JPH0340824B2 - - Google Patents

Info

Publication number
JPH0340824B2
JPH0340824B2 JP58248721A JP24872183A JPH0340824B2 JP H0340824 B2 JPH0340824 B2 JP H0340824B2 JP 58248721 A JP58248721 A JP 58248721A JP 24872183 A JP24872183 A JP 24872183A JP H0340824 B2 JPH0340824 B2 JP H0340824B2
Authority
JP
Japan
Prior art keywords
working electrode
passage
solvent
concentration
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58248721A
Other languages
Japanese (ja)
Other versions
JPS60135754A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58248721A priority Critical patent/JPS60135754A/en
Publication of JPS60135754A publication Critical patent/JPS60135754A/en
Publication of JPH0340824B2 publication Critical patent/JPH0340824B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、フロー式の濃度測定装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a flow type concentration measuring device.

〔背景技術〕[Background technology]

酵素、微生物等の生理活性物質を用いたバイオ
センサは、基質特異性、反応特異性等に優れてい
るため、試料の前処理が不要であるといつた数々
の利点を持つ。
Biosensors using physiologically active substances such as enzymes and microorganisms have excellent substrate specificity, reaction specificity, etc., and have many advantages such as not requiring sample pretreatment.

このバイオセンサを支える技術の一つとして、
酵素等を固定化する技術が挙げられる。酵素等の
生理活性物質は、一般に、生体から分離してしま
うと不安定であつて、すぐにその生理活性を失つ
てしまうという欠点を持つ。また、水に可溶であ
るため、一度使用すると回収不可能で、繰り返し
使用することができないという欠点も持つ。この
ような生理活性物質の欠点を取り除いたのが前記
固定化技術である。固定化技術を用いて、酵素、
微生物等を水不溶性の担体に結合させたり、高分
子化合物に包括したりすること等により、水不溶
性の生理活性物質を得ることが可能となり、連続
的に使用することあるいは繰り返し使用すること
が可能にもなる。
As one of the technologies that support this biosensor,
Examples include techniques for immobilizing enzymes and the like. Physiologically active substances such as enzymes generally have the disadvantage that they are unstable and quickly lose their physiological activity once separated from living organisms. Additionally, since it is soluble in water, it cannot be recovered once used and cannot be used repeatedly. The immobilization technology eliminates these drawbacks of physiologically active substances. Using immobilization techniques, enzymes,
Water-insoluble physiologically active substances can be obtained by binding microorganisms to water-insoluble carriers or encapsulating them in polymer compounds, which can be used continuously or repeatedly. It also becomes.

バイオセンサは、固定化技術により生理活性物
質を水不溶性にし、この系に何らかの電気化学デ
バイスを組み合わせることによりつくられる。バ
イオセンサを用いれば、溶液の前処理なしで溶液
中の特定物質の濃度を測定することが可能にな
る。また、バイオセンサの生理活性物質を液体の
流路内に配置するようにしたフロー式の濃度測定
装置を用いることで多数の試料を迅速に計測する
ことも可能となる。
Biosensors are created by making physiologically active substances water-insoluble using immobilization technology and combining this system with some kind of electrochemical device. Using a biosensor, it becomes possible to measure the concentration of a specific substance in a solution without pretreatment of the solution. Further, by using a flow-type concentration measuring device in which the physiologically active substance of the biosensor is arranged in a liquid flow path, it is also possible to rapidly measure a large number of samples.

バイオセンサを用いたフロー式の濃度測定装置
は、普通、溶媒が流れる通路、生理活性物質が固
定された作用極およびその対極をそれぞれ備え、
作用極と対極とが通路内部を通る溶媒に接触する
よう通路に配置されている。ここで、作用極は、
普通、被測定物質あるいは被測定物質に由来する
物質と電極反応を行う電極である。この装置を用
いて濃度の測定を行なうときは、普通、つぎのよ
うにする。まず、通路に緩衝液等の溶媒を通して
おき、つぎに、作用極および対極の手前で通路に
試料を注入する。試料を含む溶媒が作用極と対極
を通過したときに、作用極と対極の間で生じる電
気的出力の変化を測定する。電気的出力の変化
は、作用極を通る被測定物質の濃度に対応したも
のとなるので、あらかじめ検量線を作成しておけ
ば、試料中の被測定物質の濃度を知ることができ
る。
A flow-type concentration measuring device using a biosensor usually includes a passage through which a solvent flows, a working electrode on which a physiologically active substance is immobilized, and its counter electrode.
A working electrode and a counter electrode are disposed in the passageway so as to contact the solvent passing through the passageway. Here, the working electrode is
Usually, it is an electrode that performs an electrode reaction with the substance to be measured or a substance derived from the substance to be measured. When measuring concentration using this device, the following is usually done. First, a solvent such as a buffer solution is passed through the passage, and then a sample is injected into the passage before the working electrode and the counter electrode. When a solvent containing a sample passes through the working electrode and the counter electrode, the change in electrical output that occurs between the working electrode and the counter electrode is measured. Since the change in electrical output corresponds to the concentration of the analyte passing through the working electrode, by creating a calibration curve in advance, it is possible to know the concentration of the analyte in the sample.

