JPH0341238A - Fluid filled type cylinder shape mount device - Google Patents

Fluid filled type cylinder shape mount device

Info

Publication number
JPH0341238A
JPH0341238A JP17767289A JP17767289A JPH0341238A JP H0341238 A JPH0341238 A JP H0341238A JP 17767289 A JP17767289 A JP 17767289A JP 17767289 A JP17767289 A JP 17767289A JP H0341238 A JPH0341238 A JP H0341238A
Authority
JP
Japan
Prior art keywords
vibration
fluid
pressure receiving
elastic body
rubber elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17767289A
Other languages
Japanese (ja)
Inventor
Yoshiki Funahashi
舟橋 芳樹
Katsuhiko Katagiri
克彦 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP17767289A priority Critical patent/JPH0341238A/en
Publication of JPH0341238A publication Critical patent/JPH0341238A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Abstract

PURPOSE:To improve vibration isolation performance by making at least a part of a rubber elastic body which constitutes a mount axis direction wall part a thin part so as to allow a predetermined amount of swelling deformation and by storing movable members capable of moving in pressure chambers. CONSTITUTION:In a fluid filled type cylinder shape mount device, an inner cylinder fitting 10 and an outer cylinder fitting 12 are connected with each other by rubber elastic body 14, incompressible fluid is filed in a plurality of pressure chambers 32 and 34, and flowing is allowed to each other through an orifice passage 36. As for these pressure chambers 32 and 34, a part of the rubber elastic body 14 which constitutes a mount axis direction wall part 25 is made a thin part so that a predetermined amount of swelling deformation is capable in the axial direction of a bush 16. And movable blocks 38 and 40 are stored inside capable of moving so as to form a predetermined interval of a vibration action part, which may generate flowing of fluid at the time of vibration input, between the inner surfaces of the pressure chambers 32 and 34. In this way, excellent vibration isolation performance is obtained against input vibration in a wide frequency range.

Description

【発明の詳細な説明】 (技術分野) 本発明は、内部に封入された流体の流動に基づいて所定
の防振効果を得るようにした流体封入式筒型マウント装
置に係り、特に低周波数域の人力振動に対する防振効果
を有効に確保しつつ、高周波数域の振動入力時における
動ばね定数の上昇が効果的に軽減乃至は防止され得る、
構造の簡単な流体封入式筒型マウント装置に関するもの
である。
Detailed Description of the Invention (Technical Field) The present invention relates to a fluid-filled cylindrical mount device that obtains a predetermined vibration damping effect based on the flow of a fluid sealed inside, and particularly relates to a fluid-filled cylindrical mount device that achieves a predetermined vibration damping effect based on the flow of a fluid sealed inside. While effectively ensuring a vibration-proofing effect against human-powered vibrations, an increase in the dynamic spring constant when inputting vibrations in a high frequency range can be effectively reduced or prevented.
The present invention relates to a fluid-filled cylindrical mount device with a simple structure.

(背景技術) 従来から、振動伝達系を構成する部材間に介装されて、
それら両部材を防振連結するマウント装置の一種として
、互いに径方向に所定距離を隔てて配された円筒金具と
外筒金具とを、それらの間に介装されたゴム弾性体にて
一体的に連結せしめてなる構造の、所謂筒型マウント装
置が知られている。そして、このような筒型マウント装
置にあっては、コンパクトなマウントサイズを有利に実
現することができると共に、過大な振動荷重人力時にお
ける内外筒金具の相対的変位量を規定するストンバ機能
が容易に付与され得ることなどから、例えば、横置きエ
ンジンのFF型自動車用のエンジンマウント等として、
好適に用いられてきている。
(Background Art) Conventionally, vibration transmission systems have been interposed between members that constitute vibration transmission systems.
As a type of mount device that connects these two components in a vibration-proof manner, a cylindrical metal fitting and an outer cylindrical metal fitting arranged at a predetermined distance from each other in the radial direction are integrally connected by a rubber elastic body interposed between them. A so-called cylindrical mount device is known, which has a structure in which the mount device is connected to the cylindrical mount device. With such a cylindrical mount device, it is possible to advantageously realize a compact mount size, and it is also possible to easily perform a stomper function that defines the relative displacement amount of the inner and outer cylindrical fittings when an excessive vibration load is applied manually. For example, it can be used as an engine mount for a front-wheel drive vehicle with a horizontal engine.
It has been suitably used.

また、近年では、特開昭56−16424号公報や特開
昭61−270533号公報等に示されているように、
かかる筒型マウント装置における円筒金具と外筒金具と
の間に、それぞれ、内部に所定の非圧縮性流体が封入さ
れて、内外筒金具間への所定径方向の振動入力時に内圧
変動が生ぜしめられる複数個の受圧室を形成すると共に
、それらの受圧室を互いに連通ずるオリフィス通路を設
けてなる構造の、所謂流体封入式筒型マウント装置が提
案されており、振動人力時に、かかるオリフィス通路内
を流動せしめられる流体の共振作用に基づいて、ゴム弾
性体のみでは得られない、優れた防振効果が得られるこ
とから、その採用が増加してきている。
In addition, in recent years, as shown in JP-A-56-16424 and JP-A-61-270533,
A predetermined incompressible fluid is sealed between the cylindrical fitting and the outer cylindrical fitting in such a cylindrical mount device, and internal pressure fluctuations occur when vibration is input in a predetermined radial direction between the inner and outer cylindrical fittings. A so-called fluid-filled cylindrical mount device has been proposed, which has a structure in which a plurality of pressure receiving chambers are formed, and an orifice passage is provided to communicate the pressure receiving chambers with each other. Based on the resonance effect of the fluid that is caused to flow, it is possible to obtain an excellent vibration damping effect that cannot be obtained with rubber elastic bodies alone, so their use is increasing.

