JPH0341410Y2 - - Google Patents

Info

Publication number
JPH0341410Y2
JPH0341410Y2 JP1984002762U JP276284U JPH0341410Y2 JP H0341410 Y2 JPH0341410 Y2 JP H0341410Y2 JP 1984002762 U JP1984002762 U JP 1984002762U JP 276284 U JP276284 U JP 276284U JP H0341410 Y2 JPH0341410 Y2 JP H0341410Y2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
assembled battery
positive
electrode liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984002762U
Other languages
Japanese (ja)
Other versions
JPS60115459U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984002762U priority Critical patent/JPS60115459U/en
Publication of JPS60115459U publication Critical patent/JPS60115459U/en
Application granted granted Critical
Publication of JPH0341410Y2 publication Critical patent/JPH0341410Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【考案の詳細な説明】 この考案は、複数個の単電池を積層して構成さ
れる隔膜式電解液流通型集合電池に関するもの
で、更に詳しくはこれ等の集合電池において電解
液のバイパス現象或いは漏洩現象等を防止するよ
うにしたものである。
[Detailed description of the invention] This invention relates to a diaphragm-type electrolyte flow type assembled battery that is constructed by stacking a plurality of single cells.More specifically, this invention relates to an electrolyte bypass phenomenon or This is to prevent leakage phenomena.

電力は各種のエネルギーへの変換が容易で制御
し易く、消費時の環境汚染がないので、エネルギ
ー消費に占める割合は年毎に増加している。電力
供給の特異な点は、生産と消費が同時に行われる
ことである。この制約の中で、電力消費の変動に
即応しながら、一定周波数、一定電圧の質の高い
電力を高い信頼性で送ることが、電力技術の環境
である。そして実際には、出力は変えにくいが効
率の高い原子力発電や新鋭火力発電を、なるべく
最高効率の定格で運転し、一定電力消費の変動に
応じて発電を行うのに適した水力発電等で、昼間
の大きな電力需要の増加をまかなつている現状で
ある。
Electricity is easy to convert into various forms of energy, easy to control, and does not pollute the environment when consumed, so its share in energy consumption is increasing every year. A unique feature of electricity supply is that production and consumption occur simultaneously. Within this constraint, the environment for power technology is to reliably transmit high-quality power at a constant frequency and constant voltage while responding quickly to fluctuations in power consumption. In reality, nuclear power generation and new thermal power generation, which are difficult to change output but highly efficient, are operated at the highest efficiency rating possible, and hydroelectric power generation, etc., is suitable for generating electricity in response to fluctuations in constant power consumption. The current situation is that they are meeting the large increase in demand for electricity during the day.

このため、経済性の良好な原子力発電や新鋭火
力発電による夜間余剰電力を揚水発電によつて貯
蔵しているが、揚水発電の立地条件は次第に厳し
くなつている。
For this reason, pumped storage power generation is used to store surplus electricity generated at night from economical nuclear power generation and cutting-edge thermal power generation, but the location conditions for pumped storage power generation are becoming increasingly difficult.

以上のような実情から環境汚染がなく、しかも
汎用性の高いエネルギーである電力を貯蔵する方
法として各種の2次電池が研究され、この中でも
特にレドツクス電池が注目されている。
Under the above-mentioned circumstances, various secondary batteries are being researched as a method for storing electric power, which is a highly versatile energy source that does not pollute the environment, and among these, redox batteries are attracting particular attention.

この原理の概要について、第1図、第2図を用
いて説明する。
An outline of this principle will be explained using FIG. 1 and FIG. 2.

第1図はレドツクス電池を用いた電力貯蔵シス
テムの充電時の状態を示し、第2図は同じく放電
時の状態を示す。
FIG. 1 shows the charging state of a power storage system using a redox battery, and FIG. 2 similarly shows the discharging state.

これらの図において、1は発電所、2は変電設
備、3は負荷、4はインバータ、5はレドツクス
電池で、タンク6a,6b,7a,7bとポンプ
8,9および流通型電解槽10から構成される。
In these figures, 1 is a power plant, 2 is substation equipment, 3 is a load, 4 is an inverter, and 5 is a redox battery, which is composed of tanks 6a, 6b, 7a, 7b, pumps 8, 9, and a flow-through electrolytic cell 10. be done.

