JPH034080B2 - - Google Patents

Info

Publication number
JPH034080B2
JPH034080B2 JP57194883A JP19488382A JPH034080B2 JP H034080 B2 JPH034080 B2 JP H034080B2 JP 57194883 A JP57194883 A JP 57194883A JP 19488382 A JP19488382 A JP 19488382A JP H034080 B2 JPH034080 B2 JP H034080B2
Authority
JP
Japan
Prior art keywords
protecting group
reduced pressure
under reduced
reaction
bredeinin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57194883A
Other languages
Japanese (ja)
Other versions
JPS5984900A (en
Inventor
Seishi Fukukawa
Takao Hirano
Satoshi Shuto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Jozo KK
Original Assignee
Toyo Jozo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Jozo KK filed Critical Toyo Jozo KK
Priority to JP57194883A priority Critical patent/JPS5984900A/en
Publication of JPS5984900A publication Critical patent/JPS5984900A/en
Publication of JPH034080B2 publication Critical patent/JPH034080B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Saccharide Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、ブレデイニン(Bredinin)の新規
な化学的製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel chemical method for the production of Bredinin.

ブレデイニン(4−カルバモイル−1−β−D
−リボフラノシル−イミダゾリウム−5−オレイ
ト)は、式 で示され、オイペニシリウム(Eupenicillium)
属に属するブレデイニン生産菌を用いる醗酵法に
よりはじめて製造され〔J.Antibiotics,Vol27,
No.10,775〜782(1974)、特公昭49〜12720号〕、強
力な免疫抑制活性を有するだけでなく、抗キヤン
ジタ活性、抗ウイルス活性および抗腫瘍活性を有
する〔J.Antibiotics,Vol.28,No.10,798〜803
(1975)Chem.Pharm.Bull.,23(1),245〜246
(1975)、Cancer Research,35,1643〜1648
(1975)、特公昭49−12720号〕。
Bredeinin (4-carbamoyl-1-β-D
-ribofuranosyl-imidazolium-5-oleate) has the formula Eupenicillium
It was first produced by a fermentation method using Bredeinin-producing bacteria belonging to the genus [J. Antibiotics, Vol. 27,
No. 10, 775-782 (1974), Special Publication No. 49-12720], and has not only strong immunosuppressive activity, but also anticandida activity, antiviral activity, and antitumor activity [J. Antibiotics, Vol. 28, No. 10, 798-803
(1975) Chem.Pharm.Bull., 23(1), 245-246
(1975), Cancer Research, 35, 1643-1648
(1975), Special Publication No. 49-12720].

ブレデイニンの上記以外の製造法としては、4
−カルバモイル−イミダゾリウム−5−オレイト
とβ−D−リボフラノースに化学的にN−グリコ
シド化する方法〔特公昭56−47196号、特公昭56
−52038号、Chem.Pharm.Bull.,23(1),245〜246
(1975)〕、4−カルバモイル−イミダゾリウム−
5−オレイトを微生物を用いて生化学的にサルベ
ージ合成する方法(特公昭54−36678)が挙げら
れる。
Other methods for producing bredeinin other than the above include 4.
-Chemical N-glycosidation method to carbamoyl-imidazolium-5-oleate and β-D-ribofuranose [Special Publication No. 47196/1986, Japanese Patent Publication No. 1986-1999
−52038, Chem.Pharm.Bull., 23(1), 245-246
(1975)], 4-carbamoyl-imidazolium-
A method for biochemically salvage synthesizing 5-oleate using microorganisms (Japanese Patent Publication No. 54-36678) is mentioned.

本発明者らは、ブレデイニンの化学的製造法に
ついて種々研究した結果、AICAリボシド(5−
アミノ−イミダゾール−4−カルボキサマイドリ
ボシド)からブレデイニンに変換する新規な方法
を見出し、本発明を完成したものである。
As a result of various studies on the chemical production method of bredeinin, the present inventors discovered that AICA riboside (5-
The present invention was completed by discovering a new method for converting amino-imidazole-4-carboxamide riboside (amino-imidazole-4-carboxamide riboside) into bredeinine.

本発明は、式 (式中、R1およびR2は各々水素原子または水
酸基の保護基、R3は水素原子または水酸基の保
護基を示す)で表わされるAICAリボシドを酸性
条件下光照射して、式 (式中、R1、R2およびR3は前記と同じ意味を
有する)で表される化合物を得、該化合物〔3〕
をイミダゾール閉環し、2′位、3′位、および(ま
たは)5′位の水酸基が保護されている場合には、
その保護基を脱離することを特徴とするブレデイ
ニンの製造法であつて、その発明の第一の目的と
するところは、AICAリボシドからブレデイニン
を化学的に合成する新規な製造法を提供すること
にあり、第二の目的とするところは、従来の化学
法より安価にブレデイニンを合成する新規な製造
法を提供することにある。
The present invention is based on the formula (In the formula, R 1 and R 2 each represent a hydrogen atom or a hydroxyl group-protecting group, and R 3 represents a hydrogen atom or a hydroxyl group-protecting group.) AICA riboside represented by the formula (wherein R 1 , R 2 and R 3 have the same meanings as above) was obtained, and the compound [3]
is ring-closed with imidazole, and when the hydroxyl groups at the 2′, 3′, and/or 5′ positions are protected,
The first objective of the invention is to provide a novel manufacturing method for chemically synthesizing bredeinin from AICA riboside, which is characterized by removing the protective group. The second objective is to provide a new method for synthesizing bredeinin at a lower cost than conventional chemical methods.