しかしながら、このような流体封入式の筒型マウント装
置においては、流体の共振作用による防振性能の向上効
果が、そのオリフィス通路に設定された、限られた周波
数域でしか有効には発揮され得す、そのために、例えば
、低周波数域の振動入力時に高減衰効果が発揮され得る
ように、そのオリフィス通路をチューニングした場合に
は、かかるチューニング周波数よりも高い周波数域の振
動入力時に、該オリフィス通路が実質的に閉塞状態とな
るために、マウントの高動ばね化が惹起されて、防振性
能が著しく低下するといった不具合を有していたのであ
る。
However, in such a fluid-filled cylindrical mount device, the effect of improving vibration damping performance due to the resonance effect of the fluid can only be effectively exhibited in a limited frequency range set in the orifice passage. For this reason, for example, if the orifice passage is tuned so that a high damping effect can be exhibited when vibration is input in a low frequency range, the orifice passage is tuned when vibration is input in a frequency range higher than the tuning frequency. This causes the mount to have a highly dynamic spring, resulting in a significant drop in vibration damping performance.

そこで、従来では、例えば、実開昭63−104749
号公報等に示されているように、前記受圧室内に、振動
入力方向とは直角な方向に広がる傘部材を、内筒金具に
対して支持せしめることによって収容配置し、該傘部材
の外周縁部と受圧室内面との間に、振動入力時に流体の
流動が生ぜしめられる狭窄部を形成することによって、
該狭窄部内を流動せしめられる流体の共振作用に基づい
て、オリフィス通路が実質的に閉塞する、高周波数域の
振動入力時に低動ばね効果を得るようにしたものが、提
案されている。
Therefore, in the past, for example,
As shown in the above-mentioned publications, an umbrella member that extends in a direction perpendicular to the vibration input direction is accommodated in the pressure receiving chamber by being supported by an inner cylindrical metal fitting, and the outer peripheral edge of the umbrella member is By forming a constricted part between the inner surface of the pressure-receiving chamber and the inner surface of the pressure-receiving chamber, where fluid flow occurs when vibration is input,
A device has been proposed in which the orifice passage is substantially closed based on the resonance effect of the fluid flowing through the narrowed portion, and a low dynamic spring effect is obtained when vibration is input in a high frequency range.

しかしながら、このような構造の筒型マウント装置にあ
っては、構造が複雑で製作が困難であるばかりでなく、
捩り方向やこじり方向、或いは軸方向に大きな荷重入力
があった場合に、傘部材が、受圧室の壁部を構成するゴ
ム弾性体に対して当接、干渉するために、防振性能が著
しく低下すると共に、充分な耐久性が得られ難いといっ
た不具合を有していたのであり、必ずしも満足できるも
のではなかったのである。
However, the cylindrical mount device with such a structure not only has a complicated structure and is difficult to manufacture;
When a large load is applied in the twisting, twisting, or axial directions, the umbrella member comes into contact with and interferes with the rubber elastic body that makes up the wall of the pressure receiving chamber, resulting in significantly poor vibration isolation performance. This was not necessarily satisfactory, as it was difficult to obtain sufficient durability.

(解決課B) ここにおいて、本発明は、上述の如き事情を背景として
為されたものであって、その解決課題とするところは、
オリフィス通路内を流動せしめられる流体の共振作用に
よる防振効果を確保しつつ、それよりも高周波数域の振
動入力時における動ばね定数の上昇が、流体の共振作用
に基づいて、有効に低減乃至は防止され得る、構造の簡
単な流体封入式筒型マウント装置を提供することにある
(Solution Section B) Here, the present invention has been made against the background of the above-mentioned circumstances, and the problems to be solved are:
While ensuring the vibration damping effect due to the resonance effect of the fluid flowing in the orifice passage, the rise in the dynamic spring constant when vibration is input in a higher frequency range is effectively reduced or reduced based on the resonance effect of the fluid. An object of the present invention is to provide a fluid-filled cylindrical mount device with a simple structure that can prevent the above problems.

(解決手段) そして、かかる課題を解決するために、本発明にあって
は、互いに径方向に所定距離を隔てて配された内筒金具
と外筒金具とを、それらの間に介装されたゴム弾性体に
て弾性的に連結すると共に、それら内筒金具と外筒金具
との間において、それぞれ、内部に所定の非圧縮性流体
が封入せしめられて、前記内外筒金具間への所定径方向
の振動人力時に内圧変動が生ぜしめられる複数個の受圧
室を形威し、更にそれらの受圧室を互いに連通せしめて
、それら受圧室間での流体の流動を許容するオリフィス
通路を設けてなる流体封入式筒型マウント装置であって
、前記受圧室の少なくとも一つにおいて、そのマウント
軸方向壁部を構成する前記ゴム弾性体の少なくとも一部
を薄肉部として、所定量の膨出変形が許容され得るよう
に為す一方、かかる受圧室の内部に、該受圧室の内周面
形状よりも一回り小さな外周面形状を有する可動部材を
、自由に移動可能に収容、配置せしめることにより、該
可動部材と受圧室内面との間に、前記内外筒金具間への
振動入力時に流体の流動が生せしめられる所定間隙の振
動作用部を形成したことを、その特徴とするものである
(Solution Means) In order to solve this problem, the present invention includes an inner cylindrical metal fitting and an outer cylindrical metal fitting that are arranged at a predetermined distance from each other in the radial direction. The inner and outer cylindrical metal fittings are elastically connected by a rubber elastic body, and a predetermined incompressible fluid is sealed inside each of the inner and outer cylindrical metal fittings to provide a predetermined flow between the inner and outer cylindrical metal fittings. A plurality of pressure receiving chambers are formed in which internal pressure fluctuations are generated when radial vibration is applied manually, and an orifice passage is provided to connect the pressure receiving chambers with each other and allow fluid to flow between the pressure receiving chambers. The fluid-filled cylindrical mount device is characterized in that in at least one of the pressure receiving chambers, at least a portion of the rubber elastic body constituting the mount axial wall portion is made into a thin wall portion, so that a predetermined amount of bulging deformation occurs. On the other hand, by housing and arranging a movable member having an outer peripheral surface shape one size smaller than the inner peripheral surface shape of the pressure receiving chamber in a freely movable manner, The present invention is characterized in that a vibration-acting portion with a predetermined gap is formed between the movable member and the inner surface of the pressure-receiving chamber, in which a fluid flow is generated when vibration is input between the inner and outer cylindrical fittings.

