雰囲気䞋においお、赀倖線加熱
によるCVD法で易黒鉛化局の被芆圢成を行ない、
さらに2800℃以䞊で加熱し、黒鉛化凊理を行うこ
ずにより、ピンホヌルのない高密床の易黒鉛化局
の被芆圢成が行えるずずもに、高枩における黒鉛
化時の被芆局の昇華蒞発に起因する繊維の切
断や衚面欠陥のない基材の被芆圢成凊理が可胜ず
な぀た。 たた、加熱手段ずしお集光した光゚ネルギヌを
甚いた堎合には、基材のみを遞択的に加熱するた
め加熱炉の壁の汚れを防止し、長期間、安定しお
炭化氎玠モノマヌを熱分解し぀぀、基材炭玠繊維
に被芆及び黒鉛化できるずいう効率性に優れた補
造方法である。 たた、この発明の方法によれば、電導床が高
く、しかも軜量な高導電性繊維を埗るこずができ
る。そのため、これを、䟋えば送電線ずしお䜿甚
すれば、支柱の荷重が軜枛され、架蚭費が䜎枛で
きる。そればかりか、特に倖皮局の電導床が高い
こずから、衚皮効果が珟われる亀流甚送電線ずし
お䜿甚しおも゚ネルギヌ損倱が少ない。たた、軜
量であるこずは、重量軜枛効果の倧きい航空機甚
電線ずしおも奜適である。 さらに、この発明の方法によ぀お埗られる高導
電性繊維は、本質的に炭玠からなるものであるか
ら、高枩に耐え、しかも耐食性が高い。埓぀お、
䟋えば蓄電池や燃料電池の極板材料ずしおも適し
おいる。
[Table] [Effects of the Invention] The present invention forms a graphitizable layer by CVD using infrared heating in a pressurized atmosphere.
Furthermore, by heating at 2800℃ or higher and performing graphitization treatment, it is possible to form a coating with a high-density easily graphitized layer without pinholes. It has become possible to form coatings on substrates without fiber cutting or surface defects. In addition, when focused light energy is used as a heating means, only the base material is selectively heated, which prevents the walls of the heating furnace from becoming dirty and allows stable thermal decomposition of hydrocarbon monomers over a long period of time. At the same time, it is an efficient manufacturing method that allows coating and graphitization of the base carbon fiber. Further, according to the method of the present invention, it is possible to obtain highly conductive fibers that have high conductivity and are lightweight. Therefore, if this is used, for example, as a power transmission line, the load on the support can be reduced and the construction cost can be reduced. Moreover, because the outer skin layer has particularly high electrical conductivity, there is little energy loss even when used as an AC power transmission line that exhibits a skin effect. Moreover, the light weight makes it suitable for use as an aircraft electric wire, which has a large weight reduction effect. Furthermore, since the highly conductive fibers obtained by the method of the present invention are essentially composed of carbon, they can withstand high temperatures and have high corrosion resistance. Therefore,
For example, it is suitable as an electrode plate material for storage batteries and fuel cells.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の凊理方法を適甚した䞀装眮の
抂略断面図である。 ′反応管、CVD甚加熱手段、
黒鉛化甚加熱手段、雰囲気ガス導入孔、
雰囲気ガス導出孔、回転ガむド、
炭玠繊維のパツケヌゞ、炭玠繊維䟛絊手段、
黒鉛被芆繊維巻取手段、巻取ボビン、
枛速機、モヌタ、速床コント
ロヌラ、黒鉛被芆繊維のパツケヌゞ、
チダンバヌ、原料ガス導入孔、
匁、䞭間チダンバヌ。
The drawing is a schematic cross-sectional view of one apparatus to which the processing method of the present invention is applied. 1, 1': Reaction tube, 2: CVD heating means, 3:
Heating means for graphitization, 4: Atmospheric gas introduction hole, 5:
Atmospheric gas outlet hole, 6, 10: Rotation guide, 7:
Carbon fiber package, 8: Carbon fiber supply means,
9: graphite-coated fiber winding means, 11: winding bobbin,
12: Reducer, 13: Motor, 14: Speed controller, 18: Graphite-coated fiber package, 2
1, 22: Chamber, 30: Raw material gas introduction hole,
31, 32, 33: valve, 34: intermediate chamber.

