JPH0341326A - Spectrometry - Google Patents

Spectrometry

Info

Publication number
JPH0341326A
JPH0341326A JP17751489A JP17751489A JPH0341326A JP H0341326 A JPH0341326 A JP H0341326A JP 17751489 A JP17751489 A JP 17751489A JP 17751489 A JP17751489 A JP 17751489A JP H0341326 A JPH0341326 A JP H0341326A
Authority
JP
Japan
Prior art keywords
wavelength
spectral
light
array
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17751489A
Other languages
Japanese (ja)
Other versions
JPH0789084B2 (en
Inventor
Kazuaki Okubo
和明 大久保
Yasuo Nakagawa
中川 靖夫
Tamaki Yaji
谷治 環
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1177514A priority Critical patent/JPH0789084B2/en
Publication of JPH0341326A publication Critical patent/JPH0341326A/en
Publication of JPH0789084B2 publication Critical patent/JPH0789084B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To eliminate excess and deficiency of spectral informations and thereby to improve precision in measurement by moving a light-sensing element array in the direction of dispersion so that degrees of spectral response be on a continuous smooth curve connecting the barycentric wavelengths of spectral response characteristics being adjacent to each other. CONSTITUTION:A light-sensing element (photodiode array) 3 is moved in the direction of dispersion so that spectral response characteristics obtained by a combination of a dispersion element (continuous interference filter) 2 and degrees of spectral response of compounded spectral response characteristics of adjacent combinations of the elements 2 and 3 be at positions whereat they are not discontinuous, but are on a continuous smooth curve connecting the barycentric wavelengths of the spectral response characteristics being adjacent to each other. Outputs of the element 3 are detected on the occasion. With the element 3 moved, the outputs of the element 3 at positions whereat these conditions are satisfied are detected. When measurement is executed over the whole range of wavelengths to be subjected to spectrometry, then, a spectrum band half-width and a measured wavelength centering interval can be made to accord with each other in any part of the range of wavelengths, and thereby the spectrometry being precise in measurement and free from excess and deficiency of spectral informations (data) is realized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(よ 光源からの光や物体の探射光などの分光分
布を測定するための分光測定装置に関するもので、光源
の光色 演色性を評価したり、物体色の測定などミ そ
のスペクトルに対する効果量の評価に使用するものであ
る。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a spectrometer for measuring the spectral distribution of light from a light source, detection light of an object, etc., and is used to evaluate the color rendering properties of the light source. It is used to evaluate the effect size on the spectrum of objects, such as measuring the color of objects.