流通型電解槽10は正極11と負極12、およ
び両電極間を分離する隔膜13とを備え、隔膜1
3で仕切られた正極室14、負極室15には正極
液、負極液が収容され、正極液としては例えば
Feイオンを含む塩酸溶液が用いられ、負極液と
しては例えばCrイオンを含む塩酸溶液が用いら
れる。
The flow-through electrolytic cell 10 includes a positive electrode 11, a negative electrode 12, and a diaphragm 13 that separates the two electrodes.
A positive electrode chamber 14 and a negative electrode chamber 15 partitioned by 3 contain a positive electrode liquid and a negative electrode liquid, and the positive electrode liquid includes, for example,
A hydrochloric acid solution containing Fe ions is used, and a hydrochloric acid solution containing Cr ions, for example, is used as the negative electrode liquid.

以上の構成において発電所1で発電された変電
設備2に送電された電力は適当な電圧に変圧さ
れ、負荷3に供給される。
In the above configuration, the electric power generated at the power station 1 and transmitted to the substation equipment 2 is transformed to an appropriate voltage and supplied to the load 3.

一方、夜間になり余剰電力が生ると、インバー
タ4により交直変換を行い、レドツクス電池5に
充電が行われる。この場合は、第1図に示すよう
にタンク6aから6aへ、タンク7aから7aへ
ポンプ8,9で正、負極液を徐々に送りながら充
電が行われる。正極液にFeイオン、負極液にCr
イオンを使用する場合、流通型電解槽10内で起
る反応は下記(1)〜(3)式中の充電側の反応となる。
On the other hand, when surplus power is generated at night, the inverter 4 performs AC/DC conversion and charges the redox battery 5. In this case, as shown in FIG. 1, charging is performed while gradually feeding positive and negative electrolytes from tank 6a to tank 6a and from tank 7a to tank 7a using pumps 8 and 9. Fe ions in the positive electrode liquid, Cr in the negative electrode liquid
When using ions, the reactions that occur in the flow-through electrolytic cell 10 are reactions on the charging side in the following formulas (1) to (3).

正極側:Fe3++e放電 ―――→ ←――― 充電Fe2+ ……(1) 負極側:Cr2+放電 ―――→ ←――― 充電Cr3++e ……(2) 全反応:Fe3++Cr2+放電 ―――→ ←――― 充電Fe2++Cr3+ ……(3) このようにして、電力が正極液、負極液の中に
蓄積される。
Positive electrode side: Fe 3+ +e discharge ---→ ← --- Charging Fe 2+ ......(1) Negative electrode side: Cr 2+ discharge ---→ ← --- Charging Cr 3+ +e ......(2) Total reaction: Fe 3+ + Cr 2+ discharge ---→ ← --- Charge Fe 2+ + Cr 3+ ...(3) In this way, electric power is accumulated in the positive and negative electrode solutions.

次に、供給電力が需要電力よりも少ない場合
は、第2図に示すようにタンク6aから6bへ、
タンク7bから7bへポンプ8,9で正、負極液
を徐々に送りながら(1)〜(3)式中の放電側の反応に
より放電が行われ、インバータ4により直交変換
が行われ、変電設備2を介して負荷3に電力が供
給される。
Next, if the supplied power is less than the demanded power, as shown in FIG. 2, from tank 6a to 6b,
While the positive and negative electrode liquids are gradually sent from tank 7b to tank 7b by pumps 8 and 9, discharge is performed by the reaction on the discharge side in equations (1) to (3), and orthogonal conversion is performed by inverter 4, which transforms the substation equipment. Electric power is supplied to the load 3 via 2.

レドツクス電池を用いた電力貯蔵システムは以
上の説明の通りであるが、実際には上記のレドツ
クス・フロー型電池は複数個のセルを直列接続し
て集合電池とし、この集合電池をまた複数個直列
および/または並列接続することにより、所要の
電圧で、かつ所要の容量のものを得ている。
The power storage system using redox batteries is as explained above, but in reality, the above redox flow type batteries are made by connecting multiple cells in series to form an aggregate battery, and then multiple batteries are connected in series. And/or by connecting them in parallel, the required voltage and required capacity can be obtained.

更に第3図に従つて、これを具体的に説明する
と、上記集合電池の単電池は内部に黒鉛板20a
を設け、外部にPVC等の枠材20bを設けたバ
イポーラ板20、内部に炭素布21aを設け、外
部にPVC等の枠材21bを設けた正極板21、
内部にイオン交換膜22aを設けた隔膜板22、
内部に炭素布23aを設け、外部にPVC等の枠
材23bを設けた負極板23を積層して構成し、
これ等の単電池を20〜30セル積層して集合電池A
を形成する。
Further, to explain this in detail according to FIG.
A bipolar plate 20 with a frame material 20b made of PVC or the like on the outside, a positive electrode plate 21 with a carbon cloth 21a on the inside and a frame material 21b of PVC or the like on the outside,
a diaphragm plate 22 with an ion exchange membrane 22a provided therein;
It is constructed by laminating negative electrode plates 23 each having a carbon cloth 23a inside and a frame material 23b such as PVC outside.
Stacked 20 to 30 cells of these single cells are assembled into battery A.
form.

