JPH034113B2 - - Google Patents

Info

Publication number
JPH034113B2
JPH034113B2 JP58105386A JP10538683A JPH034113B2 JP H034113 B2 JPH034113 B2 JP H034113B2 JP 58105386 A JP58105386 A JP 58105386A JP 10538683 A JP10538683 A JP 10538683A JP H034113 B2 JPH034113 B2 JP H034113B2
Authority
JP
Japan
Prior art keywords
sample
sample tube
observation
signal
frequency pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58105386A
Other languages
Japanese (ja)
Other versions
JPS59230147A (en
Inventor
Atsushi Kida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP58105386A priority Critical patent/JPS59230147A/en
Priority to US06/619,005 priority patent/US4628263A/en
Publication of JPS59230147A publication Critical patent/JPS59230147A/en
Publication of JPH034113B2 publication Critical patent/JPH034113B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/30Sample handling arrangements, e.g. sample cells, spinning mechanisms
    • G01R33/307Sample handling arrangements, e.g. sample cells, spinning mechanisms specially adapted for moving the sample relative to the MR system, e.g. spinning mechanisms, flow cells or means for positioning the sample inside a spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は核磁気共鳴装置(NMR装置)に関
し、特に試料管の回転軸ずれ等に起因するスピニ
ングサイドバンドを除去することのできるNMR
装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a nuclear magnetic resonance apparatus (NMR apparatus), and in particular to an NMR apparatus that can remove spinning side bands caused by rotation axis deviation of a sample tube, etc.
Regarding equipment.

[従来技術] 高分解能NMR装置においては、静磁場中で試
料(試料管)を回転させ、静磁場の不均一の平均
化を図つている。しかしながら、以下に述べるよ
うな場合、NMR信号に変調が加わるため、
NMRスペクトル上の各ピークから試料の回転周
波数の整数倍離れた位置にスピニングサイドバン
ドと呼ばれるピークが生じ、スペクトル解析上極
めて不都合である。
[Prior Art] In a high-resolution NMR apparatus, a sample (sample tube) is rotated in a static magnetic field to average out the non-uniformity of the static magnetic field. However, in the case described below, modulation is added to the NMR signal, so
Peaks called spinning sidebands occur at positions separated by an integral multiple of the rotational frequency of the sample from each peak on the NMR spectrum, which is extremely inconvenient for spectrum analysis.

a 試料の回転軸に対して非対称な静磁場の不均
一成分が過大に残留している時 b 測定の際に照射される高周波磁場(パルス)
の強度が空間的に不均一である時 c 試料管の精度不良等により試料管の回転軸が
試料の中心と一致しない時 この内、a及びbに起因するスピニングサイド
バンドは装置の利用段階における調整により除去
することができるが、cに起因するものは電磁的
な調整では除去不可能であり、装置製作時におけ
る精度向上及び使用する試料管の精度向上等によ
つて対処する他なかつた。
a When an excessive amount of inhomogeneous components of the static magnetic field asymmetrical with respect to the rotation axis of the sample remain b High-frequency magnetic field (pulse) irradiated during measurement
When the intensity of is spatially non-uniform c When the axis of rotation of the sample tube does not coincide with the center of the sample due to poor precision of the sample tube Among these, spinning sidebands caused by a and b occur during the use stage of the device. Although it can be removed by adjustment, those caused by c cannot be removed by electromagnetic adjustment, and the only way to deal with it is to improve the precision in manufacturing the device and the precision of the sample tubes used.

[発明の目的] 本発明はこの点に鑑みてなされたものであり、
上記cに起因するスピニングサイドバンドを有効
に除去することのできる核磁気共鳴装置を提供す
ることを目的としている。
[Object of the invention] The present invention has been made in view of this point,
It is an object of the present invention to provide a nuclear magnetic resonance apparatus that can effectively remove spinning sidebands caused by the above c.