しかしながら、この濃度測定装置では、試料中
の被測定物質の濃度が高い場合、そのままでは、
電気的出力の変化が大きくなるために、測定が不
可能になることがあるという問題があつた。すな
わち、通路内を流れる溶媒に試料を注入したと
き、試料は溶媒により希釈されるが、普通は、通
路の太さは一定であるので、試料を含む溶媒は注
入したときの希釈率とほぼ同じ希釈率で作用極お
よび対極に達する。したがつて、注入したときの
溶媒中の被測定物質の濃度が高い場合は、溶媒が
作用極および対極に達してもやはり被測定物質濃
度が高いままであるので、電気的出力の変化が大
きくなつて、測定が不可能になることがあるので
ある。
However, with this concentration measuring device, if the concentration of the substance to be measured in the sample is high,
There was a problem in that measurements were sometimes impossible due to large changes in electrical output. In other words, when a sample is injected into a solvent flowing inside a passage, the sample is diluted by the solvent, but since the thickness of the passage is usually constant, the dilution rate of the solvent containing the sample is approximately the same as the dilution rate at the time of injection. The working and counter electrodes are reached at the dilution rate. Therefore, if the concentration of the analyte in the solvent at the time of injection is high, the concentration of the analyte will remain high even when the solvent reaches the working and counter electrodes, resulting in a large change in electrical output. As a result, measurements may become impossible.

そのため、従来は、測定が不可能となる恐れが
ある場合、注入する前にあらかじめ試料を何倍か
に希釈するようにしていた。しかしながら、この
ようにすると、希釈のための時間が必要になり、
フロー式の濃度測定装置の有する長所、すなわ
ち、多くの試料を短時間で測定することができる
という長所が損なわれてしまうという問題があら
たに生じる。
Therefore, in the past, if there was a possibility that measurement would be impossible, the sample was diluted several times before injection. However, this method requires time for dilution,
A new problem arises in that the advantage of the flow-type concentration measuring device, that is, the ability to measure a large number of samples in a short period of time, is lost.

〔発明の目的〕[Purpose of the invention]

この発明は、このような事情に鑑みなされたも
ので、被測定物質の濃度が高い試料であつても、
あらかじめ試料を希釈することなく測定を行うこ
とができるフロー式の濃度測定装置を提供するこ
とを目的としている。
This invention was made in view of these circumstances, and even if the sample has a high concentration of the substance to be measured,
The object of the present invention is to provide a flow type concentration measuring device that can perform measurements without diluting a sample in advance.

〔発明の開示〕[Disclosure of the invention]

前記のような目的を達成するため、この発明
は、溶媒が流れる通路、作用極および対極をそれ
ぞれ備え、作用極と対極とが溶媒に接触するよう
に通路に配置されており、作用極と対極間で発生
する電気量の変化により溶媒中の被測定物質の濃
度の測定が行われる濃度測定装置であつて、通路
における作用極配置部分および/または対極配置
部分の太さが可変になつていることを特徴とする
濃度測定装置をその要旨としている。
In order to achieve the above object, the present invention includes a passage through which a solvent flows, a working electrode, and a counter electrode, each of which is arranged in the passage so that the working electrode and the counter electrode are in contact with the solvent. This is a concentration measuring device that measures the concentration of a substance to be measured in a solvent by changing the amount of electricity generated between the channels, and the thickness of the working electrode and/or counter electrode in the passage is variable. The gist of the invention is a concentration measuring device characterized by the following.

以下にこの発明を詳しく説明する。 This invention will be explained in detail below.