(実施例) 以下、本発明を更に具体的に明らかにするために、本発
明の実施例について、図面を参照しつつ、詳細に説明す
ることとする。
(Examples) Hereinafter, in order to clarify the present invention more specifically, examples of the present invention will be described in detail with reference to the drawings.

先ず、第1図乃至第3図には、本発明を、自動車用のサ
スペンション・ブツシュに対して適用したものの一実施
例が示されている。これらの図において、10および1
2は、それぞれ内筒金具および外筒金具であって、径方
向に所定距離を隔てて、互いに同心的に配されていると
共に、それらの間にゴム弾性体14が介装されることに
よって、一体的に且つ弾性的に連結せしめられている。
First, FIGS. 1 to 3 show an embodiment in which the present invention is applied to a suspension bushing for an automobile. In these figures, 10 and 1
Reference numerals 2 denote an inner cylindrical metal fitting and an outer cylindrical metal fitting, which are arranged concentrically with each other at a predetermined distance in the radial direction, and a rubber elastic body 14 is interposed between them. They are integrally and elastically connected.

そして、かかるサスペンション・ブツシュ16にあって
は、内筒金具10が、その内孔18内に挿通される枢軸
を介して、防振連結されるべき一方の部材に取り付けら
れる一方、外筒金具12が、防振連結されるべき他方の
部材に設けられた取付孔内に圧入固定されることにより
、自動車のサスペンション機構を構成するアームやロッ
ド等の連結部間に介装されることとなる。また、そのよ
うな装着状態下、かかるサスペンション・ブツシュ16
には、第1図中、上下方向に、主たる振動が入力される
こととなる。
In such a suspension bushing 16, the inner cylindrical metal fitting 10 is attached to one member to be vibration-proofly connected via the pivot shaft inserted into the inner hole 18, while the outer cylindrical metal fitting 12 is press-fitted and fixed into a mounting hole provided in the other member to be connected for vibration isolation, thereby being interposed between connecting parts such as arms and rods that constitute the suspension mechanism of the automobile. In addition, under such mounting conditions, the suspension bushing 16
, the main vibration is input in the vertical direction in FIG.

より詳細には、前記内筒金具10は、厚肉の円筒形状を
もって形成されている。また、該円筒金具10の径方向
外方には、所定距離を隔てて、薄肉円筒形状を呈する金
属スリーブ20が配されている。そして、これら内筒金
具10と金属スリーブ20との間に、前記ゴム弾性体1
4が介装されており、該ゴム弾性体14が、円筒金具1
0の外周面および金属スリーブ20の内周面に対して、
それぞれ加硫接着されてなる、一体加硫成形品として形
成されているのである。
More specifically, the inner cylindrical metal fitting 10 is formed in a thick cylindrical shape. Further, a metal sleeve 20 having a thin cylindrical shape is disposed radially outward of the cylindrical fitting 10 at a predetermined distance. The rubber elastic body 1 is placed between the inner cylinder fitting 10 and the metal sleeve 20.
4 is interposed, and the rubber elastic body 14 is connected to the cylindrical metal fitting 1.
0 and the inner peripheral surface of the metal sleeve 20,
They are each formed as an integral vulcanized molded product that is vulcanized and bonded together.

また、かかるゴム弾性体14には、内筒金具10を挟ん
で径方向一方向に対向位置する部位に、それぞれ、金属
スリーブ20を貫通して、外周面上に開口するポケット
部22が形成されている。
Further, in the rubber elastic body 14, pocket portions 22 that penetrate the metal sleeve 20 and open on the outer circumferential surface are formed at positions facing each other in one radial direction with the inner cylinder fitting 10 interposed therebetween. ing.

要するに、金属スリーブ20には、ポケット部22.2
2の形成部位において、それぞれ、窓部24が設けられ
ており、かかる窓部24.24を通じて、それらのポケ
ット部22.22が、外部に開口されているのである。
In short, the metal sleeve 20 has a pocket portion 22.2.
A window portion 24 is provided at each of the two forming portions, and the pocket portions 22.22 are opened to the outside through the window portion 24.24.

なお、これらポケット部22.22の周壁部を構成する
ゴム弾性体14にあっては、各ポケット部22のブツシ
ュ軸方向壁部25.25において、特にその外周縁部分
が薄肉化されており、ブツシュ軸方向への所定量の膨出
変形が許容され得るようになっている。
In addition, regarding the rubber elastic body 14 constituting the peripheral wall portion of these pocket portions 22.22, the wall portion 25.25 in the bushing axis direction of each pocket portion 22 is thinned, particularly at the outer peripheral edge portion thereof, A predetermined amount of bulging deformation in the axial direction of the bush is allowed.