[発明の構成] 本発明は直流磁場中で試料を収容した試料管を
回転させた状態で該試料に高周波パルスを照射
し、照射後試料からの自由誘導減衰信号を検出す
るようにした核磁気共鳴装置において、試料管の
回転位置を検出する手段と、自由誘導減衰信号を
積算する手段を設け、前記検出手段からの検出信
号に基づき、試料管の特定部位が特定位置にある
タイミングと、該特定部位がそれから半回転した
位置にあるタイミングの2種のタイミングで前記
高周波パルス照射を行い、該2種のタイミングの
高周波パルス照射によつて得られた2種の自由誘
導減衰信号を前記積算手段で積算するようにした
ことを特徴としている。以下、図面を用いて本発
明を詳説する。
[Structure of the Invention] The present invention is a nuclear magnetism system in which a high-frequency pulse is irradiated to a sample while rotating a sample tube containing the sample in a DC magnetic field, and a free induction decay signal from the sample is detected after irradiation. The resonance device is provided with a means for detecting the rotational position of the sample tube and a means for integrating the free induction attenuation signal, and based on the detection signal from the detection means, the timing at which a specific part of the sample tube is at a specific position, and the corresponding The high-frequency pulse irradiation is performed at two timings when the specific region is at a position half a rotation away from the specified location, and the two types of free induction attenuation signals obtained by the high-frequency pulse irradiation at the two timings are collected by the integrating means. The feature is that it is integrated by . Hereinafter, the present invention will be explained in detail using the drawings.

[発明の原理説明] 先ず、第1図に用いて本発明の基本的な考え方
を説明する。図において1は試料2を収容する試
料管、3はサドル型の検出コイルである。試料管
1の回転中心Oが試料の中心O′とずれていると、
試料管が半回転後に破線で示す位置に来ることか
ら分るように試料とコイルとの距離が変化するこ
とになり、検出コイル3が試料2から受信する
NMR信号は回転に同期した振幅変調を受ける。
更にこのような場合、試料の誘電率が大きけれ
ば、コイル3内での試料の移動はコイル3の浮遊
容量の変化に結びつく。コイル3は受信用の高周
波同調回路の一部を構成しているから、試料の回
転に同期してその同調周波数の偏移がおき、検出
コイルから取出されるNMR信号は、前述した振
幅変調に加え回転に同期した位相変調も受ける結
果となる。このようにして受けた変調によりスピ
ニングサイドバンドが発生するのである。
[Explanation of the principle of the invention] First, the basic idea of the invention will be explained using FIG. In the figure, 1 is a sample tube containing a sample 2, and 3 is a saddle-shaped detection coil. If the rotation center O of the sample tube 1 is shifted from the sample center O',
As can be seen from the fact that the sample tube comes to the position shown by the broken line after half a rotation, the distance between the sample and the coil changes, and the detection coil 3 receives signals from the sample 2.
The NMR signal undergoes amplitude modulation synchronized with rotation.
Furthermore, in such a case, if the dielectric constant of the sample is large, the movement of the sample within the coil 3 will lead to a change in the stray capacitance of the coil 3. Since the coil 3 constitutes a part of the high-frequency tuning circuit for reception, its tuning frequency shifts in synchronization with the rotation of the sample, and the NMR signal extracted from the detection coil undergoes the above-mentioned amplitude modulation. In addition, it also receives phase modulation synchronized with rotation. Spinning sidebands are generated by the modulation received in this way.

ここで、試料管の回転を第2図aに示すように
試料管の特定部位Aの回転角度に対応する正弦波
S1で表わし、理解を容易にするため、振幅変調
が第2図bに示すようにそれに同期した正弦波形
S2で行われるものとする。今、第3図に示すよ
うな高周波パルスP1の照射と、その後の自由誘
導減衰(FID)信号のサンプリングから成る1秒
前後の観測シーケンスを2回行うこととし、第2
図cに示すように、最初の観測は時刻T0即ち試
料管の回転角度が0゜のタイミング(第1図におい
て実線で示されるタイミング)で高周波パルスP
1を照射して行い、次の観測は時刻T1即ち試料
管の回転角度が180゜のタイミング(第1図におい
て破線で示されるタイミング)で高周波パルスP
1を照射して行つた時、夫々の観測において得ら
れるFID信号について考える。
Here, the rotation of the sample tube is represented by a sine wave S1 corresponding to the rotation angle of a specific part A of the sample tube as shown in Fig. 2a, and for ease of understanding, the amplitude modulation is shown in Fig. 2b. It is assumed that the processing is performed using a sine waveform S2 synchronized with the above. Now, we will conduct two observation sequences of around 1 second each, consisting of irradiation with high-frequency pulse P1 and subsequent sampling of free induction decay (FID) signals, as shown in Figure 3.
As shown in Figure c, the first observation was made at time T0, that is, when the rotation angle of the sample tube was 0° (the timing indicated by the solid line in Figure 1), when the high-frequency pulse P
The next observation was performed by irradiating high-frequency pulse P at time T1, that is, when the rotation angle of the sample tube was 180° (the timing indicated by the broken line in Figure 1).
Let us consider the FID signals obtained in each observation when irradiating 1.