本発明における出発物質であるAICAリボシド
〔2〕は、AICAリボシドまたは2′位、3′位および
5′位の水酸基が適当な保護基で保護されたAICA
リボシドが用いられる。
AICA riboside [2], which is the starting material in the present invention, is AICA riboside or 2'-position, 3'-position and
AICA with the 5′-hydroxyl group protected with an appropriate protecting group
Ribosides are used.

上記の保護基としては、核酸化学または糖化学
の分野において使用される公知の水酸基の保護基
が用いられる。2′位および3′位の水酸基の保護基
の例としては、ホルミル、アセチル、メトキシア
セチル、ベンゾイル、p−クロロベンジルオキシ
アセチルなどのアシル基、t−ブチル、ベンジ
ル、α−エトキシエチル、α−メトキシイソプロ
ピル、テトラヒドロピラニル、メトキシテトラヒ
ドロピラニル、o−ニトロベンジル、t−ブチル
ジフエニルシリル基などが挙げられる。また2′位
および3′位の水酸基は隣接する酸素原子と共に環
状アセタールを形成する形で保護される。このよ
うな保護基としては、イソプロピリデン、メトキ
シメチレン、メトキシエチリデン、エトキシメチ
レン、エトキシエチリデン、ベンジリデン、シク
ロアルキリデン基などが挙げられる。5′位の水酸
基の保護基例としては、ホルミル、アセチル、ク
ロロアセチル、トリクロロアセチル、トリフルオ
ロアセチル、メトキシアセチル、ピバロイル、ベ
ンゾイル、β−ベンゾイルプロピオニル、フエノ
キシアセチル、トリチルオキシアセチルなどのア
シル基、トリチル、モノメトキシトリチル、ジメ
トキシトリチル、トリメトキシトリチルなどのト
リチル基、メトキシメチル基などが挙げられる。
As the above-mentioned protecting group, a known hydroxyl group-protecting group used in the fields of nucleic acid chemistry or sugar chemistry is used. Examples of protecting groups for hydroxyl groups at the 2' and 3' positions include acyl groups such as formyl, acetyl, methoxyacetyl, benzoyl, p-chlorobenzyloxyacetyl, t-butyl, benzyl, α-ethoxyethyl, α- Examples include methoxyisopropyl, tetrahydropyranyl, methoxytetrahydropyranyl, o-nitrobenzyl, and t-butyldiphenylsilyl groups. Furthermore, the 2'- and 3'-position hydroxyl groups are protected in such a way that they form a cyclic acetal together with the adjacent oxygen atom. Examples of such protecting groups include isopropylidene, methoxymethylene, methoxyethylidene, ethoxymethylene, ethoxyethylidene, benzylidene, and cycloalkylidene groups. Examples of protecting groups for the hydroxyl group at the 5' position include acyl groups such as formyl, acetyl, chloroacetyl, trichloroacetyl, trifluoroacetyl, methoxyacetyl, pivaloyl, benzoyl, β-benzoylpropionyl, phenoxyacetyl, and trityloxyacetyl. , trityl groups such as trityl, monomethoxytrityl, dimethoxytrityl, and trimethoxytrityl, and methoxymethyl groups.

上記の保護基を導入するには、公知の方法によ
つて行うことができるが、後に保護基を脱離する
際に効率よく、しかも一段階で脱離できるような
保護基を選択するのが好ましい。
The above-mentioned protecting groups can be introduced using known methods, but it is important to select a protecting group that can be removed later in an efficient manner and that can be removed in one step. preferable.

本発明においては、先ずAICAリボシド〔2〕
を酸性条件下光照射による光化学反応により中間
化合物〔3〕が製造される。上記の酸性条件とし
てはAICAリボシド〔2〕がプロトン化され得る
ようなPH範囲であればよいが、通常PH0.1〜4の
条件下で行われる。このような酸性条件とするに
は通常、塩酸、硫酸、硝酸、リン酸などの無機酸
や酢酸、トリフルオロ酢酸などの有機酸を適宜希
釈した溶液として用いればよい。
In the present invention, first, AICA riboside [2]
Intermediate compound [3] is produced by a photochemical reaction caused by irradiation with light under acidic conditions. The above acidic conditions may be within a PH range where AICA riboside [2] can be protonated, but the acidic conditions are usually PH 0.1 to 4. To achieve such acidic conditions, a solution prepared by appropriately diluting an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, or phosphoric acid or an organic acid such as acetic acid or trifluoroacetic acid may be used.

上記の光化学反応は、冷却下でも行い得るが、
通常室温で行われる。反応時間は、主として出発
物質〔2〕の種類およびその濃度により左右さ
れ、その濃度が薄い程反応が早く進行し、逆に濃
度が高い程反応時間を要するが、反応の終点は適
当な担体の薄層クロマトグラフイーまたは高速液
体クロマトグラフイーなどによつて出発物質
〔2〕および生成する中間化合物〔3〕を追跡す
ることにより適宜決定することができる。通常は
30分ないし24時間位である。光照射方法として
は、紫外線電球、例えば水銀ランプの照射により
行われる。反応の際には、反応液中の酸素が存在
するような場合にはオゾンに変換し、それにより
反応に悪影響を与える恐れがあるので、不活性ガ
ス、例えばアルゴンガス、窒素ガスなどの気流下
で反応を行うと副反応を防止する点で有利であ
る。
The above photochemical reaction can be performed even under cooling, but
Usually done at room temperature. The reaction time mainly depends on the type of starting material [2] and its concentration; the lower the concentration, the faster the reaction, and the higher the concentration, the longer the reaction takes, but the end point of the reaction depends on the use of an appropriate carrier. It can be appropriately determined by tracking the starting material [2] and the produced intermediate compound [3] by thin layer chromatography or high performance liquid chromatography. Normally
It takes about 30 minutes to 24 hours. The light irradiation method is carried out by irradiation with an ultraviolet light bulb, for example, a mercury lamp. During the reaction, if oxygen is present in the reaction solution, it may be converted to ozone, which may adversely affect the reaction, so do not use it under a flow of inert gas, such as argon gas or nitrogen gas. It is advantageous to carry out the reaction in terms of preventing side reactions.