従来の技術 光源のエネルギー量や光色 演色性を評価したり、物体
色の測定に分光測定を使用する場合、スペクトルの波長
分解能よりも測定におけるエネルギー積分の精度の向上
が重要となる。すなわち、波長分布の細部の形状より、
適当な波長区分に対する放射のエネルギー強度をいかに
正確にとらえるかが課題となる。これに(よ 使用する
分光器のスペクトル帯域半値幅と測定波長サンプリング
間隔を一致させることで実現される。従来の分散素子駆
動型モノクロメータで(よ たとえばプリズムモノクロ
メータでは分散曲線とと波長目盛りが一致するた取 機
械幅を等間隔送りで測定した このとき、短波長部分と
長波長部分で(よ 線令散の大きさがかなり異なるが、
 隣合う測定波長位置での分散の差は大きな変化がない
ものとして行なった また分散素子駆動型の回折格子モ
ノクロメータで(よ サインバー機構の導入により、分
散曲線と波長目盛りは独立している。しかし回折格子モ
ノクロメータの分散(よ プリズムのそれに比べて直線
に近く、また 分光測定の途中で分散の変化に合わせて
スリット幅を機械的に修正することが難しいたム 分散
の変化を無視して分光測定をおこなってきた 先に述べた分散素子駆動型モノクロメータでは測定時間
がかかるた吹 社風 分光分散光学系と受光素子アレイ
を組み合せ、測定対象物からの光スペクトルを短時間に
測定する分光測定器が使用されるようになったが、 測
定サンプリング間隔に相当する受光素子の機械的間隔と
、分散とが独立しているたム 受光素子アレイの面上で
の分散の非直線性が大きく、スペクトル帯域半値幅と測
定波長サンプリング間隔が一致せず、先に述べた分散索
子駆動型モノクロメータに比べて測定誤差が大きいとい
う問題点があった 発明が解決しようとする課題 上記に述べたように 分光分散光学系と受光素子アレイ
を組み合せ、測定対象物からの光スペクトルを短時間に
測定する分光測定器では 測定ザンプリング間隔に相当
する受光素子の機械的間隔と、分光分散光学系の分散と
が独立している。このた数 受光素子アレイの面上での
分散の非直線性が大きく、スペクトル帯域半値幅と測定
波長サンプリング間隔が一致せず不整合が生じるたム光
源のエネルギー量や光色 演色性を評価したり、物体色
の測定に分光測定を使用する場合、誤差を生ずる。
Conventional technology When using spectrometry to evaluate the energy content and color rendering properties of a light source or to measure the color of an object, it is more important to improve the accuracy of energy integration during measurement than the wavelength resolution of the spectrum. In other words, from the detailed shape of the wavelength distribution,
The challenge is how to accurately capture the energy intensity of radiation for appropriate wavelength divisions. This is achieved by matching the half-width of the spectral band of the spectrometer used with the measurement wavelength sampling interval.For example, with a conventional dispersive element-driven monochromator (for example, with a prism monochromator, the dispersion curve and wavelength scale are The width of the corresponding take-up machine was measured at equal intervals. At this time, the width of the horizontal line scattering was quite different between the short wavelength part and the long wavelength part.
This was done assuming that there was no significant change in the difference in dispersion between adjacent measurement wavelength positions.The dispersion curve and wavelength scale were independent due to the introduction of a sine bar mechanism. However, the dispersion of a diffraction grating monochromator (which is closer to a straight line than that of a prism), and it is difficult to mechanically adjust the slit width to match changes in dispersion during spectroscopic measurements, ignoring changes in dispersion. The previously mentioned dispersive element-driven monochromator, which has been used for spectroscopic measurements, takes a long time to measure.By combining a spectroscopic dispersive optical system and a photodetector array, spectroscopic measurements are used to quickly measure the light spectrum from an object to be measured. However, because the mechanical spacing of the light-receiving elements, which corresponds to the measurement sampling interval, and the dispersion are independent, the nonlinearity of the dispersion on the surface of the light-receiving element array is large; There was a problem in that the half-width of the spectral band did not match the measurement wavelength sampling interval, and the measurement error was larger than that of the dispersion rod-driven monochromator described above.Problems to be solved by the inventionAs stated above. In a spectrometer that combines a spectral dispersive optical system and a photodetector array to quickly measure the optical spectrum from an object to be measured, the mechanical spacing of the photodetector corresponding to the measurement sampling interval and the dispersion of the spectral dispersive optical system The dispersion on the surface of the photodetector array is highly nonlinear, and the half-width of the spectral band and the measurement wavelength sampling interval do not match, causing a mismatch. Color When spectroscopic measurements are used to evaluate color rendering properties or measure object colors, errors occur.

いま、モノクロメータのスペクトル帯域特性の波長半値
幅を5nmに設定し 波長546. lnmの水銀輝線
を測定した場合を考える。  モノクロメータの波長を
545nmおよび550nmに設定したとき、そのスペ
クトル帯域特性は第1図のようになる。水銀輝線のエネ
ルギーをP = 100mW−m−2としたとき、設定
波長が545nmおよび550nmのときの測定値(上
(1)、(2)式よりもとめられる。
Now, the wavelength half width of the monochromator's spectral band characteristic is set to 5 nm, and the wavelength is 546. Consider the case where a 1 nm mercury emission line is measured. When the wavelength of the monochromator is set to 545 nm and 550 nm, the spectral band characteristics are as shown in FIG. When the energy of the mercury emission line is P = 100 mW-m-2, the measured values when the set wavelengths are 545 nm and 550 nm (obtained from equations (1) and (2) above).