この場合、バイポーラ板20、正極板21、隔
膜式22、負極板23の枠材に設けられた孔24
…、孔25…、孔26…、孔27…はそれぞれ積
層されて負極液供給配管24A、負極液供給配管
25A及び正極液排出配管26A、負極液排出配
管27Aを形成する細孔である。
In this case, holes 24 provided in the frame materials of the bipolar plate 20, the positive electrode plate 21, the diaphragm type 22, and the negative electrode plate 23
..., holes 25..., holes 26..., holes 27... are pores that are stacked to form a negative electrode liquid supply pipe 24A, a negative electrode liquid supply pipe 25A, a positive electrode liquid discharge pipe 26A, and a negative electrode liquid discharge pipe 27A, respectively.

正極液供給配管24A及び負極液供給配管25
Aには外部に設けられた本管より正極液及び負極
液が供給され、正極液は正極板21の孔24と内
部を連通する縦溝24aを通つて正極室14に供
給され、正極板21の内部と孔26を連通する縦
溝26aを通つて正極液排出配管26Aに排出さ
れ、更にこれより外部に設けられた本管に排出さ
れる。
Positive electrode liquid supply pipe 24A and negative electrode liquid supply pipe 25
The positive electrode liquid and the negative electrode liquid are supplied to A from a main pipe provided outside, and the positive electrode liquid is supplied to the positive electrode chamber 14 through the vertical groove 24a that communicates with the hole 24 of the positive electrode plate 21 and the inside, and the positive electrode liquid is supplied to the positive electrode chamber 14. The positive electrode liquid is discharged through a vertical groove 26a that communicates the inside of the hole 26 with the positive electrode liquid discharge pipe 26A, and further discharged from this to a main pipe provided outside.

負極液については負極板23の孔25と内部を
連通する縦溝25aを通つて負極室15に供給さ
れ、負極板23の内部と孔27を連通する縦溝2
7aを通つて負極液排出管27Aに排出され、更
にこれにより外部に設けられた本管に排出され
る。
The negative electrode liquid is supplied to the negative electrode chamber 15 through the vertical groove 25a that communicates between the hole 25 of the negative electrode plate 23 and the inside thereof, and the vertical groove 2 that communicates the inside of the negative electrode plate 23 with the hole 27.
7a, it is discharged to the negative electrode liquid discharge pipe 27A, and further discharged to the main pipe provided outside.

以上のように正極液及び負極液は、単電池を積
層して構成される集合電池A内を流動する。
As described above, the positive electrode liquid and the negative electrode liquid flow in the assembled battery A formed by stacking unit cells.

しかし、これ等の単電池を積層して構成される
集合電池Aは、従来その両側に装着板28,28
を設け、該装着板28,28の周縁部には少なく
とも4ケ所のボルト挿通孔29を設け、該ボルト
挿通孔29にボルト30を通し、装着板28の外
側よりナツト31で締付ける固定方法が採られて
きたが、この方法であるとボルト30及びナツト
31による締着が不十分の場合、孔24…、25
…、26…、27…を積層して構成される供給配
管24A,25A及び排出配管26A,27Aに
隙間が生じ、正極液、負極液の漏洩或いはバイパ
ス現象が起る。
However, the assembled battery A, which is constructed by stacking these single cells, conventionally has mounting plates 28, 28 on both sides.
At least four bolt insertion holes 29 are provided in the peripheral edges of the mounting plates 28, 28, and a fixing method is adopted in which bolts 30 are passed through the bolt insertion holes 29 and tightened with nuts 31 from the outside of the mounting plates 28. However, with this method, if the bolts 30 and nuts 31 are insufficiently tightened, the holes 24..., 25
. . , 26 . . . , 27 . . . are stacked to form supply pipes 24A, 25A and discharge pipes 26A, 27A, which create gaps, causing leakage or bypass phenomena of the positive and negative electrode liquids.

また固く締め過ぎた場合には、ボルト30及び
ナツト31の締着力が集合電池Aの周縁に片寄り
過ぎて前記同様に、電解液の漏洩或いはバイパス
現象が起る。
Furthermore, if the bolts 30 and nuts 31 are tightened too tightly, the tightening force of the bolts 30 and nuts 31 is too biased toward the periphery of the battery pack A, causing electrolyte leakage or a bypass phenomenon as described above.

