JPH034145A - Device for diagnosing corrosion resistance of in-pile structual material - Google Patents

Device for diagnosing corrosion resistance of in-pile structual material

Info

Publication number
JPH034145A
JPH034145A JP1137372A JP13737289A JPH034145A JP H034145 A JPH034145 A JP H034145A JP 1137372 A JP1137372 A JP 1137372A JP 13737289 A JP13737289 A JP 13737289A JP H034145 A JPH034145 A JP H034145A
Authority
JP
Japan
Prior art keywords
hardness
corrosion resistance
reactor
arithmetic unit
upper grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1137372A
Other languages
Japanese (ja)
Inventor
Koji Fukutani
耕司 福谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1137372A priority Critical patent/JPH034145A/en
Publication of JPH034145A publication Critical patent/JPH034145A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To decide the presence or absence of the stress corrosion crack sensitivity in the in-pile structural materials of a light water reactor and to easily diagnose the corrosion resistance thereof by measuring the hardness of the above-mentioned materials. CONSTITUTION:An upper grid 6 is installed in a reactor pressure vessel 5. An arithmetic unit 3 and a display device 4 are provided on an operating floor 9 in the upper part of the reactor; further, an auxiliary hoist 8 is provided right above the vessel 5. A hardness measuring instrument 2 is hung down from the auxiliary hoist 8 and the hardness measuring instrument 2 and the arithmetic unit 3 are connected by a cable 7. The hardness measuring instrument 2 is first lowered down to a material to be diagnosed, i.e. the upper grid plate 6 by the hoist 8 and the hardness thereof is measured. The result of the hardness measurement is sent as an electric signal to the arithmetic unit 3. On the other hand, the expression data indicating the relation between the hardness and the corrosion resistance is incorporated into the arithmetic unit 3 and the previously measured hardness data of the upper grid plate 6 before the use is previously inputted therein. The corrosion resistance is easily diagnosed by computing and predicting the corrosion resistance level of the measuring point by using two sets of the above-mentioned data.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、たとえば沸騰水型原子炉内における構造物材
料の耐食性劣化を診断できるようにした炉内構造物材料
の耐食性診断装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is directed to improving the corrosion resistance of reactor internal structure materials, which enables diagnosis of corrosion resistance deterioration of structural materials in boiling water nuclear reactors, for example. Related to diagnostic equipment.

(従来の技術) 軽水炉の原子力発電所には炉心を内蔵する原子炉圧力容
器が設けられ、この原子炉圧力容器の内部には炉心シュ
ラウド、炉心支持板、上部及び下部格子板、ジェットポ
ンプ等が設置されている。
(Prior art) A light water reactor nuclear power plant is equipped with a reactor pressure vessel containing a reactor core, and inside this reactor pressure vessel there are a core shroud, a core support plate, upper and lower lattice plates, a jet pump, etc. is set up.

一般に原子力発電所はその健全性、信頼性を確保するた
め、定期的に運転を停止して点検を行っている。上述し
た原子炉の炉内構造物もこの時の検査が行われ、この検
査手段に水中テレビカメラが使用され、主として目視検
査が行われている。
Generally, in order to ensure the health and reliability of nuclear power plants, operations are periodically halted and inspected. The internal structures of the above-mentioned nuclear reactor are also inspected at this time, and an underwater television camera is used as the inspection means, and mainly visual inspection is performed.

(発明が解決しようとする課題) 上述したように炉内構造物の検査手段としては水中テレ
ビカメラを使用しての目視検査が一般的であるが、炉内
構造物の形状が複雑であるため、水中テレビカメラを目
的の所へ接近させることが困難な場合がある。したがっ
て、水中テレビカメラでは検査範囲が限られる。また材
料自体の強度等に関する検査は行われていない。
(Problems to be Solved by the Invention) As mentioned above, visual inspection using an underwater television camera is a common means of inspecting reactor internals, but because the shape of reactor internals is complex, , it may be difficult to bring an underwater television camera close to the target location. Therefore, the inspection range of underwater television cameras is limited. Furthermore, no tests have been conducted regarding the strength of the material itself.