第1図および第2図はこの発明にかかる濃度測
定装置の1実施例をあらわす。図にみるように、
この測定装置は、溶媒1が入れられる溶媒溜め
2、溶媒の通路となる管3,4、フローセル5お
よび電気的出力測定手段6をそれぞれ備えてい
る。管2は、後端が溶媒溜め1に臨み、中間部に
ポンプ7および試料の注入口8が設けられてい
る。フローセル5は、内部に溶媒1が通る通路5
aが設けられており、通路5a内には、生理活性
物質が固定された作用極9と対極10が配置され
ている。作用極9と対極10は電気的出力測定手
段6に接続されている。通路5aの作用極9が配
置されている部分では、下側の壁部分が可動にな
つており、この可動壁(断面積可変装置)5bを
下げることにより、通路5aの太さを太くする、
すなわち、断面積を大きくすることができるよう
になつている。通路5aの入口5cには管3の先
端が接続され、出口5dには管4の後端が接続さ
れている。
1 and 2 show one embodiment of the concentration measuring device according to the present invention. As shown in the figure,
This measuring device includes a solvent reservoir 2 into which a solvent 1 is placed, tubes 3 and 4 serving as passages for the solvent, a flow cell 5, and electrical output measuring means 6. The rear end of the tube 2 faces the solvent reservoir 1, and a pump 7 and a sample injection port 8 are provided in the middle portion. The flow cell 5 has a passage 5 through which the solvent 1 passes.
A working electrode 9 and a counter electrode 10 to which a physiologically active substance is immobilized are arranged in the passage 5a. The working electrode 9 and the counter electrode 10 are connected to electrical output measuring means 6. In the part of the passage 5a where the working electrode 9 is arranged, the lower wall part is movable, and by lowering this movable wall (cross-sectional area variable device) 5b, the thickness of the passage 5a is increased.
In other words, the cross-sectional area can be increased. The tip of the tube 3 is connected to the inlet 5c of the passage 5a, and the rear end of the tube 4 is connected to the outlet 5d.

この濃度測定装置を用い、たとえば、つぎのよ
うにして測定を行う。まず、パイプ7により溶媒
溜め2中の溶媒1を管3、フローセル5の通路5
a、管4に一定の速度で流す。そして、電気的出
力測定手段としてポテンシヨスタツトを使用し、
作用極9と対極10間に一定の電圧を印加する。
試料中の被測定物質の濃度が高い場合は、可動壁
5bを下げて通路5aの作用極9が配置された部
分の太さを太く調整しておく。つぎに、試料を注
入口8から注入する。試料は注入時に溶媒1によ
り一旦希釈されるが、作用極9が配置された通路
5a部分での太さを太くしておくと、ここで、さ
らに希釈される。このあと、作用極9と対極10
間に流れる電流の変化を測定する。電流値の変化
は、試料中の被測定物質の濃度に対応したものに
なる。
Using this concentration measuring device, measurements are performed, for example, in the following manner. First, the solvent 1 in the solvent reservoir 2 is transferred to the pipe 3 and the passage 5 of the flow cell 5 through the pipe 7.
a. Flow through tube 4 at a constant speed. Then, using a potentiostat as an electrical output measurement means,
A constant voltage is applied between the working electrode 9 and the counter electrode 10.
When the concentration of the substance to be measured in the sample is high, the movable wall 5b is lowered to increase the thickness of the portion of the passage 5a where the working electrode 9 is arranged. Next, the sample is injected from the injection port 8. The sample is once diluted with the solvent 1 during injection, but if the thickness of the passage 5a where the working electrode 9 is arranged is made thicker, the sample is further diluted here. After this, working electrode 9 and counter electrode 10
Measure the change in the current flowing between them. The change in current value corresponds to the concentration of the substance to be measured in the sample.

この濃度測定装置では、試料中の被測定物質の
濃度が高い場合であつても、可動壁5bを下げて
通路5aを太くすることにより、試料の希釈率を
大きくして、電流すなわち電気的出力の変化を小
さくすることができるので、あらかじめ試料を希
釈する必要がない。
In this concentration measuring device, even when the concentration of the substance to be measured in the sample is high, by lowering the movable wall 5b and making the passage 5a thicker, the dilution rate of the sample is increased and the current, that is, electrical output is increased. Since the change in can be minimized, there is no need to dilute the sample in advance.