Claims (1)

【特蚱請求の範囲】  炭玠繊維基材䞊に、赀倖線加熱による化孊気
盞蒞着法により易黒鉛化局を被芆圢成した埌、
2800℃以䞊の枩床で加熱凊理しお高黒鉛化繊維を
補造する方法であ぀お、該易黒鉛化局の圢成ず加
熱凊理ずを加圧雰囲気䞋で行うこずを特城ずする
長繊維状高黒鉛化繊維の補造方法。  易黒鉛化局の圢成ず加熱凊理ずが、連続しお
行われるこずを特城ずする請求項蚘茉の高黒鉛
化繊維の補造方法。  雰囲気の圧力が、Kgcm2・以䞊であるこ
ずを特城ずする請求項蚘茉の高黒鉛化繊維の補
造方法。  易黒鉛化局の原料の濃床が、0.1〜䜓積
であるこずを特城ずする請求項蚘茉の高黒鉛化
繊維の補造方法。  易黒鉛化局の圢成枩床が、1100〜1500℃であ
るこずを特城ずする請求項蚘茉の高黒鉛化繊維
の補造方法。  易黒鉛化局の原料が、ベンれンたたはシアノ
アセチレンであるこずを特城ずする請求項蚘茉
の高黒鉛化繊維の補造方法。
[Claims] 1. After forming an easily graphitizable layer on a carbon fiber base material by chemical vapor deposition using infrared heating,
A method for producing highly graphitized fibers by heat treatment at a temperature of 2800°C or higher, characterized in that the formation of the easily graphitized layer and the heat treatment are performed in a pressurized atmosphere. Method for producing synthetic fibers. 2. The method for producing a highly graphitizable fiber according to claim 1, wherein the formation of the easily graphitizable layer and the heat treatment are performed continuously. 3. The method for producing highly graphitized fibers according to claim 1, wherein the pressure of the atmosphere is 3 kg/cm 2 ·G or more. 4 The concentration of the raw material of the easily graphitizable layer is 0.1 to 5% by volume.
The method for producing a highly graphitized fiber according to claim 1, characterized in that: 5. The method for producing a highly graphitizable fiber according to claim 1, wherein the forming temperature of the easily graphitizable layer is 1100 to 1500°C. 6. The method for producing a highly graphitizable fiber according to claim 1, wherein the raw material for the easily graphitizable layer is benzene or cyanoacetylene.
JP7477488A 1988-03-30 1988-03-30 Production of highly graphitized yarn Granted JPH02210060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7477488A JPH02210060A (en) 1988-03-30 1988-03-30 Production of highly graphitized yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7477488A JPH02210060A (en) 1988-03-30 1988-03-30 Production of highly graphitized yarn

Publications (2)

Publication Number Publication Date
JPH02210060A JPH02210060A (en) 1990-08-21
JPH0341592B2 true JPH0341592B2 (en) 1991-06-24

Family

ID=13556971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7477488A Granted JPH02210060A (en) 1988-03-30 1988-03-30 Production of highly graphitized yarn

Country Status (1)

Country Link
JP (1) JPH02210060A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125660A (en) * 1991-10-29 1993-05-21 Shin Etsu Chem Co Ltd Thermally decomposed carbon composite material and heat insulating material for high-temperature furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187622A (en) * 1983-04-05 1984-10-24 Agency Of Ind Science & Technol Graphite filament having high electrical conductivity and its preparation
JPS626973A (en) * 1985-06-27 1987-01-13 工業技術院長 Production of highly conductive fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187622A (en) * 1983-04-05 1984-10-24 Agency Of Ind Science & Technol Graphite filament having high electrical conductivity and its preparation
JPS626973A (en) * 1985-06-27 1987-01-13 工業技術院長 Production of highly conductive fiber

Also Published As

Publication number Publication date
JPH02210060A (en) 1990-08-21

Similar Documents

Publication Publication Date Title
US6998176B2 (en) Fine carbon fiber, method for producing the same and electrically conducting material comprising the fine carbon fiber
JPS59187622A (en) Graphite filament having high electrical conductivity and its preparation
JP5030907B2 (en) Fine carbon fiber and composition containing the same
US4435375A (en) Method for producing a carbon filament and derivatives thereof
US3699210A (en) Method of graphitizing fibers
JP3841684B2 (en) Fine carbon fiber, method for producing the same, and conductive material containing the fine carbon fiber
US3449077A (en) Direct production of graphite fibers
JP4010767B2 (en) Fine carbon fiber aggregate
JPH0536533B2 (en)
US6998171B2 (en) Fine carbon fiber and method for producing the same
JPH0341592B2 (en)
KR100793973B1 (en) Method for production of spiral-shaped carbon coated with nano-crystalline structred carbon layer and infrared emitter comprising spiral-shaped carbon
JP2002004134A (en) Carbon fiber and method for producing the same
US3634035A (en) Continuous production of uniform graphite fibers
JP2005015339A (en) Fine carbon fiber, method of manufacturing the same and conductive material containing fine carbon fiber
CN108455568A (en) A kind of preparation method of carbon nanotube
JP4357163B2 (en) Fine carbon fiber and composition containing the same
JP2003089930A (en) Fine carbon fiber mixture and composition containing the same
JPH08151207A (en) Carbon tube and its production
WO2018031455A1 (en) Apparatus and method for production of graphene products
JPS63293164A (en) Manufacture of carbon material
JPS6257925A (en) Method and apparatus for producing carbonized fiber
JPH02160644A (en) Production of optical fiber
JPS639044B2 (en)
JPH06184831A (en) Production of carbon fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term