更にまた、かかるゴム弾性体14には、ポケット部22
.22における開口部の周方向端縁部間の一方の側にお
いて、周方向に連続して延び、それら両ポケット部22
.22を互いに接続する凹溝26が形成されている。な
お、金属スリーブ20には、かかる凹溝26の形成部位
にも、周方向に延びる窓部28が設けられており、この
窓部28を通じて、該凹溝26が外部に開口せしめられ
ている。
Furthermore, the rubber elastic body 14 has a pocket portion 22.
.. The pocket portions 22 extend continuously in the circumferential direction on one side between the circumferential edges of the openings in the openings 22 .
.. A concave groove 26 is formed to connect the 22 with each other. Note that the metal sleeve 20 is also provided with a window 28 extending in the circumferential direction at the region where the groove 26 is formed, and the groove 26 is opened to the outside through this window 28.

さらに、上述の如き一体加硫成形品にあっては、必要に
応じて、金属スリーブ20に対する縮径加工が施され、
ゴム弾性体14に対して予備圧縮が加えられた後、その
外周面上に、前記外筒金具12が外挿され、へ方絞り等
にて縮径されることにより、金属スリーブ20の外周面
に対して嵌着固定せしめられている。なお、かかる外筒
金具12の内周面上には、その略全面に亘って、薄肉の
シールゴム層30が一体的に設けられている。
Furthermore, in the integrally vulcanized molded product as described above, diameter reduction processing is performed on the metal sleeve 20 as necessary.
After preliminary compression is applied to the rubber elastic body 14, the outer cylindrical fitting 12 is inserted onto the outer circumferential surface of the rubber elastic body 14, and the outer circumferential surface of the metal sleeve 20 is reduced in diameter by a helical drawing or the like. It is fitted and fixed to. A thin sealing rubber layer 30 is integrally provided on the inner circumferential surface of the outer cylindrical fitting 12 over substantially the entire surface thereof.

そして、かかる外筒金具12の嵌着によって、ゴム弾性
体14に設けられたポケット部22.22および凹溝2
6の開口が、それぞれ、流体密に閉塞されているのであ
り、また、これらポケット部22.22および凹溝26
内には、それぞれ、所定の非圧縮性流体が封入せしめら
れている。なお、かかる非圧縮性流体としては、後述す
るような流体の流動が有効に生ぜしめられ得るように、
200cSt以下、特に好適には50cSt以下の動粘
度を有するものが望ましく、例えば、水やアルキレング
リコール、ポリアルキレングリコール、シリコーン油等
が、好適に採用されることとなる。
By fitting the outer cylindrical fitting 12, the pocket portions 22, 22 and the grooves 2 provided in the rubber elastic body 14 are formed.
6 are closed fluid-tightly, and these pocket portions 22, 22 and grooves 26 are closed fluid-tightly.
A predetermined incompressible fluid is sealed inside each of them. In addition, such incompressible fluids include, so that fluid flow as described below can be effectively generated.
It is desirable to have a kinematic viscosity of 200 cSt or less, particularly preferably 50 cSt or less, and for example, water, alkylene glycol, polyalkylene glycol, silicone oil, etc. are preferably employed.

また、かかる流体の封入は、例えば、前記一体加g戒形
品に対する外筒金具12の外挿操作を流体中にて行なう
こと等によって、有利に為され得ることとなる。
In addition, such fluid can be advantageously sealed by, for example, performing an operation of inserting the outer cylindrical fitting 12 into the fluid with respect to the integral gag-shaped article.

また、それによって、内筒金具10と外筒金具12との
間には、円筒金具10を挟んで振動入力方向たる径方向
一方向に対向位置する部位において、振動人力時に、ゴ
ム弾性体14の弾性変形に基づいて、互いに正負が逆と
なる内圧変動が生ぜしめられる第一〇受圧室32および
第二〇受圧室34が、ポケット部22.22内にそれぞ
れ形成されていると共に、それら第−及び第二〇受圧室
32.34を互いに連通せしめて、それら両受圧室32
.34間での流体の流動を許容するオリフィス通路36
が、凹溝26内に形成されているのである。
In addition, as a result, when the vibration is applied manually, the rubber elastic body 14 is formed between the inner cylindrical metal fitting 10 and the outer cylindrical metal fitting 12 at a portion located opposite to each other in one radial direction, which is the vibration input direction, with the cylindrical metal fitting 10 in between. A first pressure receiving chamber 32 and a second pressure receiving chamber 34, in which internal pressure fluctuations with opposite signs are generated based on elastic deformation, are formed in the pocket portion 22, 22, respectively. and No. 20 pressure receiving chambers 32 and 34 are made to communicate with each other, and both pressure receiving chambers 32 and 20 are made to communicate with each other.
.. an orifice passage 36 that allows fluid flow between 34;
is formed within the groove 26.

すなわち、このオリフィス通路36内には、内外筒金具
10.12間への振動入力時に、第一〇受圧室32と第
二〇受圧室34との間に生ぜしめられる内圧差に基づい
て、流体の流動が生ぜしめられることとなるのであり、
それ故、公知の如く、該オリフィス通路36を適当にチ
ューニングすることにより、その内部を流動せしめられ
る流体の共振作用に基づいて、所定の防振効果が発揮さ
れ得ることとなるのである。そして、特に、本実施例に
おいては、かかるオリフィス通路36内を流動せしめら
れる流体の共振周波数が低周波数域に設定せしめられ、
それによって、シミーやシェイク等に相当する低周波大
振幅の人力振動に対して、高減衰効果を発揮し得るよう
にチューニングされている。
That is, fluid flows into the orifice passage 36 based on the internal pressure difference created between the first pressure receiving chamber 32 and the second pressure receiving chamber 34 when vibration is input between the inner and outer cylindrical fittings 10 and 12. This will result in a flow of
Therefore, as is well known, by appropriately tuning the orifice passage 36, a predetermined vibration damping effect can be achieved based on the resonance effect of the fluid flowing through the orifice passage. In particular, in this embodiment, the resonance frequency of the fluid flowing through the orifice passage 36 is set to a low frequency range,
As a result, it is tuned to exhibit a high damping effect against low-frequency, large-amplitude human vibrations that correspond to shimmies, shakes, and the like.