このようにして得られた中間化合物〔3〕は、
中和された後、場合により減圧濃縮し、非親水性
有機溶媒、例えばクロロホルム、ジクロロメタン
などで抽出することにより得られる。さらに精製
を必要とする場合には、シリカゲル、活性アルミ
ナ、吸着樹脂などの担体を用いるクロマトグラフ
イーにより精製することができる。
The intermediate compound [3] thus obtained is
After being neutralized, it is optionally concentrated under reduced pressure and extracted with a non-hydrophilic organic solvent such as chloroform or dichloromethane. If further purification is required, it can be purified by chromatography using a carrier such as silica gel, activated alumina, or adsorption resin.

次に、中間化合物〔3〕をイミダゾール閉環す
るのであるが、適当な有機溶媒、例えばジメチル
スルホキサイド、ジメチルホルムアミド、ジメチ
ルアセトアミド、ヘキサメチレンホスホリルアミ
ドなどの有機溶媒中、ギ酸、オルトギ酸エステ
ル、ホルムイミノエーテル、ジエトキシメチルア
セテートまたはN−ホルミルモルホリンなどと加
熱する方法、二硫化炭素のピリジン溶液、ジチオ
ギ酸アルカリまたはチオ尿素と反応させ、次いで
脱硫反応に付す方法などにより行われる。
Next, the intermediate compound [3] is subjected to imidazole ring closure in an appropriate organic solvent such as dimethyl sulfoxide, dimethyl formamide, dimethyl acetamide, hexamethylene phosphorylamide, etc., using formic acid, orthoformate, form This can be carried out by heating with iminoether, diethoxymethyl acetate or N-formylmorpholine, or by reacting with a pyridine solution of carbon disulfide, an alkali dithioformate or thiourea, and then subjecting it to a desulfurization reaction.

このようにしてブレデイニンまたは2′位、3′位
および5′位の水酸基が保護基で保護されたブレデ
イニンが得られるが、これらの反応生成物を単
離、精製するには、通常の公知の手段を使用すれ
ばよい。例えば反応生成物を含有する溶液を濃縮
し、得られる残渣に溶媒を加えて抽出し、得られ
た抽出液を濃縮して粗製の反応生成物を得、さら
にこれを精製するには、シリカゲル、活性アルミ
ナ、吸着樹脂などの担体を用いるクロマトグラフ
イーにより精製すればよい。
In this way, bredeinin or bredeinin in which the hydroxyl groups at the 2′, 3′, and 5′ positions are protected with protecting groups is obtained, but in order to isolate and purify these reaction products, conventional known methods are used. Just use the means. For example, a solution containing a reaction product is concentrated, a solvent is added to the resulting residue for extraction, the resulting extract is concentrated to obtain a crude reaction product, and in order to further purify this, silica gel, It may be purified by chromatography using a carrier such as activated alumina or adsorption resin.

保護基を脱離する場合には、核酸化学または糖
化学において用いられる公知の脱離方法により行
われる。例えば2′、3′、5′−トリ−O−アセチル
基はアンモニア飽和メタノール中で室温または加
温下処理するか、あるいはアルカリ金属アルコラ
ートのアルコール溶液やアルカリ金属水酸化物の
水溶液中で処理してもよい。反応液から主成した
ブレデイニンを得るには、反応液を濃縮し、残渣
を適当なアルコール系溶媒で結晶化するか、さら
に必要に応じ、シリカゲル、活性アルミナ、吸着
樹脂などの担体を用いるクロマトグラフイーによ
り精製することができる。
When removing a protecting group, it is carried out by a known removal method used in nucleic acid chemistry or sugar chemistry. For example, the 2', 3', 5'-tri-O-acetyl group can be treated in ammonia-saturated methanol at room temperature or under heating, or in an alcoholic solution of an alkali metal alcoholate or an aqueous solution of an alkali metal hydroxide. It's okay. In order to obtain bredeinin, which is the main product, from the reaction solution, the reaction solution is concentrated and the residue is crystallized with an appropriate alcoholic solvent, or if necessary, chromatography using a carrier such as silica gel, activated alumina, or adsorption resin is performed. It can be purified by E.

次に、実施例および参考例を挙げて本発明を具
体的に説明するが、これにより本発明を限定する
ものではない。
Next, the present invention will be specifically explained with reference to Examples and Reference Examples, but the present invention is not limited thereto.

尚、実施例および参考例中の薄層クロマトグラ
フイー(TLC)は特記しない限り、次の担体お
よび展開溶媒を用いた。また、実施例1,3,6
および7の標題化合物のNMRのアサインは、式
〔3〕に記載の位置番号に基づいて行つた。
In the thin layer chromatography (TLC) in Examples and Reference Examples, the following carriers and developing solvents were used unless otherwise specified. In addition, Examples 1, 3, 6
The NMR assignment of the title compound and 7 was performed based on the position number described in formula [3].