振幅変調を受けない正しいFID信号が第4図a
の形であるとすれば、時刻T0から始まる第1回
の観測で得られるFID信号は第2図bの正弦波形
による振幅変調を受け、例えば第4図bのように
得られる。
The correct FID signal without amplitude modulation is shown in Figure 4a.
If the FID signal is in the form of , the FID signal obtained in the first observation starting from time T0 is subjected to amplitude modulation by the sine waveform shown in FIG. 2b, and is obtained as shown in FIG. 4b, for example.

時刻T1から始まる第2回の観測で得られる
FID信号は、例えば第4図cのように得られる。
Obtained in the second observation starting from time T1
The FID signal is obtained, for example, as shown in FIG. 4c.

ここで、この2つのFID信号を比較すると、双
方の観測開始のタイミングが試料管の回転角度
0゜、180゜と逆相の関係にあるため、2つのFID信
号が受けた振幅変調も逆相の関係にある。従つて
この2つの信号を加算すれば、互いの変調が打消
し合い、その結果第4図aに示す変調を受けない
状態のFID信号を得ることが出来る。尚、このよ
うに試料管の回転角度0゜、180゜のタイミングで観
測を行つて加算すると1次のスピニングサイドバ
ンドを除去できるが、それに更に90゜、270゜のタ
イミングを加え、4種のFID信号を加算すれば、
2次のスピニングサイドバンドを除去することが
できる。又、30゜おきのタイミングで観測を行つ
て得られたFID信号を加算すれば、更に高次のス
ピニングサイドバンドを除去できることは言うま
でもない。上記は理解を容易にするため振幅変調
のみについて検討したが、位相変調も全く同時に
除去できることは言うまでもない。
Now, when comparing these two FID signals, the timing of the start of observation for both is determined by the rotation angle of the sample tube.
Since they are in an anti-phase relationship at 0° and 180°, the amplitude modulations received by the two FID signals are also in an anti-phase relationship. Therefore, by adding these two signals, their modulations cancel each other out, and as a result, it is possible to obtain the FID signal shown in FIG. 4a, which is not modulated. In this way, by performing observations at the timing of the sample tube rotation angle of 0° and 180° and adding them together, the first-order spinning sideband can be removed, but by adding the timings of 90° and 270°, the four types of If you add the FID signals,
Secondary spinning sidebands can be removed. It goes without saying that even higher-order spinning sidebands can be removed by adding FID signals obtained by observing at 30° intervals. Although only amplitude modulation has been discussed above for ease of understanding, it goes without saying that phase modulation can also be removed at the same time.

[実施例] 第5図は上述した基本思想に基づく本発明の一
実施例の構成を示すブロツク図である。図におい
て4は直流磁場を発生する磁石で、該磁石4内に
はNMRプローブ5が配置されている。該NMR
プロープ5の上部にはコンプレツサ6からの加圧
空気を吹付けて試料管7を回転させる試料管回転
機構8及び該回転機構の中に組込まれた回転角度
検出機構が取付けられている。9は高周波発振器
で、該発振器から発生した観測核の共鳴周波数を
持つ高周波は、観測制御回路10によつて制御さ
れるゲート11を介して高周波パルスとして
NMRプローブへ送られ、照射コイルを介して試
料に照射される。該高周波パルス照射に伴なつて
試料から発生するFID信号は、NMRプローブ内
の検出コイルによつて検出され、前記観測制御回
路10によつて制御される復調回路12及びA−
D変換器13を介してデータ処理装置14へ送ら
れる。15はデータ処理装置によるフーリエ変換
処理によつて得られたNMRスペクトルを記録す
るためのレコーダである。
[Embodiment] FIG. 5 is a block diagram showing the configuration of an embodiment of the present invention based on the above-mentioned basic idea. In the figure, 4 is a magnet that generates a DC magnetic field, and an NMR probe 5 is placed inside the magnet 4. The NMR
A sample tube rotation mechanism 8 for rotating the sample tube 7 by blowing pressurized air from the compressor 6 and a rotation angle detection mechanism built into the rotation mechanism are attached to the upper part of the probe 5. Reference numeral 9 denotes a high-frequency oscillator, and the high-frequency wave having the resonant frequency of the observation nucleus generated from the oscillator is transmitted as a high-frequency pulse through a gate 11 controlled by an observation control circuit 10.
It is sent to the NMR probe and irradiated onto the sample via the irradiation coil. The FID signal generated from the sample in conjunction with the high-frequency pulse irradiation is detected by a detection coil in the NMR probe, and is sent to the demodulation circuit 12 and A- controlled by the observation control circuit 10.
It is sent to the data processing device 14 via the D converter 13. 15 is a recorder for recording the NMR spectrum obtained by Fourier transform processing by the data processing device.