一方、最近原子炉の長寿命化等の検討も行なわれ始め、
炉内構造物の強度に関する検査の必要性が増えている。
On the other hand, studies have recently begun to consider extending the lifespan of nuclear reactors.
There is an increasing need for testing the strength of reactor internals.

特に炉内構造物の中でも燃料領域に近接する上部格子板
、シュラウド等では高速中性子に曝されることから構造
物材料の強度増加。
Particularly in reactor internal structures, such as the upper grid plate and shroud, which are close to the fuel area, are exposed to fast neutrons, which increases the strength of the structural materials.

伸びの減少が生ずる。また、高速中性子に曝されると耐
食性、特に耐応力腐食性割れ性(耐SCC性)が劣化す
る可能性がある。よって、このような炉内構造物材料の
健全性を確認するための検査手段が必要となるが、従来
まで炉内構造物材料の耐食性の劣化を診断することは知
られていない。
A decrease in elongation occurs. Furthermore, when exposed to fast neutrons, corrosion resistance, particularly stress corrosion cracking resistance (SCC resistance), may deteriorate. Therefore, there is a need for an inspection means for confirming the soundness of such reactor internal structure materials, but until now it has not been known to diagnose deterioration in the corrosion resistance of reactor internal structure materials.

本発明はこのような点に鑑みなされたもので軽水炉の炉
内構造物材料の硬度から応力腐食割れ(SCC)感受性
の有無を判定して耐食性を容易に診断できる炉内構造物
材料の耐食性診断装置を提供することにある。
The present invention was developed in view of the above points, and is a method for diagnosing the corrosion resistance of light water reactor internal structure materials, which can easily diagnose the corrosion resistance by determining the presence or absence of stress corrosion cracking (SCC) susceptibility from the hardness of the reactor internal structure materials. The goal is to provide equipment.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、被診断材料としての炉内構造物材料の硬度を
測定する硬度測定装置と、この硬度測定装置で得られた
材料の硬度から材料の耐食性を予測・演算する演算装置
と、この演算装置からの演算結果を表示する表示装りと
からなることを特徴とする。
(Means for Solving the Problems) The present invention provides a hardness measuring device for measuring the hardness of a reactor internal structure material as a material to be diagnosed, and predicting the corrosion resistance of the material from the hardness of the material obtained by this hardness measuring device. - It is characterized by consisting of an arithmetic device that performs calculations and a display device that displays the calculation results from this arithmetic device.

(作用) 本発明は、被診断材料としての軽水炉用炉内構造物材料
の硬度を硬度計で測定し、その測定結果から硬度と耐食
性の相関関係を用いて、耐食性を予想演算する。すなわ
ち、中性子照射による硬度の増加とSCC感受性の増加
の相関関係から構造物材料の耐食性を診断する。従って
、この結果をみることによって測定時点における構造物
材料の耐食性を判断できる。
(Function) The present invention measures the hardness of a light water reactor internal structure material as a material to be diagnosed using a hardness meter, and uses the correlation between hardness and corrosion resistance from the measurement results to predict the corrosion resistance. That is, the corrosion resistance of the structural material is diagnosed from the correlation between the increase in hardness due to neutron irradiation and the increase in SCC susceptibility. Therefore, by looking at this result, the corrosion resistance of the structural material at the time of measurement can be determined.

(実施例) 第1図および第2図を参照しながら本発明の一実施例を
説明する。
(Example) An example of the present invention will be described with reference to FIGS. 1 and 2.