担体;シリカゲル(メルク社製Art5715) 展開溶媒; a:酢酸ブチル−酢酸−アセトン−水(10:6:
3:4) b:クロロホルム−メタノール(10:1) c:クロロホルム−メタノール(5:1) 参考例 1 2−アミノ−N−β−D−リボフラノシルマロ
ンアミド AICAリボシド1548mg(6mM)を0.02N−塩酸
500mlに溶かし、アルゴンガス気流下、高圧水銀
灯(400W)を15時間照射した。反応液にイオン
交換樹脂Dowex/(OH-型)を加えて中和し、
さらにDowex/(OH-型)を追加して過した。
液を減圧乾固して黄色非結晶固体の2−アミノ
−N−β−D−リボフラノシルマロンアミドを得
た。
Support: Silica gel (Merck Art5715) Developing solvent: a: Butyl acetate-acetic acid-acetone-water (10:6:
3:4) b: Chloroform-methanol (10:1) c: Chloroform-methanol (5:1) Reference example 1 2-Amino-N-β-D-ribofuranosylmalonamide AICA riboside 1548mg (6mM) at 0.02 N-hydrochloric acid
The solution was dissolved in 500 ml and irradiated with a high-pressure mercury lamp (400 W) for 15 hours under an argon gas flow. Add ion exchange resin Dowex/(OH - type) to the reaction solution to neutralize it.
I also added Dowex/(OH - type).
The liquid was dried under reduced pressure to obtain 2-amino-N-β-D-ribofuranosylmalonamide as a yellow amorphous solid.

NMR(DMSO−d6−D2O)δTMS ppn;3.5〜3.9(m.,
6H)、5.20(d.,1H,H−1′) IR;νKBr CO 1710cm-1 TLC;Rfa=0.13 実施例 1 ブレデイニンの製造 実施例1で得た2−アミノ−N−β−D−リボ
フラノシルマロンアミドを40℃5時間真空乾燥し
た後、ジメチルホルムアミド20mlおよびオルトギ
酸エチル0.4mlと共に133℃で7分間加熱撹拌し
た。反応液をイオン変換樹脂IRA−411(OH-型)
のカラム(2×15cm)にチヤージし、水500mlで
洗浄した後、2%酢酸水200mlで溶出した。各フ
ラクシヨンをTLCで追跡し、Rfa=0.30付近の区
分を集め、減圧濃縮した。残渣を酢酸ブチル−酢
酸−アセトン−水(10:6:3:4)で展開する
分取シリカゲル(メルク社製、Art5717、20×20
cm)薄層クロマトグラフイーを行つた。Rfa=
0.30付近のスポツトを有する部分をかき集め、ク
ロロホルム−メタノール−酢酸(6:12:1)で
溶出した。溶出液を減圧濃縮して粘稠な油状物を
得た。これを少量の水に溶かし、Dowex50W
(H+型)のカラム(2×15cm)にチヤージし、水
で溶出してブレデイニンを含むフラクシヨンを集
めて減圧乾固した。残渣を水−イソプロパノール
から結晶化された後、90℃で真空乾燥してブレデ
イニン174mg(収率11.2%)を得た。
NMR (DMSO-d 6 -D 2 O) δ TMS ppn ; 3.5-3.9 (m.,
6H), 5.20 (d., 1H, H-1') IR; ν KBr CO 1710cm -1 TLC; Rfa=0.13 Example 1 Production of Bredeinin 2-Amino-N-β-D- obtained in Example 1 After drying ribofuranosylmalonamide under vacuum at 40°C for 5 hours, it was heated and stirred at 133°C for 7 minutes with 20ml of dimethylformamide and 0.4ml of ethyl orthoformate. Ion conversion resin IRA-411 (OH - type) for the reaction solution
The column was charged to a column (2 x 15 cm), washed with 500 ml of water, and eluted with 200 ml of 2% aqueous acetic acid. Each fraction was followed by TLC, and fractions around Rfa=0.30 were collected and concentrated under reduced pressure. Develop the residue with butyl acetate-acetic acid-acetone-water (10:6:3:4) on preparative silica gel (Merck, Art5717, 20 x 20
cm) Thin layer chromatography was performed. Rfa=
A portion having a spot around 0.30 was collected and eluted with chloroform-methanol-acetic acid (6:12:1). The eluate was concentrated under reduced pressure to obtain a viscous oil. Dissolve this in a small amount of water and use Dowex50W.
(H + type) column (2 x 15 cm), eluted with water, and fractions containing bredeinin were collected and dried under reduced pressure. The residue was crystallized from water-isopropanol and then dried under vacuum at 90°C to obtain 174 mg of bredeinin (yield 11.2%).

NMR(DMSO−d6)δDSS ppn;3.4〜3.7(m.,2H,
H−5′)、3.8〜4.0(m.,1H,H−4′)、4.10(t.,
1H,H−3′)、4.39(t.,1H,H−2′)、4.4〜6.2
(br.,3H,OH)、6.76、7.02(各br.,2H,
CONH2)8.30(s.,1H,H−2) UV:λH2O nax277nm,244nm 生物活性および他の器機分析データは天然のブ
レデイニンと完全に一致した。
NMR (DMSO−d 6 ) δ DSS ppn ; 3.4 to 3.7 (m., 2H,
H-5'), 3.8-4.0 (m., 1H, H-4'), 4.10 (t.,
1H, H-3'), 4.39 (t., 1H, H-2'), 4.4-6.2
(br., 3H, OH), 6.76, 7.02 (each br., 2H,
CONH 2 ) 8.30 (s., 1H, H-2) UV: λ H2O nax 277nm, 244nm Biological activity and other instrumental analysis data were completely consistent with natural bredeinin.