第6図は、試料回転機構8に組込まれた回転角
度検出機構の構造を説明するための図である。図
において16は試料管7の上部に取付けられたロ
ータで、その外周部には光反射体又は光吸収体か
らなるマーカ17が例えば30゜間隔で12個取付け
られている。18は該マーカ17に投射する光ス
ポツトを発生する発光素子、19は該光スポツト
位置をマーカが通過する時に生じる光量変化を検
出するための光検出器である。該光検出器19か
ら得られた検出信号は波形整形回路20を介して
前記観測制御回路10へ送られる。
FIG. 6 is a diagram for explaining the structure of the rotation angle detection mechanism incorporated in the sample rotation mechanism 8. In the figure, reference numeral 16 denotes a rotor attached to the upper part of the sample tube 7, and on its outer periphery, twelve markers 17 made of light reflectors or light absorbers are attached at intervals of, for example, 30 degrees. 18 is a light emitting element that generates a light spot projected onto the marker 17, and 19 is a photodetector for detecting a change in the amount of light that occurs when the marker passes the light spot position. The detection signal obtained from the photodetector 19 is sent to the observation control circuit 10 via a waveform shaping circuit 20.

上述の如き構成において、光検出器19に入射
する光量は、光スポツト部分をマーカ17が通過
するたびに変化するため、波形整形回路20から
は第7図aに示すように、試料管7が30゜回転す
るたびに1個のクロツクパルスが得られ、試料管
7の回転角度を30゜単位で検出することができる。
In the above-described configuration, the amount of light incident on the photodetector 19 changes each time the marker 17 passes through the light spot, so the waveform shaping circuit 20 detects the sample tube 7 as shown in FIG. 7a. One clock pulse is obtained every time the sample tube rotates by 30 degrees, and the rotation angle of the sample tube 7 can be detected in units of 30 degrees.

観測制御回路10は、第1回目の観測をクロツ
クパルスcp1が発生したタイミング、即ち回転
角度0゜のタイミングで、第7図bに示すように高
周波パルスP1を照射することにより開始する。
この観測により得られたFID信号(0゜)は、デー
タ処理装置14内のメモリ14Mに格納される。
The observation control circuit 10 starts the first observation by applying a high frequency pulse P1 as shown in FIG. 7B at the timing when the clock pulse CP1 is generated, that is, at the timing when the rotation angle is 0°.
The FID signal (0°) obtained through this observation is stored in the memory 14M within the data processing device 14.

次に、観測制御回路10は、第2回目の観測を
クロツクパルスcp2が発生したタイミング、即
ち回転角度30゜のタイミングで、第7図bに示す
ように高周波パルスP1を照射することにより開
始する。この観測により得られたFID信号F
(30゜)は、前記メモリ14Mへ1回目の観測で得
られたF(0゜)に加えられる。
Next, the observation control circuit 10 starts the second observation by irradiating the high frequency pulse P1 at the timing when the clock pulse CP2 is generated, that is, at the rotation angle of 30 degrees, as shown in FIG. 7B. FID signal F obtained from this observation
(30°) is added to F(0°) obtained in the first observation in the memory 14M.

