JPH0341455B2 - - Google Patents

Info

Publication number
JPH0341455B2
JPH0341455B2 JP60148816A JP14881685A JPH0341455B2 JP H0341455 B2 JPH0341455 B2 JP H0341455B2 JP 60148816 A JP60148816 A JP 60148816A JP 14881685 A JP14881685 A JP 14881685A JP H0341455 B2 JPH0341455 B2 JP H0341455B2
Authority
JP
Japan
Prior art keywords
reaction
polyether
irradiation
perfluoropolyether
fluorocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60148816A
Other languages
Japanese (ja)
Other versions
JPS6210135A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14881685A priority Critical patent/JPS6210135A/en
Publication of JPS6210135A publication Critical patent/JPS6210135A/en
Publication of JPH0341455B2 publication Critical patent/JPH0341455B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はパーフルオロポリエーテルの製造方
法、特には耐熱性、耐酸化性、耐化学薬品性およ
び耐プラズマ性にすぐれており、溶媒、潤滑剤、
グリース、シーリング材として有用とされるパー
フルオロポリエーテルの製造方法に関するもので
ある。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing perfluoropolyether, which has excellent heat resistance, oxidation resistance, chemical resistance, and plasma resistance, and which is suitable for use in solvents, lubricants, etc. agent,
The present invention relates to a method for producing perfluoropolyether, which is useful as a grease and a sealant.

(従来の技術) パーフルオロポリエーテルの製造については、
パーフルオロオレフインエポキシサイドの重合に
よつて得られるフルオロカーボンポリエーテルを
紫外線照射する方法が公知とされている(米国特
許第3214478号明細書、特開昭38−25586号、特公
昭43−687号公報参照)。しかし、この方法には使
用される出発原料が末端にカルボン酸フルオライ
ド基を有するフルオロカーボンポリエーテルとさ
れるために、紫外線照射による、反応がおそいと
いう不利があり、またこゝに使用する紫外線を約
300nm以下の比較的高エネルギー領域の波長のも
のとする必要があり、さらには出発原料がカルボ
ン酸フルオライド基を有するものであるために反
応の進行に伴なつてCOF2などの有毒な副生物を
発生するという問題点があつた。
(Prior art) Regarding the production of perfluoropolyether,
A method of irradiating a fluorocarbon polyether obtained by polymerizing perfluoroolefin epoxide with ultraviolet light is known (U.S. Pat. No. 3,214,478, Japanese Patent Application Laid-open No. 38-25586, Japanese Patent Publication No. 43-687). reference). However, this method has the disadvantage that the reaction is slow due to ultraviolet irradiation because the starting material used is a fluorocarbon polyether having a carboxylic acid fluoride group at the end.
The wavelength must be in a relatively high energy range of 300 nm or less, and furthermore, since the starting material has a carboxylic acid fluoride group, toxic by-products such as COF 2 are generated as the reaction progresses. There was a problem that this occurred.

(発明の構成) 本発明はこのような不利を伴なわないパーフル
オロポリエーテルの製造方法に関するものであ
り、これは一般式 (こゝにzは0を含む正数)で示されるフルオ
ロカーボンポリエーテルに紫外線照射し、一般式 (こゝにm、nは0を含む正数)で示されるパ
ーフルオロポリエーテルとすることを特徴とする
ものである。
(Structure of the Invention) The present invention relates to a method for producing perfluoropolyethers without such disadvantages, which comprises the general formula (where z is a positive number including 0) is irradiated with ultraviolet rays, and the general formula (where m and n are positive numbers including 0).