参考例 2 2′,3′,5′−トリ−O−アセチルAICAリボシ
ド AICAリボシド2.58g(10mM)をピリジン50
mlに懸濁し、これに氷冷下無水酢酸5.0mlを加え
た後、室温で2時間撹拌した。反応液を氷水中に
注ぎ、クロロホルムで抽出した。クロロホルム層
を無水硫酸マグネシウムで乾燥後、減圧濃縮し
た。残渣をシリカゲル(和光純薬社製、ワコーゲ
ルC−200)のカラムにチヤージし、メタノール
−クロロホルム(1:20)で溶出するクロマトグ
ラフイーを行つた。Rfb=0.5付近のフラクシヨン
を集め、減圧乾固してあめ状の2′,3′,5′−トリ
−O−アセチルAICAリボシド3.21g(収率85%)
を得た。
Reference example 2 2',3',5'-tri-O-acetyl AICA riboside 2.58g (10mM) of AICA riboside was added to 50% of pyridine.
After adding 5.0 ml of acetic anhydride under ice-cooling, the mixture was stirred at room temperature for 2 hours. The reaction solution was poured into ice water and extracted with chloroform. The chloroform layer was dried over anhydrous magnesium sulfate and then concentrated under reduced pressure. The residue was charged to a column of silica gel (Wako Gel C-200, manufactured by Wako Pure Chemical Industries, Ltd.), and chromatography was performed by eluting with methanol-chloroform (1:20). Fractions around Rfb = 0.5 were collected and dried under reduced pressure to give 3.21 g of candy-like 2',3',5'-tri-O-acetyl AICA riboside (yield 85%).
I got it.

NMR(CDCl3,D2O)δTMS ppn;2.13(9H,
3XCH3CO)、4.38(m.,3H,H−4′,H−5′)、
5.32(m.,1H,H−3′)、5.48(d,d.,1H,H−
2′)、5.67(d,1H,H−1′)、7.12(s.,1H,H−
2) 参考例 3 2−アミノ−N−(2,3,5−トリ−O−ア
セチル−β−D−リボフラノシル)マロンアミ
ド 2′,3′,5′−トリ−O−アセチルAICAリボシ
ド2.6gを0.02N塩酸500mlに溶かし、アルゴン気
流下、高圧水銀灯(400W)を15時間照射した。
反応後にDowex1(OH-型)を加えて中和し、
過した後、液を減圧濃縮した。残渣をクロロホ
ルムで抽出し、抽出液をワツトマン1−PS濾紙
に通した後、減圧濃縮した。残渣をシリカゲル
(メルク社製Art9385)のカラム(3×15cm)に
チヤージし、クロロホルム−メタノール(17:
1)で溶出するフラツシユクロマトグラフイーを
行つた。Rfb=0.33付近のフラクシヨンを集め、
減圧乾固して2−アミノ−N−(2,3,5−ト
リ−O−アセチル−β−D−リボフラノシル)マ
ロンアミドを非結晶固体として得た。収量802mg
(収率32%) このものは、NMRにより2種類の光学異性体
からなることが確められ、メタノールで処理する
ことにより、一方のエピマーが結晶として得られ
た。収量459mg 融点:122〜124℃ 〔α〕24 D−39.8(C=0.5,クロロホルム) NMR(CDCl3C−D2O)δTMS ppn;2.09(s.,6H,
2XCH3CO)、2.15(s.,3H,CH3CO)、4.06(s.,
1H,H−3)、4.24(m.,3H,H−4′,H−5′)、
5.36〜5.12(m.,2H,H−2′,H−3′)、5.67(d.,
1H,H−1′,J1′,2′=5Hz) 元素分析〔C14H21N3O9として〕 C% H% N% 計算値 44.80 5.64 11.20 実測値 44.77 5.68 11.14 上記の結晶母液を減圧濃縮すると他のエピマー
を主成分とする非結晶固体を得た。
NMR (CDCl 3 , D 2 O) δ TMS ppn ; 2.13 (9H,
3XCH 3 CO), 4.38 (m., 3H, H-4', H-5'),
5.32 (m., 1H, H-3'), 5.48 (d, d., 1H, H-
2'), 5.67 (d, 1H, H-1'), 7.12 (s., 1H, H-
2) Reference Example 3 2-Amino-N-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)malonamide 2.6 g of 2',3',5'-tri-O-acetyl AICA riboside It was dissolved in 500ml of 0.02N hydrochloric acid and irradiated with a high-pressure mercury lamp (400W) for 15 hours under an argon stream.
After the reaction, Dowex1 (OH - type) was added to neutralize it,
After filtering, the liquid was concentrated under reduced pressure. The residue was extracted with chloroform, the extract was passed through Watmann 1-PS filter paper, and then concentrated under reduced pressure. The residue was charged to a column (3 x 15 cm) of silica gel (Art9385 manufactured by Merck & Co.), and chloroform-methanol (17:
Flash chromatography was performed using 1). Collect the fraction around Rfb=0.33,
The mixture was dried under reduced pressure to obtain 2-amino-N-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)malonamide as an amorphous solid. Yield 802mg
(Yield 32%) This product was confirmed to consist of two types of optical isomers by NMR, and one epimer was obtained as a crystal by treatment with methanol. Yield 459 mg Melting point: 122-124℃ [α] 24 D −39.8 (C = 0.5, chloroform) NMR (CDCl 3 C−D 2 O) δ TMS ppn ; 2.09 (s., 6H,
2XCH 3 CO), 2.15 (s., 3H, CH 3 CO), 4.06 (s.,
1H, H-3), 4.24 (m., 3H, H-4', H-5'),
5.36-5.12 (m., 2H, H-2', H-3'), 5.67 (d.,
1H, H-1', J 1 ', 2 ' = 5Hz) Elemental analysis [as C 14 H 21 N 3 O 9 ] C% H% N% Calculated value 44.80 5.64 11.20 Actual value 44.77 5.68 11.14 The above crystal mother liquor Concentration under reduced pressure yielded an amorphous solid mainly composed of other epimers.