第1図においては原子炉構造物材料の被診断材料1の硬
度を硬度測定装M2で測定し、演算装置3で演算し、そ
の演算結果を表示装置4で表示する構造材料の耐食性診
断装置をブロック図で示している。第2図は300℃に
おける高速中性子を照射されたオーステナイト系ステン
レス鋼のビッカース硬度増加量と、中性子照射後、29
0℃の高温水中で低歪速度引張試験を行うことによって
得られたSCC感受性の関係を示したものである。ここ
で、照射後の硬度は、硬射前後の硬度の差すなわち、照
射による硬度の増加量と照射前の硬度の比を%で表わし
SCC感受性は、低歪速度引張試験で得られた材料波面
の粒界割れ破面率を%で表示している。
In FIG. 1, there is shown a corrosion resistance diagnostic device for structural materials in which the hardness of a material to be diagnosed 1, which is a nuclear reactor structure material, is measured by a hardness measuring device M2, the calculation is performed by a calculation device 3, and the calculation result is displayed by a display device 4. It is shown in a block diagram. Figure 2 shows the increase in Vickers hardness of austenitic stainless steel irradiated with fast neutrons at 300°C and the increase in Vickers hardness at 29°C after neutron irradiation.
This figure shows the relationship between SCC susceptibility obtained by conducting a low strain rate tensile test in high-temperature water at 0°C. Here, the hardness after irradiation is expressed as a percentage of the difference in hardness before and after irradiation, that is, the ratio of the hardness increase due to irradiation to the hardness before irradiation, and the SCC susceptibility is the difference in hardness before and after irradiation. The grain boundary crack fracture surface ratio is expressed in %.

この図から明らかなようにSCC感受性と硬さ増加量に
は、相関関係があるので、構造材料の硬さを測定するこ
とによって耐食性を予測することができる6本実施例で
は、耐食性の基準を20%としており構造物材料の硬度
の増加量が100%であれば、SCC感受性は十分低く
、構造物材料は健全であると判定できる。一方、構造物
材料の硬度の増加量が150%であれば、この構造物は
SCC感受性が高いと判断でき、必要な改善策をとるこ
とができる。
As is clear from this figure, there is a correlation between SCC susceptibility and hardness increase, so corrosion resistance can be predicted by measuring the hardness of structural materials. If the increase in hardness of the structural material is 100%, it can be determined that the SCC susceptibility is sufficiently low and the structural material is sound. On the other hand, if the increase in hardness of the structure material is 150%, it can be determined that this structure is highly susceptible to SCC, and necessary remedial measures can be taken.

耐食性の判断基準は、構造物の環境等から適宜決定され
ばよい。
The criteria for determining corrosion resistance may be appropriately determined based on the environment of the structure, etc.

次に上記実施例にもとづき第3図を参照して本発明の具
体的使用例を説明する。すなわち、第3図において原子
炉圧力容器5の内部には上部格子板6が設置されている
。原子炉上部のオペレーティングフロア9には演算装置
3と表示装置4が設置され、さらに原子炉圧力容器5の
真上には、補助ホイスト8が設けられている。補助ホイ
スト8から硬度測定装置2が吊り下げられており、硬度
測定装置2と演算装M3は信号ケーブル7で接続されて
いる。
Next, a specific usage example of the present invention will be explained based on the above embodiment with reference to FIG. That is, in FIG. 3, an upper grid plate 6 is installed inside the reactor pressure vessel 5. A computing device 3 and a display device 4 are installed on the operating floor 9 in the upper part of the reactor, and furthermore, an auxiliary hoist 8 is installed directly above the reactor pressure vessel 5. The hardness measuring device 2 is suspended from the auxiliary hoist 8, and the hardness measuring device 2 and the computing device M3 are connected by a signal cable 7.

硬度測定装置!2は、振動式硬度測定を行う装置であり
、構造物の振動振幅を測定して硬度を測定する。
Hardness measuring device! Reference numeral 2 denotes a device for performing vibration type hardness measurement, which measures the vibration amplitude of a structure to measure hardness.

本実施例による耐食性診断装置では、まづ補助ホイスト
8によ、り硬度測定装置12を診断を実施したい位置の
被診断材料、つまり上部格子板6まで吊り下し硬度測定
を行う、硬度測定結果を電気信号として演算装置3に送
り込まれる。一方、演算装置13には第2図に示したよ
うな硬度と耐食性の関係を表わす表式データが組込まれ
ており、また、あらかじめ、使用前の上部格子板6の硬
度データを入手しておく、この2つのデータを用いて、
測定箇所の耐食性レベルを演算・予測する0表示装M4
は、この演算結果を表示する。
In the corrosion resistance diagnostic device according to this embodiment, first, the hardness measuring device 12 is suspended by the auxiliary hoist 8 to the material to be diagnosed at the position where the diagnosis is desired, that is, the upper grid plate 6, and the hardness is measured. is sent to the arithmetic unit 3 as an electrical signal. On the other hand, the calculation device 13 has built-in tabular data representing the relationship between hardness and corrosion resistance as shown in FIG. 2, and hardness data of the upper grid plate 6 before use is obtained in advance. , using these two data,
0 display device M4 that calculates and predicts the corrosion resistance level of the measurement point
displays the result of this operation.