(1) 、  、、  (2) 逆に このときの測定値P(545)、P (550)
から区分求積によりPを求めると P=P(545)+P(550)=  100  [m
W ++r”  ]、、  (3) となる。すなわち、モノクロメータのスペクトル帯域特
性が理想的な二等辺三角形であれば スペクトル帯域特
性の波長半値幅と測定における波長ザンプリング間隔を
一致させることにより、先に示した電価積分を精度よく
行なうことができる。
(1) , , , (2) Conversely, the measured values at this time are P (545) and P (550)
Find P by piecewise quadrature from P = P (545) + P (550) = 100 [m
W ++r”],, (3) In other words, if the spectral band characteristics of the monochromator are an ideal isosceles triangle, then by matching the wavelength half-width of the spectral band characteristics with the wavelength sampling interval in the measurement, The electric charge integral shown in can be performed with high accuracy.

これに対し スペクトル帯域特性の波長半値幅と測定に
おける波長サンプリング間隔が一致しない場合を考える
。上記の例で、波長サンプリング間隔5nm、入射スリ
ット波長幅5nm、  に対して出側スリット波長幅を
7nmに設定すると、モノクロメータのスペクトル帯域
特性は第2図に示す様に帯域半値幅9nmの台形となる
。 (図の放射照度の目盛り(よ この台形のスペクト
ル帯域特性と、先に示した理想的な二等辺三角形を威す
スペクトル帯域特性の面積が等しくなるよう正規化した
ものである。
On the other hand, consider the case where the wavelength half-width of the spectral band characteristic and the wavelength sampling interval in measurement do not match. In the above example, if the wavelength sampling interval is 5 nm, the input slit wavelength width is 5 nm, and the output slit wavelength width is set to 7 nm, the spectral band characteristics of the monochromator will be a trapezoid with a half-width of 9 nm as shown in Figure 2. becomes. (The irradiance scale in the figure is normalized so that the area of this trapezoidal spectral band characteristic and the spectral band characteristic of the ideal isosceles triangle shown earlier is equal.

)このとき、放射照度100mW・m”2の波長546
.1nm水銀輝線の測定値(よ 設定波長が545nm
および550nmにおいて、それぞれ97mW−m−2
と42mW−m−2で、水銀輝線の放射照度測定値が1
39+nLm−2となり真値に対して39%の誤差を生
じる。
) At this time, the wavelength 546 with an irradiance of 100 mW m"2
.. Measured value of 1 nm mercury emission line (set wavelength is 545 nm)
and 97 mW-m-2 at 550 nm, respectively.
and 42 mW-m-2, the measured irradiance of the mercury emission line is 1
39+nLm-2, resulting in an error of 39% from the true value.