NMR(CDCl3−D2O)δTMS ppn;2.09(s.,6H、
2XCH3CO)、2.14(s.,3H,CH3CO)、4.24(m.,
4H,H−3,H−4′,H−5′)、5.28(m.,2H,
H−2′,H−3′)、5.62(d 1H,H−1′,J12

3Hz) 実施例 2 2′,3′,5′−トリ−O−アセチルブレデイニン 2−アミノ−N−(2,3,5−トリ−O−ア
セチル−β−D−リボフラノシル)マロンアミド
(2種のエピマーの混合物)960mgをDMF25mlに
溶かし、これにオルトギ酸エチル0.554ml(1.3当
量)を加え、110℃で20分間撹拌した。反応後、
反応液を減圧下にDMFを留去し、残渣をシリカ
ゲル(メルク社製Art9385)のカラム(3×15
cm)にチヤージし、クロロホルム−メタノール
(10:1)で溶出するフラツシユクロマトグラフ
イーを行つた。Rfc=0.28付近のフラクシヨンを
集め、減圧乾固した。残渣をメタノールで処理し
て結晶化し、2′,3′,5′−トリ−O−アセチルブ
レデイニン736mg(収率74.1%)を得た。
NMR (CDCl 3 −D 2 O) δ TMS ppn ; 2.09 (s., 6H,
2XCH 3 CO), 2.14 (s., 3H, CH 3 CO), 4.24 (m.,
4H, H-3, H-4', H-5'), 5.28 (m., 2H,
H-2', H-3'), 5.62 (d 1H, H-1', J 1 ' 2 '
=
3Hz) Example 2 2',3',5'-tri-O-acetylbredeinin 2-amino-N-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)malonamide (2 960 mg (mixture of seed epimers) was dissolved in 25 ml of DMF, 0.554 ml (1.3 equivalents) of ethyl orthoformate was added thereto, and the mixture was stirred at 110°C for 20 minutes. After the reaction,
DMF was distilled off from the reaction solution under reduced pressure, and the residue was purified using a silica gel (Merck Art9385) column (3 x 15
cm) and flash chromatography was performed using chloroform-methanol (10:1) as elution. Fractions around Rfc=0.28 were collected and dried under reduced pressure. The residue was crystallized by treatment with methanol to obtain 736 mg (yield 74.1%) of 2',3',5'-tri-O-acetylbredeinine.

NMR(CDCl3−CD3OD)δTMS ppn;2.13(s.,9H,
3XCH3CO)、4.38(m.,3H H−4′,H−5′)、
5.44(d.d.,1H,H−3′)、5.64(d.d.,1H,H−
2′)、5.92(d.,1H,H−1′)、7.90(s.,1H,H−
2) UV:λMeOH nax244nm,282nm λMeOH,H+ nax243nm,286nm λMeOH,OH- nax276nm MS(CI);386(MH+) 元素分析〔C15H19N3O9として〕 C% H% N% 計算値 46.76 4.97 10.90 実測値 47.05 5.09 10.90 実施例 3 ブレデイニンの製造 実施例4で得た2′,3′,5′−トリ−O−アセチ
ルブレデイニン510mgをメタノール20mlに懸濁し、
寒剤で冷却下撹拌しながら乾燥アンモニアガスを
20分間通じた。次いで密栓し、室温で5時間半撹
拌した後、反応液を減圧乾固した。残渣を熱メタ
ノールに溶かし、プロパノールを加えて減圧下濃
縮して行くと、ブレデイニンが結晶として析出し
て来るので、取し、90℃で真空乾燥してブレデ
イニン283mg(収率83%)を得た。
NMR (CDCl 3 − CD 3 OD) δ TMS ppn ; 2.13 (s., 9H,
3XCH 3 CO), 4.38 (m., 3H H-4', H-5'),
5.44 (dd, 1H, H-3'), 5.64 (dd, 1H, H-
2'), 5.92 (d., 1H, H-1'), 7.90 (s., 1H, H-
2) UV: λ MeOH nax 244nm, 282nm λ MeOH,H+ nax 243nm, 286nm λ MeOH,OH- nax 276nm MS (CI); 386 (MH + ) Elemental analysis [as C 15 H 19 N 3 O 9 ] C% H% N% Calculated value 46.76 4.97 10.90 Actual value 47.05 5.09 10.90 Example 3 Production of bredeinin 510 mg of 2',3',5'-tri-O-acetylbredeinin obtained in Example 4 was suspended in 20 ml of methanol. ,
Add dry ammonia gas while stirring while cooling with a cryogen.
It lasted 20 minutes. Then, the reaction mixture was sealed and stirred at room temperature for 5 and a half hours, and then the reaction solution was dried under reduced pressure. When the residue was dissolved in hot methanol, propanol was added, and the mixture was concentrated under reduced pressure, bredeinin precipitated as crystals, which were collected and vacuum-dried at 90°C to obtain 283 mg of bredeinin (yield: 83%). .

