JPH034052B2 - - Google Patents

Info

Publication number
JPH034052B2
JPH034052B2 JP58110728A JP11072883A JPH034052B2 JP H034052 B2 JPH034052 B2 JP H034052B2 JP 58110728 A JP58110728 A JP 58110728A JP 11072883 A JP11072883 A JP 11072883A JP H034052 B2 JPH034052 B2 JP H034052B2
Authority
JP
Japan
Prior art keywords
reaction
alcohol
terephthalic acid
pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58110728A
Other languages
Japanese (ja)
Other versions
JPS604151A (en
Inventor
Kengo Tatsuoka
Ryuichi Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Vinyl Co
Original Assignee
Mitsubishi Kasei Vinyl Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Vinyl Co filed Critical Mitsubishi Kasei Vinyl Co
Priority to JP58110728A priority Critical patent/JPS604151A/en
Publication of JPS604151A publication Critical patent/JPS604151A/en
Publication of JPH034052B2 publication Critical patent/JPH034052B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高級アルコールのテレフタル酸ジエ
ステルのすぐれた製造方法に係る。 テレフタル酸ジエステルについては、繊維、樹
脂等の原料としてのジメチルテレフタレート
(DMT)について種々の製造方法が公知である
が、炭素原子数の多いアルコールのテレフタル酸
ジエステルの製造法については皆無である。 ジオクチルフタレート(DOP)、ジオクチルア
ジペート(DOA)等の高級アルコールフタル酸
ジエステルの製造においては、アルコールの若干
過剰のもとで、酸を触媒の存在下または不存在下
に、常圧または減圧下でエステル化反応させ、生
成した水を連続的に反応系外に除去しながら反応
を進め、その後使用目的に応じてアルカリ洗浄、
水洗、不純物の吸着等の後処理を経て、可塑剤、
溶剤等として使用している。 しかしながら、この方法をテレフタル酸のジエ
ステルの製造に応用した場合、テレフタル酸には
融点がなく、またそれが例えば2−エチルヘキサ
ノールや2−エチルヘキサノールとのエステル化
物であるジオクチルテレフタレートに不溶性であ
るために、さらには、2−エチルヘキサノールの
沸点以上に反応温度を上げることができないため
に、反応速度が著しく遅く、工業的方法としては
採用し得ない。 テレフタル酸のジエステル化反応は、テレフタ
ル酸に融点がなく、また原料アルコールに不溶の
ため、例えばこの反応を常圧で行なうときはアル
コールの沸点が反応温度の到達限界であり、長時
間にわたつて徐々にジエステル化が進行する。反
応の進行とともに液相を形成するジエステルとア
ルコールの組成が変化してアルコールのモル分率
が減少し、反応温度は徐々に上昇し、最終的には
所定温度に達する。その後、反応の進行を見なが
ら実質的に反応率を100%近くまで向上させ、水
の除去を、多くの場合原料アルコールとの共沸で
行い、留出した水及びアルコールの分離工程を経
て実質的に水を含まないアルコールを反応系に戻
す操作が採られる。高級アルコールのテレフタル
酸ジエステルは、このような方法によつて一応製
造をすることができるけれども、エステル化反応
に長時間を要し、操作的にも煩雑になつてしま
う。 本発明者らは、テレフタル酸と高級アルコール
との効率のよいエステル化方法について、鋭意検
討したところ、反応系をアルコールの常圧におけ
る沸点以上の温度に加熱し、しかもアルコールの
蒸気圧以上の加圧下で反応させることにより極め
て効率よく、速やかにエステル化反応が進行する
ことを見い出し、本発明を完成するに到つた。 本発明の目的は、高級アルコールのテレフタル
酸ジエステルを効率よく製造する方法を提供する
にあり、しかして、該目的は、エステル化触媒の
存在下または不存在下にテレフタル酸と炭素原子
数4〜12の1価アルコールとを反応させてジエス
テルを製造する方法において、該エステル化反応
を加圧下で行い、かつアルコールの常圧における