この考案は、上記実情に鑑み複数個の単電池を
積層して構成される隔膜式電解液流動型集合電池
における電解液の漏洩、或いはバイパス現象を有
効に防止することを目的とするもので、その特徴
は集合電池の両側に、集合電池の側部中央部を押
圧する押圧部を介して装着板を設けたことにあ
る。
In view of the above-mentioned circumstances, the purpose of this invention is to effectively prevent electrolyte leakage or bypass phenomenon in a diaphragm-type electrolyte flow type assembled battery constructed by stacking a plurality of single cells. The feature is that mounting plates are provided on both sides of the battery pack through pressing parts that press the central part of the sides of the battery pack.

以下、図示の実施例に基いてこの考案を説明す
ると、第6図は第4,5図に示される集合電池に
この考案を適用したものであつて、同図において
第4,5図と共通する構成については同一の符号
を用い、その説明を省略する。
Hereinafter, this invention will be explained based on the illustrated embodiment. Fig. 6 shows an example in which this invention is applied to the assembled battery shown in Figs. 4 and 5. The same reference numerals are used for the configurations to be used, and the explanation thereof will be omitted.

第6図において、上述のように複数個の単電池
を積層して構成される隔膜式電解液流通型集合電
池Aの両側には、集合電池Aの側面より多少大き
目の装着板28,28を設け、集合電池Aの側面
と装着板28の間には集合電池Aより小さく、枠
材23bの空間部分、つまり正極室14または負
極室15より大きい板状の押圧部32を介在させ
る。更に該装着板28の周縁にはボルト挿通孔2
9…を形成し、該ボルト挿通孔29…にボルト3
0…を通し、ボルト30…の外部よりナツト31
…を装着して装着板28,28の間を締着する。
In FIG. 6, mounting plates 28, 28, which are slightly larger than the sides of the assembled battery A, are installed on both sides of the diaphragm type electrolyte flow type assembled battery A, which is constructed by stacking a plurality of single cells as described above. A plate-shaped pressing portion 32, which is smaller than the battery pack A and larger than the space of the frame member 23b, that is, the positive electrode chamber 14 or the negative electrode chamber 15, is interposed between the side surface of the battery pack A and the mounting plate 28. Further, bolt insertion holes 2 are provided on the periphery of the mounting plate 28.
9... is formed, and the bolt 3 is inserted into the bolt insertion hole 29...
0... from the outside of the bolt 30...
... and tighten between the mounting plates 28, 28.

このようにすると、装着板28と集合電池Aの
側面の間には押圧部32が介在されているため、
ボルト30とナツト31による締着力は押圧部3
2を介して集合電池Aの側部中央、特に押圧部3
2の辺の部分に伝えられ、集合電池Aはこの両側
中央に伝えられる締着力により固定されることに
なる。
In this way, since the pressing part 32 is interposed between the mounting plate 28 and the side surface of the assembled battery A,
The tightening force of the bolt 30 and nut 31 is applied to the pressing part 3.
2 to the center of the side of the battery pack A, especially the pressing part 3
The assembled battery A is fixed by the tightening force transmitted to the center of both sides.

そこで、この考案によれば集合電池A内の孔の
部分に確実に締着力が加えられ、したがつて内部
に形成された電解液の供給配管24A,25A及
び排出配管26A,27に隙間等が生ずることも
なく、電解液の漏洩、バイパス現象を有効に防止
することができる。
Therefore, according to this invention, a fastening force is reliably applied to the holes in the battery pack A, and therefore gaps are created between the electrolyte supply pipes 24A, 25A and the discharge pipes 26A, 27 formed inside. Therefore, electrolyte leakage and bypass phenomena can be effectively prevented.