この耐食性診断装置によれば、上部格子板6の耐食性を
判定できる。また、耐食性のスクリーニングレベルをあ
らかじめ演算装置13に入力しておけば、健全であるか
、また対策が必要であるかを直接表示できる。
According to this corrosion resistance diagnostic device, the corrosion resistance of the upper grid plate 6 can be determined. Furthermore, by inputting the corrosion resistance screening level into the arithmetic unit 13 in advance, it is possible to directly display whether the product is healthy or whether countermeasures are required.

上記実施例においては、硬度測定袋!2は振動式を使用
したが、これに限定するものではなく。
In the above example, the hardness measurement bag! 2 uses a vibration type, but is not limited to this.

圧こん式でもよい、また、被診断材料として上部格子板
6を対象にしたが、原子炉圧力容器5内の構造物であれ
ば対象を限定するものではない、さらに、硬度測定装置
E2を任意の形に構成することにより対応できる。また
、沸騰水型原子炉のみではなく、加圧木型原子炉にも適
用可能である。
In addition, although the upper grid plate 6 was targeted as the material to be diagnosed, the target is not limited to any structure within the reactor pressure vessel 5. Furthermore, the hardness measuring device E2 can be used as an arbitrary material. This can be handled by configuring it in the form of Moreover, it is applicable not only to boiling water reactors but also to pressurized wooden reactors.

〔発明の効果〕〔Effect of the invention〕

本発明によれば原子炉内構造物材料の硬度を測定するこ
とによって耐食性を容易に診断することができる。
According to the present invention, corrosion resistance can be easily diagnosed by measuring the hardness of reactor internal structure materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る炉内構造物材料の耐食性診断装置
の一実施例を示すブロック図、第2図は第1図の実施例
をおける硬度の増加量と耐食性との関係を示す特性図、
第3図は第1図における耐食性診断装置の具体的使用例
を示す構成図である。 1・・・被測定材料、    2・・・硬度測定装置、
3・・・演算装置、     4・・・表示装置。 5・・・原子炉圧力容器、  6・・・上部格子板。 7・・・信号ケーブル、    8・・・補助ホイスト
、9・・・オペレーティングフロア。 (8733)代理人 弁理士 猪 股 祥 晃(ほか1
名) 第 II!I 硬うn4j口t/うト末n不咬さ(%)J$−2図
FIG. 1 is a block diagram showing an embodiment of the corrosion resistance diagnostic device for reactor internal structure materials according to the present invention, and FIG. 2 is a characteristic showing the relationship between the amount of increase in hardness and corrosion resistance in the embodiment of FIG. 1. figure,
FIG. 3 is a block diagram showing a specific usage example of the corrosion resistance diagnostic device shown in FIG. 1. 1... Material to be measured, 2... Hardness measuring device,
3... Arithmetic device, 4... Display device. 5...Reactor pressure vessel, 6...Upper grid plate. 7...Signal cable, 8...Auxiliary hoist, 9...Operating floor. (8733) Agent: Yoshiaki Inomata, patent attorney (and 1 others)
Name) Part II! I Dental cavity n 4j mouth t / dental cavity n malocclusion (%) J$-2 figure

Claims (1)