すなわち、本発明者らは前記したような不利を
解決できるパーフルオロポリエーテルの製造方法
について種々検討した結果、紫外線照射をする出
発原料として上記した一般式で示されるフルオロ
カーボンポリエーテルを選択すれば、1)従来法
にくらべて反応速度を大きくすることができ、こ
の反応を速かに進行、完了させることができる、
2)約300nm以上の低エネルギー領域の波長の紫
外線(近紫外線)のみの照射によつても反応の進
行が可能となる、3)同一の照射条件、照射時間
で比較した場合には従来法にくらべて約20%程度
の反応率の向上が認められる、4)反応の進行に
よつてCOF2などの有毒ガスの発生することがな
い、という効果を得ることができることを見出す
と共に、この方法で得られる上記した一般式で示
されるパーフルオロポリエーテルは耐熱性、耐酸
化性、耐化学薬品性、耐プラズマ性にすぐれてい
るので、溶剤、潤滑剤、グリース、シーリング剤
などとして有用とされることを確認して本発明を
完成させた。
That is, as a result of various studies by the present inventors regarding the production method of perfluoropolyether that can solve the above-mentioned disadvantages, if the fluorocarbon polyether represented by the above-mentioned general formula is selected as the starting material for ultraviolet irradiation, 1) The reaction rate can be increased compared to conventional methods, and the reaction can proceed and be completed quickly.
2) The reaction can proceed even by irradiation with only ultraviolet rays (near ultraviolet rays) with wavelengths in the low energy range of approximately 300 nm or more; 3) When compared under the same irradiation conditions and irradiation time, the reaction was superior to the conventional method. It was discovered that the reaction rate was improved by about 20% compared to the previous method, and 4) no toxic gases such as COF 2 were generated as the reaction progressed. The resulting perfluoropolyether represented by the above general formula has excellent heat resistance, oxidation resistance, chemical resistance, and plasma resistance, and is therefore useful as a solvent, lubricant, grease, sealant, etc. After confirming this, the present invention was completed.

本発明の方法において始発材料とされるフルオ
ロカーボンポリエーテルは一般式 (こゝにzは0を含む正数)で示される末端に
カルボキシル基を有するものとされるが、このも
のはヘキサフルオロプロピレンオキサイド
(HFPO)の重合によつて得られる、一般式 で示される末端にカルボン酸フルオライド基を有
するフルオロカーボンポリエーテルを加水分解す
ることによつて容易に得ることができる。
The fluorocarbon polyether used as the starting material in the method of the present invention has the general formula (where z is a positive number including 0) is said to have a carboxyl group at the end, which is obtained by polymerization of hexafluoropropylene oxide (HFPO) and has the general formula It can be easily obtained by hydrolyzing a fluorocarbon polyether having a carboxylic acid fluoride group at the terminal represented by:

本発明の目的とする上記一般式(1)で示されるパ
ーフルオロポリエーテルは上記した一般式(2)で示
されるフルオロカーボンポリエーテルに紫外線を
照射することによつて得ることができるが、こゝ
に使用される紫外線は400nm以下の波長をもつも
のとすればよく、この波長の下限は光が通過すべ
き物質の透過特性により決定されるものであるこ
とから特に制限はないが、この紫外線の波長は
370〜250nmの範囲とすることがよい。この反応
を行なわせるための光源としては一般に市販され
ている各種の水銀アーク灯を使用すればよいが、
これは石英、高透明ガラスなどのジヤケツトを有
するものとすることが望ましい。この反応を有利
に行なわせるためには光源と反応体との距離は短
いものとすることがよく、このためには光源を反
応体に隣接させるか、光源を反応空間中に設置す
ることがよい。また、この反応を完了させるため
に必要とされる照射時間はこの照射条件、すなわ
ち使用する光源の種類、出力と系内に存在する反
応点の数との組合せ、反応体と光源の距離、反応
体であるフルオロカーボンポリエーテルの重合度
および系の希釈、撹拌条件などに依存するので特
定することはむづかしいが、個々の反応の進行お
よび完了に要する照射時間は反応混合物中のカル
ボニル基を赤外分光分析によつて追跡し決定すれ
ばよい。なお、この反応系の温度、圧力は反応進
行にとつて重要な因子とはならないが、好ましく
は反応混合物が液相となるような温度、圧力とす
ることがよく、したがつてこれは−80℃〜200℃、
1〜数気圧の範囲から適宜に定めればよい。
The perfluoropolyether represented by the above general formula (1), which is the object of the present invention, can be obtained by irradiating the fluorocarbon polyether represented by the above general formula (2) with ultraviolet light. The ultraviolet rays used for this purpose may have a wavelength of 400 nm or less, and there is no particular restriction as the lower limit of this wavelength is determined by the transmission characteristics of the material through which the light passes; The wavelength is
It is preferably in the range of 370 to 250 nm. As a light source for this reaction, various commercially available mercury arc lamps may be used.
Preferably, this has a jacket of quartz, high transparency glass, or the like. In order for this reaction to take place advantageously, the distance between the light source and the reactants is often kept short; for this purpose, it is best to place the light source adjacent to the reactants or to place the light source in the reaction space. . The irradiation time required to complete this reaction depends on the irradiation conditions, i.e., the type of light source used, the combination of the output power and the number of reaction points present in the system, the distance between the reactants and the light source, and the reaction time. Although it is difficult to determine because it depends on the degree of polymerization of the fluorocarbon polyether, the dilution of the system, stirring conditions, etc., the irradiation time required for the progress and completion of each individual reaction can be determined by infrared spectroscopy of the carbonyl groups in the reaction mixture. It can be tracked and determined through analysis. Although the temperature and pressure of this reaction system are not important factors for the progress of the reaction, it is preferable to set the temperature and pressure such that the reaction mixture becomes a liquid phase. ℃~200℃,
It may be determined as appropriate from the range of 1 to several atmospheres.