前記実施例では、作用極および対極を通路の長
さ方向に沿つて並べるようにし、通路の作用極配
置部分の太さのみを可変にしているが、必ずしも
このようにされるとは限らない。作用極および対
極をこのようにして並べて対極配置部分のみの太
さを可変にしたり、作用極配置部分および対極配
置部分の両方を可変にする場合もある。作用極配
置部分および対極配置部分の両方を可変にする場
合は、両部分の太さを別個に決められるようにし
てもよいし、そのようにしなくてもよい。また、
作用極および対極の両者を、通路の長さ方向でみ
て同じ位置に配置するようにし、作用極および対
極の両者が配置された通路部分を可変にする場合
もある。
In the embodiment described above, the working electrode and the counter electrode are arranged along the length of the passageway, and only the thickness of the working electrode placement portion of the passageway is made variable, but this is not necessarily the case. In some cases, the working electrode and the counter electrode are arranged in this manner so that only the thickness of the counter electrode arrangement part is made variable, or both the working electrode arrangement part and the counter electrode arrangement part are made variable. When both the working electrode arrangement part and the counter electrode arrangement part are made variable, the thicknesses of both parts may or may not be determined separately. Also,
In some cases, both the working electrode and the counter electrode are arranged at the same position when viewed in the length direction of the passage, and the part of the passage where both the working electrode and the counter electrode are arranged is made variable.

これまでは、生理活性物質が固定された作用極
を備えたフロー式の濃度測定装置について述べた
が、生理活性物質が固定されていない作用極を備
えたフロー式の濃度測定装置もこの発明の範囲に
含まれている。そのようなフロー式の濃度測定装
置としては、たとえば、作用極および対極として
白金からなるものが用いられて、H2O2等の濃度
を測定することができるようになつた装置があげ
られる。
So far, we have described a flow-type concentration measuring device equipped with a working electrode to which a physiologically active substance is immobilized, but the present invention also applies to a flow-type concentration measuring device equipped with a working electrode to which a physiologically active substance is not immobilized. included in the range. An example of such a flow type concentration measuring device is a device that uses platinum as a working electrode and a counter electrode and can measure the concentration of H 2 O 2 or the like.

通路の太さを変える手段は実施例で説明したよ
うな可動壁に限られるものではない。
The means for changing the thickness of the passage is not limited to the movable wall as described in the embodiment.

つぎに、第1図に示されているのと同じような
装置を用いて行つた実験について述べる。
Next, we will describe an experiment conducted using an apparatus similar to that shown in FIG.

(実験1) 第1図に示されている装置において、ポンプ7
としてペリスタポンプ、管3,4としてシリコン
チユーブ、作用極9および対極10として白金か
らなるもの、電気的出力測定手段6としてポテン
シヨスタツト、フローセル5として、通路5aの
可動壁5bのない部分の断面積が0.785mm2で、可
動壁5bのある部分、すなわち、作用極配置部分
の断面積が0.785〜5.000mm2の間で変化させること
ができるようになつたものをそれぞれ用いること
として実験を行つた。
(Experiment 1) In the apparatus shown in Fig. 1, pump 7
as a peristaltic pump, as the tubes 3 and 4 silicon tubes, as the working electrode 9 and the counter electrode 10 made of platinum, as the electrical output measuring means 6 a potentiostat, as the flow cell 5 the cross-sectional area of the part of the passage 5a without the movable wall 5b. was 0.785 mm2 , and the cross-sectional area of the movable wall 5b, that is, the working electrode arrangement part, was able to be varied between 0.785 and 5.000 mm2 . .

溶媒としてPH7.5のリン酸塩緩衝液を用いるこ
ととし、まず、ペリスタポンプにより、シリコン
チユーブを通じて溶媒をフローセルに導いた。そ
して、対極に対し作用極が+0.7Vとなるような
電圧をポテンシヨスタツトにより印加した。通路
の作用極配置部分の断面積を5mm2とし、0.01M、
0.05Mおよび0.1MのH2O2水溶液10μずつを順次
注入口から注入して、ポテンシヨスタツトにより
出力電流値を測定した。測定結果を第3図に示
す。つぎに、通路の作用極配置部分の断面積を
0.785mm2にし、前記と同じようにして出力電流値
を測定した。測定結果を第4図に示す。
A phosphate buffer with a pH of 7.5 was used as the solvent, and first, the solvent was introduced into the flow cell through a silicon tube using a peristaltic pump. Then, a voltage such that the working electrode was +0.7 V with respect to the counter electrode was applied by a potentiostat. The cross-sectional area of the working electrode placement part of the passage is 5mm2 , 0.01M,
10μ of 0.05M and 0.1M H 2 O 2 aqueous solutions were sequentially injected from the injection port, and the output current value was measured using a potentiostat. The measurement results are shown in Figure 3. Next, the cross-sectional area of the working electrode placement part of the passage is
0.785 mm 2 , and the output current value was measured in the same manner as above. The measurement results are shown in Figure 4.