本発明は 分光分散光学系と受光素子アレイを組み合せ
た分光測定器のスペクトル帯域半値幅と測定波長サンプ
リング間隔との不整合によって生じる測定誤差を無くし
 分光測定を行なう波長範囲の全域のどの部分でL 分
光的情報(データ)の過不足が生じないようにし 測定
精度を向上させることを課題としtも 課題を解決するための手段 上記の問題点を解決するための手段について示す。分光
分散光学系と受光素子アレイを組み合せ、測定対象物か
らの光スペクトルを測定する分光測定器において、それ
ぞれの受光素子と分散素子との組合わせによる分光応答
度特性と、隣接する受光素子と分散素子との組合わせに
よる分光応答度特性を台底した分光応答特性 不連続に
ならずに互いに隣接する分光応答特性の重心波長を結ぶ
連続した滑らかな曲線になるような位置になるように 
受光素子アレイを分散方向に移動する。このとき、その
受光素子の出力を検出する。受光素子アレイを移動しな
がら、上記の条件を満足した位置の受光素子の出力を検
出していき、分光測定を行なう波長範囲の全域にわたっ
て測定されたとき、波長範囲のどの部分で転 スペクト
ル帯域半値幅と測定波長ザンプリング間隔を一致させる
ことができ、測定精度を向上させ、分光的情報(データ
)の過不足が生じないようにした分光測定が実現できる
The present invention eliminates measurement errors caused by a mismatch between the spectral band half-width of a spectrometer that combines a spectral dispersion optical system and a photodetector array and the measurement wavelength sampling interval. The objective is to prevent excess or deficiency of spectral information (data) and to improve measurement accuracy.Means for solving the problemMeans for solving the above-mentioned problems will be described. In a spectrometer that combines a spectral dispersive optical system and a photodetector array to measure the light spectrum from an object to be measured, the spectral responsivity characteristics of each photodetector and dispersive element combination, and the dispersion and dispersion of adjacent photodetectors Spectral response characteristics with the bottom of the spectral response characteristics due to the combination with the element.The position should be such that it forms a continuous smooth curve that connects the center wavelengths of adjacent spectral response characteristics without being discontinuous.
The light receiving element array is moved in the dispersion direction. At this time, the output of the light receiving element is detected. While moving the photodetector array, the output of the photodetector at a position that satisfies the above conditions is detected, and when the measurement is performed over the entire wavelength range for spectroscopic measurement, it is determined at which part of the wavelength range the spectral band half is shifted. The value width and measurement wavelength sampling interval can be matched, measurement accuracy can be improved, and spectroscopic measurement can be realized without excess or deficiency of spectral information (data).

作用 上記の手段によって、分光分散光学系と受光素子アレイ
を組み合せ、測定対象物からの光スペクトルを短時間に
測定する分光測定器において、受光素子アレイの面上で
の分散の非直線性が大きい場合、測定しようとする波長
範囲のどの部分でも、スペクトル帯域半値幅と測定波長
サンプリング間隔を一致させることができ、分光的情報
(データ)の過不足が生じないようにした分光測定が実
現できる。このたム 光源のエネルギー量や光色 演色
性を評価したり、物体色の測定に分光測定を使用する場
合、精度の高い測定が可能となる。
Effect In a spectrometer that combines a spectral dispersion optical system and a light-receiving element array to measure the light spectrum from an object to be measured in a short time using the above means, the non-linearity of dispersion on the surface of the light-receiving element array is large. In this case, the spectral band half-width and measurement wavelength sampling interval can be made to match in any part of the wavelength range to be measured, and spectroscopic measurements can be realized without excess or deficiency of spectroscopic information (data). When using spectrometry to evaluate the energy content and color rendering properties of a light source, or to measure the color of an object, highly accurate measurements are possible.