本発明の方法の実施に当つては必ずしも希釈剤
を使用する必要はないが、始発物質としてのフル
オロカーボンポリエーテルが特に高分子量のもの
である場合には希釈剤を使用することがよい。こ
こに使用する希釈剤は反応系の撹拌効率を向上さ
せるものであり、その添加量には特に制限はな
く、これは反応系が容易に撹拌できる状態にまで
希釈される程度とすればよい。しかし、この希釈
剤については本発明方法における反応およびこの
反応副生物に対して不活性で、反応終了後には蒸
留などで容易に留去できるものであることが必要
とされるので、これにはパーフルオロヘプタン、
パーフルオロシクロヘキサン、パーフルオロジメ
チルシクロブタンなどのようなパーフルオロ飽和
フルオロカーボン、パーフルオロ(2−n−ブチ
ルテトラヒドロフラン)、パーフルオロ(2−n
−プロピルテトラヒドロピラン)などのようなパ
ーフルオロ環状エーテルが好ましいものとされ
る。
Although it is not necessary to use a diluent in carrying out the process of the present invention, it is advisable to use a diluent when the starting fluorocarbon polyether has a particularly high molecular weight. The diluent used here improves the stirring efficiency of the reaction system, and there is no particular restriction on the amount added, as long as it dilutes the reaction system to a state where it can be easily stirred. However, this diluent must be inert to the reaction in the method of the present invention and by-products of this reaction, and can be easily removed by distillation after the reaction is completed. perfluoroheptane,
Perfluoro saturated fluorocarbons such as perfluorocyclohexane, perfluorodimethylcyclobutane, etc., perfluoro(2-n-butyltetrahydrofuran), perfluoro(2-n
-propyltetrahydropyran) and the like are preferred.

なお、この反応の進行および完了は反応混合物
中のカルボニル基量が赤外分光分析で容易に確認
できるので、これで監視すればよい。
The progress and completion of this reaction can be monitored by the amount of carbonyl groups in the reaction mixture, which can be easily confirmed by infrared spectroscopy.

つぎに本発明方法の実施例をあげる。 Next, examples of the method of the present invention will be given.

実施例 1 直径20mm、厚さ1.5mmの石英管中に、ヘキサフ
ルオロプロピレンオキサイドの重合体を加水分解
して得た、末端にカルボキシル基を有する次式 で示されるフルオロカーボンポリエーテル30gを
窒素ガス雰囲気下で仕込み、この石英管に石英製
のジヤケツトを有する高圧水銀ランプ(400W)
を直接接触させて室温で36時間こゝに250〜370mm
の波長の紫外線照射を行なつたところ、無色透明
な液体26.5gが得られた。
Example 1 The following formula having a carboxyl group at the end was obtained by hydrolyzing a polymer of hexafluoropropylene oxide in a quartz tube with a diameter of 20 mm and a thickness of 1.5 mm. A high-pressure mercury lamp (400W) containing 30g of fluorocarbon polyether shown in the figure in a nitrogen gas atmosphere and having a quartz jacket in this quartz tube.
250-370mm in direct contact with the material for 36 hours at room temperature.
When irradiated with ultraviolet light at a wavelength of , 26.5 g of a colorless and transparent liquid was obtained.