なお、そこにおいて、かかる第−及び第二〇受圧室32
.34にあっては、その軸方向壁部25が薄肉化されて
いることから、該軸方向壁部25の弾性変形による受圧
室32.34内の液圧吸収が懸念されることとなるが、
上述の如き、オリフィス効果が発揮される低周波大振幅
振動の入力時においては、受圧室32.34内に生ぜし
められる液圧変動が大きいこと、及びかかる液圧変動に
よってオリフィス通路36を通じての流体の流動が速や
かに生ぜしめられることから、かかる軸方向壁部25に
よる液圧吸収に起因するオリフィス機能の阻害が、殆ど
問題となることはない。
In addition, there, the 1st and 20th pressure receiving chambers 32
.. 34, since the axial wall portion 25 is thinned, there is a concern that the liquid pressure within the pressure receiving chamber 32, 34 may be absorbed due to elastic deformation of the axial wall portion 25.
As described above, when a low frequency, large amplitude vibration is input, in which the orifice effect is exerted, the fluid pressure fluctuations generated in the pressure receiving chambers 32 and 34 are large, and the fluid flowing through the orifice passage 36 due to the fluid pressure fluctuations is large. Since the flow is quickly generated, inhibition of the orifice function due to the absorption of hydraulic pressure by the axial wall portion 25 hardly poses a problem.

更にまた、上述の如くして形成された第一の受圧室32
および第二の受圧室34には、その内部に対して、第一
の可動ブロック38および第二の可動ブロック40が、
それぞれ収容配置されている。これら第−及び第二の可
動ブロック38.40にあっては、それぞれ、第一およ
び第二〇受圧室32.34の内周面形状に略対応し、且
つそれよりも一回り小さな外周面形状をもって形成され
ており、各受圧室32.34内において、所定距離自由
に移動可能に収容、配置せしめられている。
Furthermore, the first pressure receiving chamber 32 formed as described above
The second pressure receiving chamber 34 has a first movable block 38 and a second movable block 40 inside thereof.
Each is arranged to accommodate them. These first and second movable blocks 38.40 each have an outer peripheral surface shape that approximately corresponds to the inner peripheral surface shape of the first and second pressure receiving chambers 32.34, and that is one size smaller than that. It is housed and arranged in each pressure receiving chamber 32, 34 so as to be freely movable within a predetermined distance.

なお、これら第−及び第二の可動ブロック38.40の
材質は、容易に変形しない硬質のものであれば、特に限
定されるものではなく、アルミニウム合金や合成樹脂な
ど、封入流体に対する比重の大小に拘わらずに採用可能
であるが、封入流体に対する耐食性は、考慮されるべき
である。尤も、本実施例においては、装着時に鉛直方向
上側に位置せしめられることとなる第一〇受圧室32内
に収容される第一の可動ブロック38が、封入流体より
も僅かに大きな比重をもって形成されている一方、装着
時に鉛直方向下側に位置せしめられることとなる第二〇
受圧室34内に収容される第二の可動ブロック40が、
封入流体よりも僅かに小さな比重をもって形成されてい
る。
The material of these first and second movable blocks 38 and 40 is not particularly limited as long as it is hard and does not deform easily, and may be made of aluminum alloy, synthetic resin, etc., and may have a specific gravity relative to the enclosed fluid. However, corrosion resistance to the enclosed fluid should be taken into consideration. However, in this embodiment, the first movable block 38 accommodated in the first pressure receiving chamber 32, which is positioned vertically upward during installation, is formed to have a specific gravity slightly larger than that of the sealed fluid. On the other hand, the second movable block 40 accommodated in the No. 20 pressure receiving chamber 34, which will be positioned vertically below when installed,
It is formed to have a specific gravity slightly smaller than that of the sealed fluid.

そして、これら第−及び第二の可動ブロック38.40
は、内外筒金具10.12間への振動入力に際して、そ
れぞれ、第−及び第二の受圧室32.34内に惹起され
る流体の流動に基づいて、第4図に示されている如く、
それら第−及び第二の受圧室32.34中に浮揚せしめ
られることとなり、以てそれぞれの周囲において、流体
の流動が生ぜしめられる所定間隙の振動作用部が形成さ
れるのである。
And these first and second movable blocks 38.40
As shown in FIG. 4, based on the fluid flow induced in the first and second pressure receiving chambers 32, 34 when vibration is input between the inner and outer cylindrical fittings 10, 12,
It is floated in the first and second pressure receiving chambers 32, 34, thereby forming a vibrating section with a predetermined gap around each of which a fluid flow is generated.

また、そこにおいて、かかる第−及び第二の受圧室32
.34にあっては、入力振動が、前記オリフィス通路3
6内を流動せしめられる流体の共振点よりも高周波で、
該オリフィス通路36が実質的に閉塞状態となった状態
下でも、ブツシュ軸方向壁部25.25の弾性変形に基
づいて、それぞれの内部に、流体の流動が有効に生ぜし
められることとなるのであり、それ故、それら第−及び
第二〇受圧室32.34内に形成された振動作用部内を
流動せしめられる流体の共振作用を利用することにより
、そのような高周波振動の入力時における、オリフィス
通路36の閉塞化に伴う、ブツシュ動ばね定数の上昇が
、有効に低減乃至は防止され得るのである。
Moreover, there, the first and second pressure receiving chambers 32
.. 34, the input vibration is applied to the orifice passage 3.
At a higher frequency than the resonance point of the fluid flowing through 6,
Even in a state where the orifice passage 36 is substantially closed, fluid flow is effectively generated within each bushing based on the elastic deformation of the axial wall portions 25 and 25. Therefore, by utilizing the resonance effect of the fluid flowing in the vibration acting portions formed in the first and second pressure receiving chambers 32 and 34, the orifice is An increase in the bush dynamic spring constant due to the blockage of the passage 36 can be effectively reduced or prevented.