【特許請求の範囲】[Claims] 被診断材料の硬度を測定する硬度測定装置と、この硬度
測定装置で得られた硬度測定値から耐食性を演算する演
算装置と、この演算装置から演算結果を表示する表示装
置とからなることを特徴とする炉内構造物材料の耐食性
診断装置。
It is characterized by comprising a hardness measuring device that measures the hardness of the material to be diagnosed, a calculation device that calculates corrosion resistance from the hardness measurement value obtained by this hardness measuring device, and a display device that displays the calculation results from this calculation device. Corrosion resistance diagnostic equipment for reactor internal structure materials.
JP1137372A 1989-06-01 1989-06-01 Device for diagnosing corrosion resistance of in-pile structual material Pending JPH034145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1137372A JPH034145A (en) 1989-06-01 1989-06-01 Device for diagnosing corrosion resistance of in-pile structual material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1137372A JPH034145A (en) 1989-06-01 1989-06-01 Device for diagnosing corrosion resistance of in-pile structual material

Publications (1)

Publication Number Publication Date
JPH034145A true JPH034145A (en) 1991-01-10

Family

ID=15197146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1137372A Pending JPH034145A (en) 1989-06-01 1989-06-01 Device for diagnosing corrosion resistance of in-pile structual material

Country Status (1)

Country Link
JP (1) JPH034145A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015524060A (en) * 2012-06-22 2015-08-20 コリア アトミック エナジー リサーチ インスティテュート Method for nondestructive evaluation of intergranular stress corrosion cracking (IGSSC) in structural elements made of metal alloys, and method for evaluating the lifetime of structural elements
CN105021517A (en) * 2015-07-10 2015-11-04 核工业理化工程研究院 Movable corrosion test-bed

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015524060A (en) * 2012-06-22 2015-08-20 コリア アトミック エナジー リサーチ インスティテュート Method for nondestructive evaluation of intergranular stress corrosion cracking (IGSSC) in structural elements made of metal alloys, and method for evaluating the lifetime of structural elements
CN105021517A (en) * 2015-07-10 2015-11-04 核工业理化工程研究院 Movable corrosion test-bed

Similar Documents

Publication Publication Date Title
CN103969176A (en) Method for testing seawater corrosion of low-alloy steel under stress state
Zhang et al. Damage characteristics and assessment of corroded RC beam-column joint under cyclic loading based on acoustic emission monitoring
JPH034145A (en) Device for diagnosing corrosion resistance of in-pile structual material
Féron et al. Stress corrosion cracking of Alloy 600: overviews and experimental techniques
Kumar et al. Relevance of factor of safety based on number of cycles in the prediction of fatigue crack initiation as per A16 sigma-d approach
JPH05297181A (en) Method for estimating stress corrosive cracking life of structure, and test device therefor
JPH04319656A (en) Apparatus for diagnosing corrosion resistance of structural material in furnace
JPH1123776A (en) Composite diagnostic system of reactor internal equipment
Lee et al. Effect of oxide film on ECT detectability of surface IGSCC in laboratory-degraded alloy 600 steam generator tubing
JPH03252591A (en) Corrosion resistance diagnostic device of in-core structure material
JP3612293B2 (en) Method and apparatus for measuring residual stress in object
JP5226975B2 (en) Stress corrosion cracking monitoring method and monitoring device therefor
Métais et al. European contributions to environmental fatigue issues experimental research in France, Germany and Finland
Ramuhalli et al. Material aging and degradation detection and remaining life assessment for plant life management
Meyer et al. Progress towards prognostic health management of passive components in advanced small modular reactors
Burton et al. The development of techniques for the surveillance of LMFBRs
Meyer et al. Advanced Instrumentation, Information, and Control System Technologies: Nondestructive Examination Technologies-FY11 Report
Gopal Acoustic monitoring systems to assure integrity of nuclear plants
Bakirov et al. Development of a technology for continuous acoustic emission monitoring of in-service damageability of metal in safety-related NPP equipment
Andersson Measurements of fuel components by Multi Frequency Eddy Current Technique-F-SECT
Renshaw et al. MRP-227/228 component inspections supporting nuclear power plant license renewal
Kiss et al. On-line monitoring to assure structural integrity of nuclear reactor components
Meyer et al. Assessment of NDE technologies for detection and characterization of stress corrosion cracking in LWRs
Pickett et al. Prediction of the Low Cycle Fatigue Life of Pressure Vessels
Fry et al. Summary of ORNL investigation of in-core vibrations in BWR-4s