ついで、この処理後に石英管中にあるポリエー
テルを取り出して赤外線分析をしたところ、これ
にはパーフルオロアルキルポリエーテルの末端に
位置するカルボキシル基についての1780cm-1の吸
収が完全に消失したので、つぎにこれについてガ
スクロマトグラフイおよびガスマススペクトル分
析をしたところ、これは次式 (n+m=4.26)で示されるパーフルオロポリエ
ーテルであることが確認された。
After this treatment, the polyether in the quartz tube was taken out and subjected to infrared analysis, and it was found that the absorption at 1780 cm -1 for the carboxyl group located at the end of the perfluoroalkyl polyether had completely disappeared. Next, we performed gas chromatography and gas mass spectrum analysis on this, and found that it was calculated using the following formula: It was confirmed that it was a perfluoropolyether represented by (n+m=4.26).

比較例 1 実施例1で使用した石英管に、ヘキサフルオロ
プロピレンオキサイドを重合して得た末端にカル
ボン酸フルオライド基を有する次式 で示されるフルオロカーボンポリエーテル30gを
窒素ガス雰囲気下で仕込み、これに実施例1と同
様の方法で紫外線処理を施し、照射開始から90時
間後に照射を中断した。
Comparative Example 1 The following formula having a carboxylic acid fluoride group at the end obtained by polymerizing hexafluoropropylene oxide was added to the quartz tube used in Example 1. 30 g of fluorocarbon polyether represented by was charged in a nitrogen gas atmosphere, and treated with ultraviolet light in the same manner as in Example 1. The irradiation was interrupted 90 hours after the start of the irradiation.

ついでこの石英管からポリエーテルを取り出し
これについての赤外線分析をしたところ、このも
のはカルボン酸フルオライドのカルボニル基にも
とづく1890cm-1の吸収が完全に消失せず、カルボ
ン酸フルオライドが10%残存していることが認め
られ、ついでこれについてガスクロマトグラフイ
分析したところ、これには出発原料としてのフル
オロカーボンポリエーテルが約20%混在している
ことが検出され、この場合には上記した実施例1
の方法にくらべて反応が非常に緩やかであること
が確認されたが、この場合にはまた約15ミリモル
のCOF2の発生が認められた。
Next, when the polyether was taken out of the quartz tube and subjected to infrared analysis, it was found that the absorption at 1890 cm -1 based on the carbonyl group of the carboxylic acid fluoride did not completely disappear, and 10% of the carboxylic acid fluoride remained. When this was analyzed by gas chromatography, it was detected that about 20% of the fluorocarbon polyether as a starting material was mixed in, and in this case, the above-mentioned Example 1 was detected.
It was confirmed that the reaction was very slow compared to the method described above, but in this case, the generation of about 15 mmol of COF 2 was also observed.

実施例 2 実施例1における光源としてパイレツクス製の
冷却ジヤケツトを有する高圧水銀ランプ(400W)
を用いたほかは実施例1と全く同様にしてフルオ
ロカーボンポリエーテルに300〜370nmの波長の
紫外線照射をし、照射開始から90時間後に照射を
中断して石英管からポリエーテルを取り出したと
ころ、26.2gの生成物が取得された。
Example 2 A high-pressure mercury lamp (400W) with a Pyrex cooling jacket as the light source in Example 1
Fluorocarbon polyether was irradiated with ultraviolet rays with a wavelength of 300 to 370 nm in the same manner as in Example 1 except that 26.2 g of product was obtained.