そして、かかる振動作用部内を流動せしめられる流体の
共振周波数は、可動ブロック38.40の質量や封入流
体の粘度、或いは振動作用部の厚さや大きさなどを調節
することによってチューニングすることが可能であり、
特に、高周波数域への設定が容易であるのである。なお
、特に、本実施例においては、かかる振動作用部内を流
動せしめられる流体の共振作用に基づいて、ロードノイ
ズ等に相当する高周波小振幅の入力振動に対して、低動
ばね効果が発揮され得るようにチューニングされている
The resonant frequency of the fluid flowing through the vibration acting section can be tuned by adjusting the mass of the movable block 38, 40, the viscosity of the enclosed fluid, or the thickness and size of the vibration acting section. can be,
In particular, it is easy to set it to a high frequency range. In particular, in this embodiment, based on the resonance effect of the fluid flowing in the vibration acting section, a low dynamic spring effect can be exerted against input vibrations of high frequency and small amplitude corresponding to road noise etc. It is tuned as follows.

従って、上述の如き構造とされたサスペンション・ブツ
シュ16にあっては、低周波数域の振動入力時には、オ
リフィス通路36内を流動せしめられる流体の共振作用
によって、優れた減衰効果が発揮され得る一方、高周波
数域の振動入力時には、第−及び第二〇受圧室32.3
4内に形成された振動作用部における流体の共振作用に
よって、低動ばね効果が有効に発揮され得るところから
、オリフィス通路60の閉塞化に起因するブツシュの高
動ばね化が有利に回避され得て、極めて良好なる振動絶
縁性が発揮され得ることとなるのである。
Therefore, in the suspension bushing 16 having the above-described structure, when a vibration is input in a low frequency range, an excellent damping effect can be exhibited due to the resonance effect of the fluid flowing through the orifice passage 36. When inputting vibrations in the high frequency range, the - and 20th pressure receiving chambers 32.3
Since a low dynamic spring effect can be effectively exerted by the resonance action of the fluid in the vibration acting part formed in the bushing 4, the high dynamic spring effect of the bushing due to the blockage of the orifice passage 60 can be advantageously avoided. Therefore, extremely good vibration insulation properties can be exhibited.

また、このようなサスペンション・ブツシュ16におい
ては、第−及び第二〇受圧室32.34内に収容されて
振動作用部を形成する第−及び第二の可動ブロック38
.40が、それら受圧室32.34内を自由に移動可能
とされていることから、内外筒金具10,12間に対し
て、捩り方向やこじり方向、或いは軸方向等の荷重が人
力されて、該可動ブロック38.40が受圧室32.3
4内面に当接された場合にも、それら可動ブロック38
.40の変位による逃げが許容され得るのであり、それ
故、かかる可動ブロック38.40の受圧室32.34
内面に対する当接、干渉によるマウント防振特性の阻害
や耐久性の低下等が可及的に防止され得るのである。
In addition, in such a suspension bushing 16, the first and second movable blocks 38 are accommodated in the first and second pressure receiving chambers 32 and 34 and form a vibration acting section.
.. 40 can be freely moved within the pressure receiving chambers 32 and 34, so that a load such as a twisting direction, a prying direction, an axial direction, etc. is applied between the inner and outer cylindrical fittings 10 and 12, The movable block 38.40 is the pressure receiving chamber 32.3.
4. Even when abutted against the inner surface of the movable block 38,
.. Therefore, the pressure receiving chamber 32.34 of the movable block 38.40 can be allowed to escape due to the displacement of 40.
This makes it possible to prevent as much as possible the interference with the mount's anti-vibration properties and deterioration of durability due to contact with the inner surface and interference.

更にまた、かかるサスペンション・ブツシュ16にあっ
ては、主たる振動入力方向における内外筒金具10.1
2の相対的変位量が、内筒金具10の、可動ブロック3
8.40を介しての、外筒金具12に対する当接によっ
て規定され得ることから、大荷重入力時における被連結
体の相対的変位量が有効に規定され得ると共に、ゴム弾
性体14の過大な変形が防止されて1、その耐久性の向
上が図られ得るといった利点をも有しているのである。
Furthermore, in such a suspension bushing 16, the inner and outer cylindrical fittings 10.1 in the main vibration input direction
2 is the relative displacement amount of the movable block 3 of the inner cylinder fitting 10.
8.40, the amount of relative displacement of the connected body can be effectively defined when a large load is input, and the excessive force of the rubber elastic body 14 can be regulated. It also has the advantage of preventing deformation 1 and improving its durability.

さらに、かかるサスペンション・ブツシュ16にあって
は、その製作時において、第−及び第二〇受圧室32.
34内に、第−及び第二の可動ブロック38.40を収
容するだけで良く、特別な組付操作を必要としないこと
から、優れた製作性およびコスト性をもって、上述の如
き、優れた防振性能を有するブツシュを得ることができ
るのである。
Furthermore, in such a suspension bushing 16, the first and second pressure receiving chambers 32.
Since it is only necessary to accommodate the first and second movable blocks 38 and 40 in the 34, and no special assembly operation is required, it is possible to achieve the above-mentioned excellent protection with excellent manufacturability and cost efficiency. This makes it possible to obtain a bushing with vibration performance.

以上、本考案の一実施例について詳述してきたが、これ
は文字通りの例示であって、本考案は、かかる具体例に
のみ限定して解釈されるものではない。
Although one embodiment of the present invention has been described in detail above, this is a literal illustration, and the present invention is not to be construed as being limited to such a specific example.