このものは、実施例2で得たブレデイニンと同
一であつた。
This was the same as bredeinin obtained in Example 2.

参考例 4 2−アミノ−N−(1−β−D−リボフラノシ
ル)マロンアミド 2−アミノ−N−(2,3,5−トリ−O−ア
セチル−β−D−リボフラノシル)マロンアミド
(2種類のエピマーの混合物)375mgをメタノール
10mlに溶かし、氷冷下撹拌しながら乾燥アンモニ
アガスを飽和させた。次いで密栓し、室温で一夜
撹拌した。反応液を減圧乾固し、残渣を少量の水
に溶かし、これをDowex1(H+型)にチヤージし
た後、充分水で洗浄した。次いで0.1Nアンモニ
ア水で溶出し、Rfa=0.13付近のフラクシヨンを
集めて減圧乾固して非結晶固体の2−アミノ−N
−β−D−リボフラノシルマロンアミド208mg
(収率84%)を得た。
Reference Example 4 2-Amino-N-(1-β-D-ribofuranosyl)malonamide 2-Amino-N-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)malonamide (two types of epimers) mixture) 375 mg methanol
The mixture was dissolved in 10 ml and saturated with dry ammonia gas while stirring under ice cooling. The mixture was then tightly stoppered and stirred at room temperature overnight. The reaction solution was dried under reduced pressure, the residue was dissolved in a small amount of water, this was charged to Dowex 1 (H + type), and then washed thoroughly with water. Next, it was eluted with 0.1N aqueous ammonia, and the fractions around Rfa = 0.13 were collected and dried under reduced pressure to obtain the amorphous solid 2-amino-N.
-β-D-ribofuranosylmalonamide 208mg
(yield 84%).

NMR(DMSO−d6−D2O)δTMS ppn;3.5〜3.9(m.,
6H)、5.20(d.,1H,H−1′) IR;νKBr1 CO1710cm-1 TLC;Rfa=0.13 参考例 5 2−アミノ−N−(2,3−O−イソプロピリ
デン−β−D−リボフラノシル)マロンアミド 2′,3′−O−イソプロピリデン−AICAリボシ
ド298mgを0.05N酢酸500mlに溶かし、アルゴン気
流下高圧水銀灯(400W、パイレツクス・フイル
ター付)を20時間照射した。反応液を1N水酸化
ナトリウム水溶液で中和し、減圧濃縮した。残渣
をできるだけ少量の50%含水メタノールに溶か
し、これにシリカゲル(ワコーデルC−200)6
gを加え、混合し、減圧下乾固した後、カラムに
充填した。クロロホルム−メタノール(20:1〜
15:1)で溶出するカラムクロマトグラフイーを
行つた。Rfc=0.33付近のフラクシヨンを集め、
減圧乾固してあめ状の目的物を得た。
NMR (DMSO-d 6 -D 2 O) δ TMS ppn ; 3.5-3.9 (m.,
6H), 5.20 (d., 1H, H-1′) IR; ν KBr1 CO 1710cm -1 TLC; Rfa=0.13 Reference example 5 2-Amino-N-(2,3-O-isopropylidene-β-D -ribofuranosyl)malonamide 2',3'-O-isopropylidene-AICA riboside (298 mg) was dissolved in 500 ml of 0.05N acetic acid and irradiated with a high-pressure mercury lamp (400 W, equipped with a Pyrex filter) under an argon atmosphere for 20 hours. The reaction solution was neutralized with 1N aqueous sodium hydroxide solution and concentrated under reduced pressure. Dissolve the residue in as small a volume as possible of 50% aqueous methanol, and add silica gel (Wacordel C-200) 6 to this.
g was added, mixed, dried under reduced pressure, and then packed into a column. Chloroform-methanol (20:1~
Column chromatography was performed using an elution ratio of 15:1). Collect the fraction around Rfc=0.33,
The mixture was dried under reduced pressure to obtain a candy-like target product.

収量;33mg(収率11.4%) TLC;Rfc=0.33 Mass(CI、イソブタン);290(MH+) NMR(CDCl3)δppm;3.75(br,2H,H−5′)、
4.09、412(各s.,1H,H−3)、4.28(br.s.,1H,
H−4′)、4.65(d.,1H,H−3′)、5.71(br.s.,
1H,H−1′)、7.75(br,2H,NH2)、8.40(br.,
2H,NH2)、8.7(br.,1H,N−H)。
Yield; 33 mg (yield 11.4%) TLC; Rfc = 0.33 Mass (CI, isobutane); 290 (MH + ) NMR (CDCl 3 ) δppm; 3.75 (br, 2H, H-5'),
4.09, 412 (each s., 1H, H-3), 4.28 (br.s., 1H,
H-4'), 4.65 (d., 1H, H-3'), 5.71 (br.s.,
1H, H-1′), 7.75 (br, 2H, NH 2 ), 8.40 (br.,
2H, NH2 ), 8.7 (br., 1H, NH).