第3図より、通路の作用極配置部分の断面積を
5mm2と大きくした場合には、3種類のH2O2水溶
液全部の出力電流値のピークを測定することがで
きたことがわかり、第4図より、断面積を0.785
mm2とした場合には3種類の濃度のH2O2水溶液の
うちの0.1Mのものの出力電流値のピークに頭打
ちがあらわれたことがわかる。このようなことか
ら、濃度が高くて従来ではあらかじめ希釈しなけ
れば測定できなかつた試料でも、断面積を大きく
することにより、希釈することなく測定ができる
ようになるということがわかる。
From Figure 3, it can be seen that when the cross-sectional area of the working electrode placement part of the passage was increased to 5 mm 2 , it was possible to measure the peaks of the output current values of all three types of H 2 O 2 aqueous solutions. From Figure 4, the cross-sectional area is 0.785
It can be seen that in the case of mm 2 , a plateau appeared at the peak of the output current value of the 0.1M H 2 O 2 aqueous solution of three concentrations. From these facts, it can be seen that even if the sample has a high concentration and could not be measured without prior dilution, by increasing the cross-sectional area, it becomes possible to measure the sample without diluting it.

(実験2) グルコースオキシダーゼ固定化膜が付けられた
白金製の作用極が設けられているほかは実験1で
用いたのと同じ装置を用いて実験を行つた。
(Experiment 2) The experiment was conducted using the same apparatus as used in Experiment 1, except that a platinum working electrode to which a glucose oxidase immobilized membrane was attached was provided.

実験1と同じ操作を行つて、0.01M、0.05M、
0.1Mおよび0.5Mの4種類の濃度のグルコース溶
液の出力電流値を測定した。ただし、0.01Mおよ
び0.05Mのグルコース溶液を測定する場合は、通
路の作用極配置部分の断面積を1.5mm2とし、0.1M
および0.5Mのグルコース溶液を測定する場合は
断面積を5.0mm2とすることとした。測定結果を第
5図に示す。
Perform the same operation as in Experiment 1 to obtain 0.01M, 0.05M,
The output current values of glucose solutions at four concentrations of 0.1M and 0.5M were measured. However, when measuring 0.01M and 0.05M glucose solutions, the cross-sectional area of the working electrode placement part of the passage should be 1.5 mm 2 , and the 0.1M
When measuring a 0.5M glucose solution, the cross-sectional area was set to 5.0 mm2 . The measurement results are shown in Figure 5.

第5図より、4種類の濃度のグルコース溶液す
べての出力電流値のピークを測定することができ
たことがわかる。
From FIG. 5, it can be seen that the peaks of the output current values of all the glucose solutions of four concentrations could be measured.

断面積を0.785mm2にして前記と同じようにして
4種類のグルコース溶液の測定を行つたが、
0.1Mおよび0.5Mのグルコース溶液では、出力電
流値のピークに頭打ちが見られた。
Four types of glucose solutions were measured in the same manner as above with a cross-sectional area of 0.785 mm 2 .
In the 0.1M and 0.5M glucose solutions, a plateau was observed at the peak of the output current value.