つぎにこのものを赤外線分析したところ、出発
物質としてのポリエーテルの末端に位置するカル
ボキシル基にもとづく1780cm-1の吸収は照射前に
くらべて約40%にまで減少しており、このものに
ついてガスクロマトグラフイ分析したところ、こ
の約50%がパーフルオロポリエーテルとなつてい
ることが検出され、この場合には照射光の波長が
約300nm以上の低エネルギー波のみでも反応の進
行していることが確認された。
Next, infrared analysis of this product revealed that the absorption at 1780 cm -1 based on the carboxyl group located at the end of the polyether as a starting material had decreased to about 40% compared to before irradiation, and the gas chromatography By tograph analysis, it was detected that about 50% of this was converted into perfluoropolyether, and in this case, the reaction progressed even with only low-energy waves with a wavelength of about 300 nm or more. confirmed.

比較例 2 比較例1における光源をパイレツク製の冷却ジ
ヤケツトを有する高圧水銀灯(400W)としたほ
かは比較例1と同様にしてフルオロカーボンポリ
エーテルに波長300〜370nmの紫外線照射をし、
照射開始から90時間後に照射を中断して石英管か
らポリエーテルを取出したところ、26.7gの生成
物が得られたが、このものを赤外線分析およびガ
スクロマトグラフイ分析をしたところ、この場合
には反応が全く進行していないことが確認され
た。
Comparative Example 2 Fluorocarbon polyether was irradiated with ultraviolet light with a wavelength of 300 to 370 nm in the same manner as in Comparative Example 1, except that the light source in Comparative Example 1 was a high-pressure mercury lamp (400 W) with a Pyrex cooling jacket.
When the irradiation was interrupted 90 hours after the start of the irradiation and the polyether was taken out from the quartz tube, 26.7 g of the product was obtained.When this product was analyzed by infrared rays and gas chromatography, it was found that in this case, It was confirmed that the reaction did not proceed at all.

実施例 3 実施例1で使用した石英管に、ヘキサフルオロ
プロピレンオキサイドの重合体を加水分解して得
た、末端にカルボキシル基を有する次式 で示されるフルオロカーボンポリエーテル25gと
希釈剤としてのパーフルオロ(2−n−ブチルテ
トラヒドロフラン)25gとを窒素ガス雰囲気下に
仕込み、撹拌して均一な溶液としてから、これに
実施例1と同じ方法で室温下に90時間、波長250
〜370nmの紫外線照射を行なつたところ、油状生
成物2211gが得られたので、このものを100℃/
2mmの条件で減圧下に加熱して希釈剤を分離して
目的とするパーフルオロポリエーテルを得た。
Example 3 The following formula having a carboxyl group at the end was obtained by hydrolyzing a polymer of hexafluoropropylene oxide in the quartz tube used in Example 1. 25 g of the fluorocarbon polyether represented by and 25 g of perfluoro(2-n-butyltetrahydrofuran) as a diluent were charged in a nitrogen gas atmosphere, stirred to form a homogeneous solution, and then mixed in the same manner as in Example 1. 90 hours at room temperature, wavelength 250
When ~370nm ultraviolet irradiation was performed, 2211g of oily product was obtained, which was heated at 100℃/
The diluent was separated by heating under reduced pressure at 2 mm to obtain the desired perfluoropolyether.

ついで、このパーフルオロポリエーテルについ
て赤外線分析をしたところ、このものはポリエー
テル末端のカルボキシル基にもとづく1780cmの吸
収が完全に消失しており、これはガスマススペク
トル分析およびゲルパーミエーシヨンクロマトグ
ラフイ分析の結果から次式 (m+n=50)で示されるパーフルオロポリエー
テルであることが確認された。
Next, infrared analysis of this perfluoropolyether revealed that the absorption at 1780 cm due to the carboxyl group at the end of the polyether had completely disappeared, which was confirmed by gas mass spectrometry and gel permeation chromatography analysis. From the result of It was confirmed that it was a perfluoropolyether represented by (m+n=50).