実施例 本発明の一実施例を図面を使って説明する。第3図に 
本発明の一実施例である連続干渉フィルタ(フィルター
の一方向に対して、透過帯域スペクトルの重心波長力文
 連続的に変化する狭帯域透Q− 過干渉フイルター)とフォトダイオードアレイを使用し
たものに関して、それを使用して光源の分光分布を測定
する場合について示す。図において1は測定しようとす
る光源である。光源1からの光束を、連続干渉フィルタ
2に導き、空間的に波長分離した光をフォトダイオード
アレイ3で検出する。前記フォトダイオードアレイ3(
よ モータ4で、前記連続干渉フィルタ2の分光分散方
向に前記フォトダイオードアレイ3を移動する。これに
よって、前記フォトダイオードアレイ3を構成する個々
の受光素子の分光応答度(よ その前面に位置する前記
連続干渉フィルタ2Q その受光素子の位置における分
光透過率によって補正され前記連続干渉フィルタ2の分
光分散方向に前記フォトダイオードアレイ3を移動する
ことにより、個々の受光素子の干渉フィルタによって補
正された分光応答度の重心波長を、変化させる。フォト
ダイオードアレイ3の各素子の出力は データ処理部5
に送られる。前記データ処理部5(戴 モータ制御部6
から前記フォトダイオードアレイ3を0− 移動位置の信号を受は取り、前記フォトダイオドアレイ
3を構成する個々の受光素子と前記連続干渉フィルタ2
との組合わせによる分光応答度特性と、隣接する受光素
子と前記連続干渉フィルタ2との組合わせによる分光応
答特性力交 不連続にならずに 互いに隣接する分光応
答特性の重心波長を結ぶ連続した滑らかな曲線になるよ
うな移動位置で、それぞれの受光素子の出力を検出する
Embodiment An embodiment of the present invention will be described with reference to the drawings. In Figure 3
An embodiment of the present invention that uses a continuous interference filter (a narrowband transmission Q-over interference filter whose center wavelength of the transmission band spectrum changes continuously in one direction of the filter) and a photodiode array. The case of using it to measure the spectral distribution of a light source will be described. In the figure, 1 is the light source to be measured. A light beam from a light source 1 is guided to a continuous interference filter 2, and the spatially wavelength-separated light is detected by a photodiode array 3. The photodiode array 3 (
A motor 4 moves the photodiode array 3 in the spectral dispersion direction of the continuous interference filter 2. As a result, the spectral responsivity of each light receiving element constituting the photodiode array 3 (the continuous interference filter 2Q located in front of the spectral transmittance at the position of the light receiving element) is corrected, and the spectral response of the continuous interference filter 2 is corrected by the spectral transmittance at the position of the light receiving element. By moving the photodiode array 3 in the dispersion direction, the center wavelength of the spectral responsivity corrected by the interference filter of each light receiving element is changed.The output of each element of the photodiode array 3 is
sent to. The data processing section 5 (the motor control section 6
The photodiode array 3 receives and receives the signal of the moving position from 0- to the individual light receiving elements constituting the photodiode array 3 and the continuous interference filter 2.
spectral response characteristics in combination with the continuous interference filter 2 and the spectral response characteristics in combination with the adjacent light receiving elements and the continuous interference filter 2. The output of each light receiving element is detected at a moving position that forms a smooth curve.

第4図に前記連続干渉フィルタ2の分散方向の機械的な
位置と分光透過特性の重心波長の関係を示す。波長(よ
 短波長短からの距離に比例している。一方、それぞれ
の波長位置におけるそれぞれの受光素子の分光応答度の
スペクトル帯域半値幅(よ 第5図に示すとおり、波長
に大きく依存する。
FIG. 4 shows the relationship between the mechanical position of the continuous interference filter 2 in the dispersion direction and the centroid wavelength of the spectral transmission characteristics. On the other hand, the spectral band half-width of the spectral responsivity of each light-receiving element at each wavelength position is largely dependent on the wavelength, as shown in Figure 5.

したがって、それぞれの受光素子の分光応答度の重心波
長と、隣接する受光素子の出力検出を行なう時の分光応
答度の重心波長との波長的距離が、その波長におけ衣 
分散光学系によって決定される波長帯域半値幅また(戴
 その整数分の1となる位置で、その受光素子の出力を
検出し 波長帯域1 半値幅また(よ その整数分の1と、波長サンプリング
間隔が等しい分光測定データを得る。
Therefore, the wavelength distance between the centroid wavelength of the spectral responsivity of each light-receiving element and the centroid wavelength of the spectral responsivity when detecting the output of the adjacent light-receiving element varies at that wavelength.
The output of the light-receiving element is detected at a position that is an integer fraction of the wavelength band half width determined by the dispersive optical system. obtain equal spectroscopic data.