〔発明の効果〕〔Effect of the invention〕

この発明にかかる濃度測定装置は、溶媒が流れ
る通路、作用極および対極をそれぞれ備え、作用
極と対極とが溶媒に接触するように通路に配置さ
れており、作用極と対極間で発生する電気量の変
化により溶媒中の被測定物質の濃度の測定が行わ
れる濃度測定装置であつて、通路における作用極
配置部分および/または対極配置部分の太さが可
変になつているので、被測定物質の濃度が高い試
料であつても、あらかじめ試料を希釈することな
く測定を行うことができる。
The concentration measuring device according to the present invention includes a passage through which a solvent flows, a working electrode, and a counter electrode. This is a concentration measuring device that measures the concentration of a substance to be measured in a solvent by changing the amount, and since the thickness of the working electrode arrangement part and/or the counter electrode arrangement part in the passage is variable, Even if the sample has a high concentration of , it can be measured without diluting the sample in advance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明にかかる濃度測定装置の1実
施例の概略説明図、第2図は同濃度測定装置のフ
ローセルの縦断面図、第3図および第4図は、実
験1の測定結果のH2O2濃度と出力電流値の関係
をあらわすグラフ、第5図は実験2の測定結果の
グルコース濃度と出力電流値の関係をあらわすグ
ラフである。 1……溶媒、3,4……管、5……フローセ
ル、5a……通路、5b……可動壁、9……作用
極、10……対極。
FIG. 1 is a schematic explanatory diagram of one embodiment of the concentration measuring device according to the present invention, FIG. 2 is a longitudinal sectional view of a flow cell of the same concentration measuring device, and FIGS. 3 and 4 show the measurement results of Experiment 1. A graph showing the relationship between the H 2 O 2 concentration and the output current value. FIG. 5 is a graph showing the relationship between the glucose concentration and the output current value in the measurement results of Experiment 2. DESCRIPTION OF SYMBOLS 1... Solvent, 3, 4... Tube, 5... Flow cell, 5a... Passage, 5b... Movable wall, 9... Working electrode, 10... Counter electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 溶媒が流れる通路、作用極および対極をそれ
ぞれ備え、作用極と対極とが溶媒に接触するよう
に通路に配置されており、作用極と対極間で発生
する電気量の変化により溶媒中の被測定物質の濃
度の測定が行われる濃度測定装置であつて、通路
における作用極配置部分および/または対極配置
部分の太さが可変になつていることを特徴とする
濃度測定装置。
1 A passage through which a solvent flows, a working electrode, and a counter electrode are arranged in the passage so that the working electrode and the counter electrode are in contact with the solvent, and the amount of electricity generated between the working electrode and the counter electrode changes to 1. A concentration measuring device for measuring the concentration of a substance to be measured, characterized in that the thickness of a working electrode placement portion and/or a counter electrode placement portion in a passage is variable.
JP58248721A 1983-12-23 1983-12-23 Concentration measuring device Granted JPS60135754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58248721A JPS60135754A (en) 1983-12-23 1983-12-23 Concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58248721A JPS60135754A (en) 1983-12-23 1983-12-23 Concentration measuring device

Publications (2)

Publication Number Publication Date
JPS60135754A JPS60135754A (en) 1985-07-19
JPH0340824B2 true JPH0340824B2 (en) 1991-06-20

Family

ID=17182352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58248721A Granted JPS60135754A (en) 1983-12-23 1983-12-23 Concentration measuring device

Country Status (1)

Country Link
JP (1) JPS60135754A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690161B2 (en) * 1989-08-30 1994-11-14 雪印乳業株式会社 Method and apparatus for measuring concentration of analyte in solution or dispersion

Also Published As

Publication number Publication date
JPS60135754A (en) 1985-07-19

Similar Documents

Publication Publication Date Title
US5462645A (en) Dialysis electrode device
Shi et al. Determination of uric acid at electrochemically activated glassy carbon electrode
US5312590A (en) Amperometric sensor for single and multicomponent analysis
JPH0617889B2 (en) Biochemical sensor
Milardović et al. Glucose determination in blood samples using flow injection analysis and an amperometric biosensor based on glucose oxidase immobilized on hexacyanoferrate modified nickel electrode
Senel et al. Lab-in-a-pencil graphite: A 3D-printed microfluidic sensing platform for real-time measurement of antipsychotic clozapine level
D’Orazio et al. Electrochemistry and chemical sensors
JPH0235933B2 (en)
Gumbrecht et al. Online blood electrolyte monitoring with a ChemFET microcell system
Wang et al. Organic-phase enzyme electrode for the determination of trace water in nonaqueous media
Du et al. Direct electrochemical detection of glucose in human plasma on capillary electrophoresis microchips
Montalvo Electrode for measuring urease enzyme activity
JP4801062B2 (en) SIRE flow detector
Böhm et al. A flow-through amperometric sensor based on dialysis tubing and free enzyme reactors
Zhang et al. Simultaneous determination of glucose and sucrose by a dual‐working electrode multienzyme sensor flow‐injection system
JPH0340824B2 (en)
JPS60155959A (en) Measurement using biosensor
JPH04279854A (en) Platinum coated carbon fiber electrode and enzymatic film sensor using same
Matuszewski et al. Simultaneous enzymatic determination of glucose and ascorbic acid using flow‐injection amperometry
US20080184810A1 (en) Calibratable Flow Detector
RU2696499C1 (en) Biosensor for simultaneous glucose and blood lactate determination
JPS6062978A (en) Biosensor
JP3902156B2 (en) Online catecholamine sensing device
Vokhmyanina et al. Prussian Blue-Based Thin-Layer Flow-Injection Multibiosensor for Simultaneous Determination of Glucose and Lactate
JPH0555816B2 (en)