Claims (1)

【特許請求の範囲】 1 式 (式中、R1およびR2は各々水素原子または水
酸基の保護基、R3は水素原子または水酸基の保
護基を示す)で表されるAICAリボシドを酸性条
件下光照射して式 (式中、R1,R2およびR3は前記と同じ意味を
有する)で表される化合物を得、該化合物をイミ
ダゾール閉環し、2′位、3′位および(または)
5′位の水酸基が保護基で保護されている場合に
は、その保護基を脱離することを特徴とするブレ
デイニンの製造法。 2 保護基がアセチルまたはベンゾイル基である
特許請求の範囲第1項記載の製造法。 3 イミダゾール閉環を非プロトン性極性溶媒中
ギ酸またはオルトギ酸エステルと加熱することに
より行う特許請求の範囲第1項記載の製造法。
[Claims] 1 formula (In the formula, R 1 and R 2 each represent a hydrogen atom or a hydroxyl group-protecting group, and R 3 represents a hydrogen atom or a hydroxyl group-protecting group.) AICA riboside represented by the formula (wherein R 1 , R 2 and R 3 have the same meanings as above), the compound is ring-closed with imidazole, and the 2'-position, 3'-position and/or
A method for producing bredeinine, which comprises removing the protecting group when the 5'-position hydroxyl group is protected with a protecting group. 2. The production method according to claim 1, wherein the protecting group is an acetyl or benzoyl group. 3. The manufacturing method according to claim 1, wherein imidazole ring closure is carried out by heating with formic acid or orthoformate in an aprotic polar solvent.
JP57194883A 1982-11-05 1982-11-05 Novel chemical preparation of bredinin and its intermediate Granted JPS5984900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57194883A JPS5984900A (en) 1982-11-05 1982-11-05 Novel chemical preparation of bredinin and its intermediate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57194883A JPS5984900A (en) 1982-11-05 1982-11-05 Novel chemical preparation of bredinin and its intermediate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1343715A Division JPH0341084A (en) 1989-12-29 1989-12-29 2-amino-n-beta-d-ribofuranosylmalonamide derivative

Publications (2)

Publication Number Publication Date
JPS5984900A JPS5984900A (en) 1984-05-16
JPH034080B2 true JPH034080B2 (en) 1991-01-22

Family

ID=16331901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57194883A Granted JPS5984900A (en) 1982-11-05 1982-11-05 Novel chemical preparation of bredinin and its intermediate

Country Status (1)

Country Link
JP (1) JPS5984900A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111627A1 (en) * 2014-01-21 2015-07-30 味の素株式会社 Sugar amino acid and use thereof

Also Published As

Publication number Publication date
JPS5984900A (en) 1984-05-16

Similar Documents

Publication Publication Date Title
AU2005328519B2 (en) Intermediate and process for preparing of beta- anomer enriched 21deoxy, 21 ,21-difluoro-D-ribofuranosyl nucleosides
EP1831236A1 (en) Method for the preparation of 2'-deoxy-2',2'-difluorocytidine
KR100759608B1 (en) Method for the preparation of 2'-deoxy-2',2'-difluorocytidine
CA1135258A (en) Process for the preparation of 5'deoxy-5-fluorouridine
JPS61204193A (en) Production of cytosine nuceoside
KR20040021670A (en) Process for the preparation of ribavirin
EP0638586A2 (en) Nucleoside derivatives and methods for producing them
JPH034080B2 (en)
Timmons et al. On the synthesis of the 2, 6-dideoxysugar l-digitoxose
JPH0339517B2 (en)
Jung et al. Efficient synthesis of specifically deuterated nucleosides: preparation of 4′-deuteriothymidine
KR100461709B1 (en) Method for Purifying 5'-Protected 2'-Deoxypurine Nucleosides
Srivastava et al. Synthesis and biological evaluation of certain 2'-deoxy-. beta.-D-ribo-and 2. beta.-D-arabinofuranosyl nucleosides of purine-6-carboxamide and 4, 8-diaminopyrimido [5, 4-d] pyrimidine
JP2006500375A (en) Process for the preparation of 9-β-anomeric nucleoside analogues
Starrett Jr et al. The use of acetyl bromide for the multigram synthesis of the anti-HIV agent 2′, 3′-didehydro-2′, 3′-dideoxycytidine (d4C)
JPH06135988A (en) Nucleotide derivative
WO2022124410A1 (en) Cytosine-type crosslinked nucleoside amidite crystals and method for producing same
JPH02215781A (en) 6'-deoxy-6'-halogenoneplanocin a and production thereof
Al-Masoudi et al. Some 2′-modified 4′-thionucleosides via sulfur participation and synthesis of thio-azt from 4′-thiofuranoid 1, 2-glycal
RU2041884C1 (en) 2,6-n,n′-bis[1-(dimethylamino)ethylidene]-4,4′-o-(2′- dimethoxytriphenylmethyl)-2-amino-3′-deoxyadenosine-n,n′- o-alkyl-n,n-diisopropylamidophosphites and process for preparing thereof
WO2016097989A1 (en) Process for the preparation of gemcitabine hydrochloride
Matsuda et al. Polydeoxyaminohexopyranosylnucleosides. Synthesis of 1-(2, 3, 4-Trideoxy-3-nitro-β-D-erythro-and threo-hexopyranosyl)-uracils from Uridine
JPH0376320B2 (en)
JPH0510359B2 (en)
Nishizono et al. Synthesis of biomimetic analogs of neomycin B: potential inhibitors of the HIV RNA Rev response element