第3回目の観測は、全く同様に回転角度60゜の
タイミングで、第4回目の観測は90゜のタイミン
グで、第5回目の観測は120゜のタイミングで、
…、第12回目の観測は330゜のタイミングで夫々開
始され、夫々の観測で得られたFID信号F(60゜)、
F(90゜)、F(120゜)、…、F(330゜)はメモリ1

M内に積算される。その結果、12回目の観測が終
了した時点でメモリ14Mに格納されている合成
FID信号はF(0゜)+F(30゜)+F(60゜)+F(90
゜)+
…+F(300゜)+F(330゜)となる。前述した説明
の通り、F(0゜)とF(180゜)、F(30゜)とF
(210゜)、F(60゜)とF(240゜)、F(90゜)とF
(270゜)、F(120゜)とF(300゜)、F(150゜)と

(330゜)の夫々の加算により、夫々逆相関係にあ
る好ましくない変調が除去されるため、得られた
合成FID信号は好ましくない変調が高次にまで除
去され、且つ積算によりSN比が向上したものと
なり、それをフーリエ変換して得られたNMRス
ペクトルはスピニングサイドバンドが高次まで除
去され、且つSN比の向上したものとなる。
The third observation was made at a rotation angle of 60 degrees, the fourth observation was made at a rotation angle of 90 degrees, and the fifth observation was made at a rotation angle of 120 degrees.
..., the 12th observation was started at a timing of 330°, and the FID signal F (60°) obtained in each observation was
F (90°), F (120°), ..., F (330°) are memory 1
4
It is integrated within M. As a result, the composite stored in memory 14M at the end of the 12th observation
The FID signal is F (0°) + F (30°) + F (60°) + F (90
゜)+
…+F(300°)+F(330°). As explained above, F (0°) and F (180°), F (30°) and F
(210°), F (60°) and F (240°), F (90°) and F
(270°), F (120°) and F (300°), F (150°) and F
(330°) removes undesirable modulations that are in an anti-phase relationship with each other, so the resulting composite FID signal has undesirable modulations removed to a high order, and the S/N ratio improves by integration. The NMR spectrum obtained by Fourier transforming the spectrum has spinning sidebands removed to a high order and has an improved signal-to-noise ratio.

尚、上述した実施例では、12回目の測定を行つ
たが、1次のサイドバンドを除去するだけなら
ば、2回目の測定だけで良いことは言うまでもな
い。
In the above-described embodiment, the 12th measurement was performed, but it goes without saying that only the second measurement is sufficient if only the primary sideband is to be removed.

又、上述した実施例では0゜→30゜→60゜→…と順
次タイミングをずらしていつたが、どんな順序で
観測をおこなつても結果に変化はない。
Furthermore, in the above-mentioned embodiment, the timing was shifted sequentially from 0° → 30° → 60° →..., but the results do not change no matter what order the observations are made.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は試料管の回転ずれを示す図、第2図及
び第4図は本発明の考え方を説明するための波形
図、第3図はシーケンスを説明するための図、第
5図は本発明の一実施例の構成を示すブロツク
図、第6図は回転角度検出機構の構造を説明する
ための図、第7図はその動作を説明するための図
である。 4:磁石、5:NMRプローブ、7:試料管、
8:試料管回転機構、9:高周波発振器、10:
観測制御回路、11:ゲート、13:A−D変換
器、14:データ処理装置、16:ロータ、1
7:マーカ、18:発光素子、19:光検出器、
20:波形整形回路。
Figure 1 is a diagram showing the rotational deviation of the sample tube, Figures 2 and 4 are waveform diagrams to explain the idea of the present invention, Figure 3 is a diagram to explain the sequence, and Figure 5 is a diagram of the present invention. FIG. 6 is a block diagram showing the configuration of an embodiment of the invention, FIG. 6 is a diagram for explaining the structure of the rotation angle detection mechanism, and FIG. 7 is a diagram for explaining its operation. 4: Magnet, 5: NMR probe, 7: Sample tube,
8: Sample tube rotation mechanism, 9: High frequency oscillator, 10:
observation control circuit, 11: gate, 13: A-D converter, 14: data processing device, 16: rotor, 1
7: marker, 18: light emitting element, 19: photodetector,
20: Waveform shaping circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 直流磁場中で試料を収容した試料管を回転さ
せた状態で該試料に高周波パルスを照射し、照射
後試料からの自由誘導減衰信号を検出するように
した核磁気共鳴装置において、試料管の回転位置
を検出する手段と、自由誘導減衰信号を積算する
手段を設け、前記検出手段からの検出信号に基づ
き、試料管の特定部位が特定位置にあるタイミン
グと、該特定部位がそれから半回転した位置にあ
るタイミングの2種のタイミングで前記高周波パ
ルス照射を行い、該2種のタイミングの高周波パ
ルス照射によつて得られた2種の自由誘導減衰信
号を前記積算手段で積算するようにしたことを特
徴とする核磁気共鳴装置。
1. In a nuclear magnetic resonance apparatus, a sample tube containing a sample is rotated in a DC magnetic field and a high-frequency pulse is irradiated to the sample, and a free induction decay signal from the sample is detected after irradiation. A means for detecting a rotational position and a means for integrating a free induction attenuation signal are provided, and based on the detection signal from the detection means, the timing at which a specific part of the sample tube is at a specific position and the timing at which the specific part has rotated half a rotation from then are determined. The high-frequency pulse irradiation is performed at two different timings, and the integrating means integrates two types of free induction attenuation signals obtained by the high-frequency pulse irradiation at the two timings. A nuclear magnetic resonance device featuring:
JP58105386A 1983-06-13 1983-06-13 Nuclear magnetic resonance device Granted JPS59230147A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58105386A JPS59230147A (en) 1983-06-13 1983-06-13 Nuclear magnetic resonance device
US06/619,005 US4628263A (en) 1983-06-13 1984-06-11 Nuclear magnetic resonance spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58105386A JPS59230147A (en) 1983-06-13 1983-06-13 Nuclear magnetic resonance device