例えば、前記実施例において、第一〇受圧室32内に形
成される振動作用部と第二の受圧室34内に形成される
振動作用部とに対して、互いに異なるチューニングを施
すことも可能であり、それによって、異なる二つの周波
数域の入力振動に対して、それぞれ、流体の共振作用に
基づく低動ばね効果が発揮され得ることとなる。
For example, in the embodiment described above, it is also possible to perform different tuning on the vibration acting part formed in the first pressure receiving chamber 32 and the vibration acting part formed in the second pressure receiving chamber 34. As a result, a low dynamic spring effect based on the resonance effect of the fluid can be exerted for input vibrations in two different frequency ranges.

また、前記実施例において、第一〇受圧室32および第
二の受圧室34内の何れか一方にだけ、可動ブロックを
収容配置するようにしても良い。
Further, in the embodiment described above, the movable block may be housed in only one of the first pressure receiving chamber 32 and the second pressure receiving chamber 34.

更にまた、前記実施例においては、内外筒金具10.1
2間に2つの受圧室32.34が形成されていたが、か
かる内外筒金具10.12間に、3つ以上の受圧室を設
けると共に、それらの受圧室のうち、振動入力時に相対
的な内圧変動が生ぜしめられるもの同士を互いに連通ず
るオリフィス通路を設け、そして、かかる受圧室のうち
の少なくとも一つに、可動ブロックを収容、配置せしめ
てなる構造も、採用可能である。
Furthermore, in the embodiment, the inner and outer cylindrical fittings 10.1
Two pressure receiving chambers 32 and 34 were formed between the inner and outer cylindrical fittings 10 and 12, but three or more pressure receiving chambers are provided between the inner and outer cylindrical fittings 10 and 12. It is also possible to adopt a structure in which an orifice passage is provided to communicate internal pressure chambers with each other, and a movable block is housed and arranged in at least one of the pressure receiving chambers.

さらに、オリフィス通路36の構造は、前記実施例のも
のに限定されるものではなく、例えば、円筒金具側に形
成したり、或いは外筒金具の内周面上において周方向に
1周以上の長さで形成したもの等、公知の各種の構造が
採用可能である。
Furthermore, the structure of the orifice passage 36 is not limited to that of the embodiment described above, and for example, the orifice passage 36 may be formed on the cylindrical metal fitting side, or it may be formed on the inner circumferential surface of the outer cylindrical fitting with a length of one circumference or more in the circumferential direction. Various known structures can be employed, such as a structure formed using a steel plate.

加えて、前記実施例においては、本発明を自動車用サス
ペンション・ブツシュに適用したものの一具体例を示し
たが、本発明は、その他、自動車用エンジンマウントや
、或いは自動車以外の各種装置におけるマウント装置に
対しても、有効に適用され得ることは、勿論である。
In addition, in the above embodiment, a specific example of the application of the present invention to an automobile suspension bushing was shown, but the present invention is also applicable to an automobile engine mount, or a mounting device for various devices other than automobiles. Of course, it can also be effectively applied to.

その他、−々列挙はしないが、本発明は、当業者の知識
に基づいて、種々なる変更、修正、改良等を加えた態様
において実施され得るものであり、また、そのような実
施態様が、本発明の趣旨を逸脱しない限り、何れも本発
明の範囲内に含まれるものであることは、言うまでもな
いところである。
In addition, although not listed, the present invention can be implemented in embodiments with various changes, modifications, improvements, etc. based on the knowledge of those skilled in the art, and such embodiments include: It goes without saying that any of these methods are included within the scope of the present invention as long as they do not depart from the spirit of the present invention.

(発明の効果) 上述の説明から明らかなように、本発明に従う流体封入
式筒型マウント装置にあっては、オリフィス通路内を流
動せしめられる流体の共振作用に基づく、低周波数域の
人力振動に対する所定の防振効果を確保しつつ、高周波
数域のマウント動ばね定数の上昇が、受圧室内に形成さ
れた振動作用部内における流体の共振作用に基づいて、
有効に低減乃至は防止され得ることとなり、それによっ
て広い周波数域の入力振動に対して、優れた防振性能が
発揮され得るのである。
(Effects of the Invention) As is clear from the above description, the fluid-filled cylindrical mount device according to the present invention has a high resistance to human vibration in a low frequency range based on the resonance effect of the fluid flowing in the orifice passage. While ensuring a predetermined vibration isolation effect, the mount dynamic spring constant in the high frequency range is increased based on the resonance effect of the fluid in the vibration acting part formed in the pressure receiving chamber.
This can be effectively reduced or prevented, and as a result, excellent vibration damping performance can be exhibited against input vibrations in a wide frequency range.

また、かかるマウント装置においては、振動作用部を形
成する可動部材が、受圧室内に自由移動可能に収容され
ていることから、捩り方向やこじり方向等の振動人力時
における、該可動部材の受圧室内面への当接に起因する
マウント防振性能の阻害や耐久性の低下が、可及的に軽
減され得るのである。
In addition, in such a mounting device, since the movable member forming the vibration acting section is housed in a freely movable manner within the pressure receiving chamber, the movable member is moved within the pressure receiving chamber when vibrating manually in a twisting direction or a prying direction. This makes it possible to reduce as much as possible the inhibition of the mount's vibration damping performance and the decrease in durability caused by contact with the surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本考案の一実施例たる自動車用サスペンショ
ン・ブツシュを示す横断面図であり、第2図は、第1図
における■−■断面図であり、第3図は、第1図におけ
るII[−I[[断面図である。また、第4図は、第1
図に示されているサスペンション・ブツシュの振動入力
状態を示す横断面図である。 10:内筒金具     12:外筒金具14:ゴム弾
性体 6 5 4 8 0 :サスペンション・ブツシュ :軸方向壁部    32:第一の受圧室:第二の受圧
室   36:オリフイス通路:第一の可動ブロック :第二の可動ブロック
FIG. 1 is a cross-sectional view showing an automobile suspension bushing according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the line ■--■ in FIG. 1, and FIG. II[-I[[ is a cross-sectional view. Also, Figure 4 shows the first
FIG. 3 is a cross-sectional view showing a vibration input state of the suspension bushing shown in the figure. 10: Inner cylinder metal fitting 12: Outer cylinder metal fitting 14: Rubber elastic body 65 4 8 0: Suspension bushing: Axial wall part 32: First pressure receiving chamber: Second pressure receiving chamber 36: Orifice passage: First Movable block: second movable block