なお、この生成物は25℃における動粘度が
1400cSの油状物であり、空気雰囲気下、250℃に
おける1000時間後の重量損失は10%であつた。
The kinematic viscosity of this product at 25℃ is
It was an oily substance of 1400 cS, and the weight loss after 1000 hours at 250°C in an air atmosphere was 10%.

Claims (1)

【特許請求の範囲】 1 一般式 (式中のzは0を含む正−数)で示されるフル
オロカーボンポリエーテルに紫外線照射し、 一般式 (ここにm、nは0を含む正−数)で示される
パーフルオロポリエーテルとすることを特徴とす
るパーフルオロポリエーテルの製造方法。
[Claims] 1. General formula (in the formula, z is a positive number including 0) is irradiated with ultraviolet rays, and the general formula (where m and n are positive numbers including 0).
JP14881685A 1985-07-05 1985-07-05 Production of perfluoro polyether Granted JPS6210135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14881685A JPS6210135A (en) 1985-07-05 1985-07-05 Production of perfluoro polyether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14881685A JPS6210135A (en) 1985-07-05 1985-07-05 Production of perfluoro polyether

Publications (2)

Publication Number Publication Date
JPS6210135A JPS6210135A (en) 1987-01-19
JPH0341455B2 true JPH0341455B2 (en) 1991-06-24

Family

ID=15461358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14881685A Granted JPS6210135A (en) 1985-07-05 1985-07-05 Production of perfluoro polyether

Country Status (1)

Country Link
JP (1) JPS6210135A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0293863A3 (en) * 1987-06-02 1991-01-02 Daikin Industries, Limited Fluorine-containing polyether and process for preparing the same
RU2107992C1 (en) * 1992-09-23 1998-03-27 Сименс АГ Handover method for mobile subscribers of mobile radio network
US6923921B2 (en) * 2002-12-30 2005-08-02 3M Innovative Properties Company Fluorinated polyether compositions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103334A (en) * 1981-12-14 1983-06-20 Tokuyama Soda Co Ltd Perfluoropolyether and its preparation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103334A (en) * 1981-12-14 1983-06-20 Tokuyama Soda Co Ltd Perfluoropolyether and its preparation

Also Published As

Publication number Publication date
JPS6210135A (en) 1987-01-19

Similar Documents

Publication Publication Date Title
JP3073497B2 (en) Perfluoropolyether containing an acid end group containing a halogen different from fluorine
JP2941305B2 (en) Improved process for producing perfluoropolyethers substantially constituted by perfluorooxyethylene and perfluorooxypropylene units
EP0445738B1 (en) Perfluoropolyethers and processes for preparing them
JP3043400B2 (en) Method for producing peroxyperfluoropolyether
RU2111952C1 (en) Method of simple perfluoropolyester producing
Eleuterio Polymerization of perfluoro epoxides
JPH0360333B2 (en)
JPH07113059B2 (en) Process for preparing difunctional and monofunctional perfluoropolyethers having brominated end groups and controlled molecular weight
EP0337346B1 (en) Crosslinked products having a perfluoropolyether structure
JPH0249027A (en) Improved method for manufacture of fluorocarbon polyether
JP3862339B2 (en) Method for producing perfluoropolyoxyalkylene peroxides and perfluoropolyethers
EP2373720B1 (en) Polyfunctional (per)fluoropolyethers
EP0293863A2 (en) Fluorine-containing polyether and process for preparing the same
JPH1045652A (en) Production of perfluoropolyether having bromine or iodine-containing terminal group
JPH0341455B2 (en)
JPS61275233A (en) Novel fluorination for unsaturated compounds in liquid phase
US4859299A (en) Novel perfluoropolyether and process for producing the same
JPS61268642A (en) Production of chlorine-modified fluorocarbon polyether
EP0344935A2 (en) Photo-assisted solution phase direct fluorination process improvement
JP4373728B2 (en) Process for producing perfluoropolyethers having acyl fluoride end groups
JPS6343419B2 (en)
JPS6210490B2 (en)
JPH0768338B2 (en) Fluorine-containing polyether and its manufacturing method
JPH05301953A (en) Perfluoropolyether and its production
US5220076A (en) Perfluoropolyethers and processes for their preparation