Publications (2)

Publication Number Publication Date
JPS59230147A JPS59230147A (en) 1984-12-24
JPH034113B2 true JPH034113B2 (en) 1991-01-22

Family

ID=14406217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58105386A Granted JPS59230147A (en) 1983-06-13 1983-06-13 Nuclear magnetic resonance device

Country Status (1)

Country Link
JP (1) JPS59230147A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413444A (en) * 1987-07-08 1989-01-18 Hitachi Ltd Nuclear magnetic resonance apparatus
DE59108560D1 (en) * 1990-05-10 1997-04-03 Spectrospin Ag Method and device for compensating unwanted sidebands in magnetic nuclear magnetic resonance spectra

Also Published As

Publication number Publication date
JPS59230147A (en) 1984-12-24

Similar Documents

Publication Publication Date Title
SU980637A3 (en) Method of bidimensional spectroscopy of gyromagnetic resonance
EP2325668A1 (en) Digital NMR signal processing systems and methods
US3530371A (en) Internal field-frequency control for impulse gyromagnetic resonance spectrometers
JPH0332756B2 (en)
JP2004514911A (en) Pulse sequence method in decoupling sideband resolved NMR spectroscopy
JPH0422574B2 (en)
US4626784A (en) NMR imaging device
US4739267A (en) Method for calibrating the amplitude of radiofrequency excitation of a nuclear magnetic resonance imaging apparatus
JP3167146B2 (en) Rotor-tuned cross polarization of solid-state NMR
JPS61100645A (en) Method of inspecting sample body in nuclear magnetic resonance manner
JPH034113B2 (en)
US3909705A (en) Method of and device for recording spin resonance spectra
JPS63192427A (en) High performance nmr spectroscopic imaging method
US4628263A (en) Nuclear magnetic resonance spectrometer
JPH0225140B2 (en)
US5767677A (en) Suppression of radiation damping in NMR
JP2961229B1 (en) Magnetic resonance imaging system using gradient of radio wave magnetic field strength
US5191287A (en) Method and device for compensating undesirable side bands in nuclear magnetic resonance spectra
US5101157A (en) Fourier transformation imaging method
SU1193548A1 (en) Method of measuring time of nuclear spin-lattice relaxation
JPS60242351A (en) Measuring method of two-dimensional nuclear magnetic resonance
JPH0260146B2 (en)
JPH042909B2 (en)
SU914978A1 (en) Electron paramagnetic resonance radiospectrometer
JPH01503362A (en) Method for calibrating the amplitude of radio frequency excitation of nuclear magnetic resonance imaging equipment