発明の効果 以上述べてきたように 本発明の構成によって、分光分
散光学系と受光素子アレイを組み合せ、測定対象物から
の光スペクトルを短時間に測定する分光測定器において
、受光素子アレイの面上での分散の非直線性が大きい場
合、測定しようとする波長範囲のどの部分でk スペク
トル帯域半値幅と測定波長サンプリング間隔を一致させ
ることができ、分光的情報(データ)の過不足が生じな
いようにした分光測定が実現できる。このた歇 光源の
エネルギー量や光色 演色性を評価したり、物体色の測
定に分光測定を使用する場合、精度の高い測定が可能と
なる。
Effects of the Invention As described above, with the configuration of the present invention, in a spectrometer that combines a spectral dispersion optical system and a light receiving element array to measure the light spectrum from an object to be measured in a short time, If the nonlinearity of the dispersion is large, the half-width of the k spectral band and the measurement wavelength sampling interval can be made to match in any part of the wavelength range to be measured, and there will be no excess or deficiency of spectral information (data). Spectroscopic measurements can be realized in this manner. When using spectrometry to evaluate the energy content and color rendering properties of a light source, or to measure the color of an object, highly accurate measurements are possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は モノクロメータのスペクトル帯域特性の波長
半値幅を5nmに設定し 波長546.1nmの水銀輝
線を測定した場合、モノクロメータの波長を545nm
および550nmに設定したときへ スペクトル2− 帯域特性、すなわちスペクトル帯域半値幅と測定波長サ
ンプリング間隔の整合がとれている場合のスペクトル帯
域特性阻 第2図(上 波長サンプリング間隔50m、
入射スリット波長幅5r++n、  に対して出射スリ
ット波長幅を9nmに設定した場合のモノクロメータの
スペクトル帯域特性、すなわちスペクトル帯域半値幅と
測定波長サンプリング間隔の整合がとれない場合のスペ
クトル帯域特性は 第3図は 本発明の一実施例である
連続干渉フィルタとフォトダイオードアレイを使用した
装置の構成図である。また 第4図に前記連続干渉フィ
ルタ2の分散方向の機械的な位置と分光透過特性の重心
波長の関係を、第5図に受光素子の分光応答度のスペク
トル帯域半値幅の波長に対する特性図を示す。 131.光温2...連続干渉フィル久 フォトダイオ
ードアレイ、411.モー久 599.データ処理敵6
10.モータ制御訛
Figure 1 shows that when the wavelength half width of the monochromator's spectral band characteristics is set to 5 nm and a mercury emission line with a wavelength of 546.1 nm is measured, the monochromator's wavelength is set to 545 nm.
and when set to 550 nm. Spectrum 2 - Spectral band characteristics, that is, the spectral band characteristics when the half-width of the spectral band and the measurement wavelength sampling interval are matched.
The spectral band characteristics of the monochromator when the input slit wavelength width is 5r++n and the output slit wavelength width is set to 9 nm, that is, the spectral band characteristics when the spectral band half width and the measurement wavelength sampling interval cannot be matched are as follows. The figure is a configuration diagram of a device using a continuous interference filter and a photodiode array, which is an embodiment of the present invention. Furthermore, Fig. 4 shows the relationship between the mechanical position of the continuous interference filter 2 in the dispersion direction and the centroid wavelength of the spectral transmission characteristics, and Fig. 5 shows the characteristic diagram of the spectral responsivity of the light receiving element with respect to the wavelength of the spectral band half width. show. 131. Light temperature 2. .. .. Continuous interference filter photodiode array, 411. Mokyu 599. Data processing enemy 6
10. motor control accent

Claims (3)