なお、以上の実施例では押圧部32は装着板2
8と別体に設けられていたが、一体的に形成して
もよく、更に装着板28,28間の締着手段とし
てこの実施例ではボルト30及びナツト31を使
用していたが、これに限定されるものではない。
In addition, in the above embodiment, the pressing part 32 is attached to the mounting plate 2.
Although the bolts 30 and nuts 31 are used as fastening means between the mounting plates 28 and 28 in this embodiment, they may be formed separately from the mounting plates 28. It is not limited.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はレドツクス電池の動作原理説
明図、第3図はレドツクス集合電池における単電
池の構成例を示す斜視図、第4図は同上の単電池
を積層して構成された集合電池の従来における固
定方法を示す縦断側面図、第5図は同上の正面
図、第6図はこの考案の実施例を示す側面図であ
る。 図中、Aは集合電池、28,28は装着板、3
2は押圧部。
Figures 1 and 2 are diagrams explaining the operating principle of a redox battery, Figure 3 is a perspective view showing an example of the structure of a unit cell in a redox battery, and Figure 4 is an assembly constructed by stacking the same unit cells. FIG. 5 is a front view of the same, and FIG. 6 is a side view of an embodiment of this invention. In the figure, A is an assembled battery, 28, 28 are mounting plates, 3
2 is a pressing part.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 正極室または負極室が形成された単電池の枠材
部分に正極液と負極液をそれぞれ通す孔を有する
単電池を複数個積層し、積層された前記孔が正極
液、負極液供給配管ならびに正極液、負極液排出
配管を構成する隔膜式電解液流通型の集合電池に
おいて、この集合電池より小さく、かつ前記正極
室または負極室より大きい板状の押圧部を介して
装着板により前記積層した単電池を両側から締着
したことを特徴とする隔膜式電解液流通型集合電
池。
A plurality of cells having holes through which positive and negative electrode liquids pass are stacked on the frame material of the cell in which a positive electrode chamber or a negative electrode chamber is formed, and the stacked holes are connected to the positive electrode liquid, negative electrode liquid supply piping, and positive electrode. In a diaphragm-type electrolyte flow type assembled battery that constitutes liquid and negative electrode liquid discharge piping, the stacked cells are removed by a mounting plate through a plate-shaped pressing part that is smaller than the assembled battery and larger than the positive electrode chamber or the negative electrode chamber. A diaphragm type electrolyte flow type assembled battery characterized by the batteries being fastened from both sides.
JP1984002762U 1984-01-12 1984-01-12 Diaphragm type electrolyte flow type assembled battery Granted JPS60115459U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984002762U JPS60115459U (en) 1984-01-12 1984-01-12 Diaphragm type electrolyte flow type assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984002762U JPS60115459U (en) 1984-01-12 1984-01-12 Diaphragm type electrolyte flow type assembled battery

Publications (2)

Publication Number Publication Date
JPS60115459U JPS60115459U (en) 1985-08-05
JPH0341410Y2 true JPH0341410Y2 (en) 1991-08-30

Family

ID=30476740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984002762U Granted JPS60115459U (en) 1984-01-12 1984-01-12 Diaphragm type electrolyte flow type assembled battery

Country Status (1)

Country Link
JP (1) JPS60115459U (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163678U (en) * 1981-04-07 1982-10-15

Also Published As

Publication number Publication date
JPS60115459U (en) 1985-08-05

Similar Documents

Publication Publication Date Title
US8808897B2 (en) Electrode structure of vanadium redox flow battery
CN100578849C (en) High power oxidation, reduction liquid energy-storage pile modular structure and its group mode
JPS62200668A (en) Battery device
JPH09172195A (en) Solar batter with built-in storage battery
CN109037725B (en) Flow battery capable of improving distribution uniformity of electrolyte, electrode structure and method
KR940010444A (en) Membrane flow cell battery
CN204947013U (en) A kind of flow cell pile feed liquor plate, electric pile structure and pile and flow battery system
JPS6369151A (en) Redox cell
CN113445070A (en) Modularized electrolytic cell group
CN108615961A (en) A kind of echelon complementary electrical-thermal balance storing up electricity charging system and method
JPH0341410Y2 (en)
JPH0714617A (en) Current collecting electrode of zinc-bromine battery
JPH0654675B2 (en) Secondary battery device charging / discharging method
CN210608558U (en) High-voltage lithium battery low-voltage replacement standby power energy storage device
CN220821642U (en) Energy storage system of all-vanadium redox flow battery
JP6677045B2 (en) Frame for redox flow battery, redox flow battery, and cell stack
JPS6286667A (en) Electrolyte flowing type cell system and operating method thereof
JPS6229865B2 (en)
CN211829056U (en) Flow battery stack
CN221596635U (en) Lithium ion battery pack for ocean diving equipment
CN221102139U (en) Single cell and flow battery
KR102675580B1 (en) Vanadium redox flow battery energy storage system
CN219873907U (en) Battery box and system
CN218539841U (en) Modular PEM (proton exchange membrane) water electrolysis hydrogen production system
CN115117398B (en) PEMEC-PEMFC closed operation-based cold-hot electricity-hydrogen combined supply system