Claims (1)

【特許請求の範囲】 互いに径方向に所定距離を隔てて配された内筒金具と外
筒金具とを、それらの間に介装されたゴム弾性体にて弾
性的に連結すると共に、それら内筒金具と外筒金具との
間において、それぞれ、内部に所定の非圧縮性流体が封
入せしめられて、前記内外筒金具間への所定径方向の振
動入力時に内圧変動が生ぜしめられる複数個の受圧室を
形成し、更にそれらの受圧室を互いに連通せしめて、そ
れら受圧室間での流体の流動を許容するオリフィス通路
を設けてなる流体封入式筒型マウント装置であって、 前記受圧室の少なくとも一つにおいて、そのマウント軸
方向壁部を構成する前記ゴム弾性体の少なくとも一部を
薄肉部として、所定量の膨出変形が許容され得るように
為す一方、かかる受圧室の内部に、該受圧室の内周面形
状よりも一回り小さな外周面形状を有する可動部材を、
自由に移動可能に収容、配置せしめることにより、該可
動部材と受圧室内面との間に、前記内外筒金具間への振
動入力時に流体の流動が生ぜしめられる所定間隙の振動
作用部を形成したことを特徴とする流体封入式筒型マウ
ント装置。
[Claims] An inner cylindrical metal fitting and an outer cylindrical metal fitting arranged at a predetermined distance from each other in the radial direction are elastically connected by a rubber elastic body interposed between them, and Between the cylindrical metal fittings and the outer cylindrical metal fittings, a plurality of incompressible fluids are each sealed inside, and internal pressure fluctuations are caused when vibration is input in a predetermined radial direction between the inner and outer cylindrical metal fittings. A fluid-filled cylindrical mount device that forms pressure receiving chambers and further includes an orifice passage that allows the pressure receiving chambers to communicate with each other and allows fluid to flow between the pressure receiving chambers, In at least one of the above, at least a part of the rubber elastic body constituting the axial wall of the mount is made into a thin part so that a predetermined amount of bulging deformation can be tolerated. A movable member having an outer peripheral surface shape that is one size smaller than the inner peripheral surface shape of the pressure receiving chamber,
By housing and arranging the movable member so as to be freely movable, a vibration acting portion having a predetermined gap is formed between the movable member and the inner surface of the pressure receiving chamber in which a fluid flow is generated when vibration is input between the inner and outer cylindrical fittings. A fluid-filled cylindrical mount device characterized by:
JP17767289A 1989-07-10 1989-07-10 Fluid filled type cylinder shape mount device Pending JPH0341238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17767289A JPH0341238A (en) 1989-07-10 1989-07-10 Fluid filled type cylinder shape mount device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17767289A JPH0341238A (en) 1989-07-10 1989-07-10 Fluid filled type cylinder shape mount device

Publications (1)

Publication Number Publication Date
JPH0341238A true JPH0341238A (en) 1991-02-21

Family

ID=16035091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17767289A Pending JPH0341238A (en) 1989-07-10 1989-07-10 Fluid filled type cylinder shape mount device

Country Status (1)

Country Link
JP (1) JPH0341238A (en)

Similar Documents

Publication Publication Date Title
JPH0430442Y2 (en)
US4871152A (en) Fluid-filled resilient bushing structure with radial vanes
JPH0225947Y2 (en)
US5503376A (en) Hydraulically damping rubber sleeve spring
JPH0229898B2 (en)
JP2598969B2 (en) Fluid-filled cylindrical mounting device
JPS62224746A (en) Fluid seal type vibrationproof supporting body
US4893798A (en) Fluid-filled elastic bushing having means for limiting elastic deformation of axial end portions of elastic member defining pressure-receiving chamber
US5213313A (en) Fluid-filled cylindrical elastic mount having lateral and radial elastic walls for desired axial and diametric spring characteristics
JPH0320138A (en) Fluid sealed type cylindrical mount device
US5087021A (en) Fluid-filled cylindrical elastic mount having annular fluid chamber and annular movable member to provide restricted resonance portion
JPS62261731A (en) Cylindrical fluid containing type vibration damper support body
US5310168A (en) Fluid-filled cylindrical elastic mount having annular fluid chamber with constant cross sectional area over the entire circumference
JP3009797B2 (en) Fluid-filled cylindrical mounting device
EP0410455A1 (en) Fluid-filled cylindrical elastic mount having annular fluid chamber with constant cross sectional area over the entire circumference
JPH0341238A (en) Fluid filled type cylinder shape mount device
JPS62200047A (en) Fluid self-contained vibration-proofing link work
JPH0729318Y2 (en) Fluid-filled cylinder mount device
JP2002327787A (en) Vibrationproof device sealed with fluid
JPH0716127Y2 (en) Fluid filled cylinder mount
JPH0716128Y2 (en) Fluid-filled cylinder mount device
JP2827846B2 (en) Fluid-filled bush
JPH02292540A (en) Fluid enclosure type cylindrical mount device
JPH0523866Y2 (en)
JP3303371B2 (en) Cylindrical mission mount