【特許請求の範囲】[Claims] (1)分光分散光学系と受光素子アレイを組み合せ、測
定対象物からの光スペクトルを測定する分光測定器にお
いて、前記受光素子アレイを構成する個々の受光素子と
前記分散素子との組合わせによる分光応答度特性と、隣
接する受光素子と分散素子との組合わせによる分光応答
度特性が、不連続にならずに、互いに隣接する分光応答
特性の重心波長を結ぶ連続した滑らかな曲線になるよう
な移動位置で、それぞれの受光素子の出力を検出し、分
光測定を行なう波長範囲の全域のどの部分でも、分光的
情報の過不足が生じないようにした分光測定方法および
測定装置。
(1) In a spectrometer that combines a spectral dispersive optical system and a photodetector array to measure the light spectrum from an object to be measured, spectroscopy is performed by the combination of the individual photodetectors constituting the photodetector array and the dispersive element. The responsivity characteristics and the spectral responsivity characteristics resulting from the combination of adjacent light-receiving elements and dispersion elements do not become discontinuous, but form a continuous, smooth curve that connects the centroid wavelengths of adjacent spectral response characteristics. A spectroscopic measurement method and a measuring device that detect the output of each light receiving element at a moving position and prevent excess or deficiency of spectral information from occurring in any part of the entire wavelength range in which spectroscopic measurements are performed.
(2)請求項1において、分光分散光学系の分散方向に
受光素子アレイをそのアレイ間隔以内の距離だけ移動し
、前記受光素子アレイのそれぞれの受光素子の分光応答
度の重心波長と隣接する受光素子の出力検出を行なう時
の分光応答度の重心波長との波長的距離が、その波長に
おける前記分散光学系によって決定される波長帯域半値
幅、またはその整数分の1となる位置で、その受光素子
の出力を検出し、波長帯域半値幅、またはその整数分の
1と波長サンプリング間隔が等しい分光測定データを得
ることを特徴とする分光測定方法および測定装置。
(2) In claim 1, the light-receiving element array is moved in the dispersion direction of the spectral dispersion optical system by a distance within the array spacing, and the light receiving element array is moved at a distance within the array spacing, and the light is received adjacent to the centroid wavelength of the spectral responsivity of each of the light-receiving elements of the light-receiving element array. The light is received at a position where the wavelength distance from the centroid wavelength of the spectral responsivity when detecting the output of the element is the half width of the wavelength band determined by the dispersion optical system at that wavelength, or an integer fraction thereof. A spectroscopic measurement method and a measuring device, characterized in that the output of an element is detected and spectroscopic measurement data having a wavelength sampling interval equal to the wavelength band half width or an integer fraction thereof is obtained.
(3)請求項1において、分光分散光学系の分散方向に
分光分散素子をそのアレイ間隔以内の距離だけ移動し、
前記受光素子アレイのそれぞれの受光素子の分光応答度
の重心波長と隣接する受光素子の出力検出を行なう時の
分光応答度の重心波長との波長的距離が、その波長にお
ける前記分散光学系によって決定される波長帯域半値幅
、またはその整数分の1となる位置で、その受光素子の
出力を検出し、波長帯域半値幅、またはその整数分の1
と波長サンプリング間隔が等しい分光測定データを得る
分光測定方法および測定装置。
(3) In claim 1, the spectrally dispersive element is moved in the dispersion direction of the spectrally dispersive optical system by a distance within the array interval,
The wavelength distance between the centroid wavelength of the spectral responsivity of each photodetector of the photodetector array and the centroid wavelength of the spectral responsivity when output detection of an adjacent photodetector is performed is determined by the dispersive optical system at that wavelength. The output of the light-receiving element is detected at a position that is the half-width of the wavelength band at half maximum, or an integer fraction thereof, and
Spectroscopic measurement method and measurement device for obtaining spectroscopic measurement data with equal wavelength sampling intervals.
JP1177514A 1989-07-10 1989-07-10 Spectroscopic measurement method Expired - Lifetime JPH0789084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1177514A JPH0789084B2 (en) 1989-07-10 1989-07-10 Spectroscopic measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1177514A JPH0789084B2 (en) 1989-07-10 1989-07-10 Spectroscopic measurement method

Publications (2)

Publication Number Publication Date
JPH0341326A true JPH0341326A (en) 1991-02-21
JPH0789084B2 JPH0789084B2 (en) 1995-09-27

Family

ID=16032241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1177514A Expired - Lifetime JPH0789084B2 (en) 1989-07-10 1989-07-10 Spectroscopic measurement method

Country Status (1)

Country Link
JP (1) JPH0789084B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5200913A (en) * 1990-05-04 1993-04-06 Grid Systems, Inc. Combination laptop and pad computer
JPH05107114A (en) * 1991-10-16 1993-04-27 Nec Corp Observed wavelength band variable type electronic scanning radiometer
US5333116A (en) * 1990-05-04 1994-07-26 Ast Research, Inc. Combination laptop and pad computer
JPH0843206A (en) * 1994-05-19 1996-02-16 Schablonentechnik Kufstein Ag Chromaticity detector of luminous flux
US6005767A (en) * 1997-11-14 1999-12-21 Vadem Portable computer having articulated display
WO2001001070A1 (en) * 1999-06-29 2001-01-04 Omron Corporation Light source device, spectroscope comprising the light source device, and film thickness sensor
US6266236B1 (en) 1997-08-27 2001-07-24 Vadem Apparatus and method for connecting and articulating display in a portable computer having multiple display orientations
USRE39429E1 (en) * 1990-05-04 2006-12-12 Samsung Electronics Co., Ltd. Combination laptop and pad computer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168028U (en) * 1981-04-17 1982-10-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168028U (en) * 1981-04-17 1982-10-22

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5200913A (en) * 1990-05-04 1993-04-06 Grid Systems, Inc. Combination laptop and pad computer
US5333116A (en) * 1990-05-04 1994-07-26 Ast Research, Inc. Combination laptop and pad computer
US6219681B1 (en) 1990-05-04 2001-04-17 Ast Research, Inc. Combination laptop and pad computer
US6366935B2 (en) 1990-05-04 2002-04-02 Ast Research, Inc. Combination laptop and pad computer
USRE39429E1 (en) * 1990-05-04 2006-12-12 Samsung Electronics Co., Ltd. Combination laptop and pad computer
JPH05107114A (en) * 1991-10-16 1993-04-27 Nec Corp Observed wavelength band variable type electronic scanning radiometer
JPH0843206A (en) * 1994-05-19 1996-02-16 Schablonentechnik Kufstein Ag Chromaticity detector of luminous flux
US6266236B1 (en) 1997-08-27 2001-07-24 Vadem Apparatus and method for connecting and articulating display in a portable computer having multiple display orientations
US6005767A (en) * 1997-11-14 1999-12-21 Vadem Portable computer having articulated display
WO2001001070A1 (en) * 1999-06-29 2001-01-04 Omron Corporation Light source device, spectroscope comprising the light source device, and film thickness sensor

Also Published As

Publication number Publication date
JPH0789084B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
US7978324B2 (en) Multi-channel array spectrometer and method for using the same
CN102538966B (en) Short wave infrared laboratory spectrum calibration and correction method for hyper spectral imager
CN101324468B (en) Low stray light rapid spectrometer and measurement method thereof
JPH0341326A (en) Spectrometry
JP6733667B2 (en) Spectral colorimeter and method for calculating spectral reflectance
JP2689707B2 (en) Spectrometer with wavelength calibration function
CN217358748U (en) Device for improving accuracy of spectral imager and spectral imaging system
US9347823B2 (en) Absolute measurement method and apparatus thereof for non-linear error
JPS59164924A (en) Automatic correction system of calibrated wavelength
JP2511902B2 (en) Spectrophotometer
JPH04252924A (en) Spectrometry
US7164477B2 (en) Infrared spectrometer
KR101054017B1 (en) Calibration method of the spectrometer
JPH0626930A (en) Spectrophotometer
JPS63120230A (en) Spectrophotometer
JPS63250534A (en) Spectrophotometric device
JP6683201B2 (en) Spectral colorimeter and conversion rule setting method
JPS58727A (en) Fourier transform spectrum device
US20240035887A1 (en) Diffraction grating monochromator
RU85228U1 (en) NEUROCOLORIMETER
JPS63273023A (en) Spectrophotometer
JPS62226024A (en) Spectroscope
SU693124A1 (en) Method of automatic calibration of fabry-perot spectrometer
JPS63218828A (en) Colorimetric apparatus
Chen et al. Spectrophotometer Design Using Single-Grating, Single-Sensor, Double-Beam Spectroscope