沸点以上、加圧下における沸点未満の温度範囲で
行うことを特徴とするテレフタル酸ジエステルの
製造方法によつて達成される。 本発明方法を以下に詳述する。 本発明方法で使用するテレフタル酸は、通常繊
維、樹脂等の原料として用いられる粉末のものが
用いられ、該テレフタル酸は溶融せず、また原料
アルコールへの溶解度及び反応生成物であるジエ
ステルへの溶解度が著しく小さいか、またはほと
んどないために、できるだけ小粒径のものを使用
するのがエステル化反応上好ましい。 アルコールは、特に限定されるものではない
が、分岐鎖を有していてもよい脂肪族、脂環族、
芳香族または置換芳香族等のアルコールがいずれ
も使用でき、常圧(760mmHg)における沸点が
100〜250℃の範囲、特に110℃以上の1価アルコ
ールであるのが好ましい。 また、アルコールの炭素原子数は、4〜12の範
囲にあるものが、本発明の高級アルコールとして
有効に使用しうる。具体的には、n−ブタノー
ル、イソブチルアルコール、n−ペンタノール、
2−メチルブタノール、イソペンチルアルコー
ル、t−ペンチルアルコール、n−ヘキサノー
ル、3−メチルペンタノール、n−ヘプタノー
ル、n−オクタノール、2−エチルヘキサノー
ル、n−ノナノール、イソノニルアルコール、n
−デカノール、イソデカノール、n−ウンデカノ
ール、n−ドデカノール等の脂肪族アルコール、
シクロヘキサノール、メチルシクロヘキサノール
類等の脂環族アルコール、ベンジルアルコール、
フエニルエタノール、トリルメタノール等の芳香
族アルコールを挙げることができ、これらの少な
くとも一種が用いられる。これらのアルコール
は、760mmHgの圧力においてその沸点が250℃以
下である。 しかして、アルコールの使用量は、テレフタル
酸に対して2.0〜4.0モル比、好ましくは2.1〜2.6
モル比であるのが、経済性、反応系の取扱いまた
は後処理操作等の点を考慮すると望ましい態様で
ある。 本発明方法におけるエステル化反応は、エステ
ル化反応触媒を使用せずとも可能であるが、反応
効率化の点からエステル化触媒を使用するのが望
ましい。該触媒の具体例としては、スズ、チタ
ン、亜鉛等金属の化合物が挙げられ、例えばジメ
チルスズオキサイド、ジブチルスズオキサイド、
ジオクチルスズオキサイド、チタンテトライソプ
ロポキサイド、チタンテトラブトオキサイド、四
塩化チタン、酢酸亜鉛等が用いられる。またこれ
らの使用量は、テレフタル酸に対し、0.01〜5重
量%、好ましくは0.1〜1重量%で充分である。 本発明方法は、テレフタル酸とアルコールとを
テレフタル酸の粉末をアルコールに十分混合分散
するように撹拌しながら加圧下で行い、かつアル
コールの常圧における沸点以上、加圧下における
沸点未満の温度範囲で行うことが必要である。反
応系を加圧すべき圧力は、使用するアルコールと
反応温度によつてほぼ決まるが、反応の進行とと
もに圧力を変化させる必要があり、一義的に決ま
るものではない。しかし、該加圧力は反応時のア
ルコールの蒸気圧以上の圧力にしておく必要があ
り、すなわち、反応時のアルコールを加圧時の沸
点未満に保つておく必要がある。しかして、加圧
力の調節は窒素ガス等の不活性ガスで行い、反応
温度は120〜270℃、好ましくは170〜250℃、特に
200〜250℃の範囲であるのが望ましい。また、反
応時間は、製造されるエステルの品質、色相や回
収アルコールの劣化の度合の点から短かい方が望
ましい。 本発明のテレフタル酸とアルコールのジエステ
ル化反応においては、加圧によりアルコールの沸
点に関係なく所定の反応温度に所定時間で到達
し、反応初期より短時間で高い反応率を得ること
ができ、全体の反応時間を大幅に短縮するととも
に、過剰のアルコール留出を防ぐことができ、省
エネルギーによる経済的効果も大きい。加圧は、
反応温度におけるアルコールの蒸気圧より若干大
きい圧力でよく、圧力が高すぎると水の留出除去
が難しくなり不利になる。したがつて、反応温度
で適切な加圧により、エステル化の結果生成した
水も十分に除去され、反応が速やかに進行する。 反応が十分進行し、加圧を要しなくなれば、常
圧または減圧での反応と同様の方法によつて反応
を完結させ、吸着処理等の後処理を行う。 本発明方法によつて製造されるテレフタル酸ジ
エステルは、例えば熱可塑性樹脂の可塑剤とし
て、また塗料用の溶剤、稀釈剤として使用しう
る。 以下に本発明方法を実施例にて詳述するが、本
発明は、その要旨を逸脱しない限り、以下の実施
例に限定されるものではない。 実施例 1 テレフタル酸83g(0.5モル)、2−エチルヘキサ
ノール143.3g(1.1モル)及びテトライソプロピル
チタネート0.2ml(対テレフタル酸約0.23重量%)
を、内容積500c.c.で、そのフランジ上部にコンデ
ンサーと凝縮液溜めを備えてあり、さらに凝縮液
のうち2−エチルヘキサノールだけが反応系に還
流できるように設計されたオートクレーブ(材質
SUS−316)に仕込み、系内を窒素ガスで置換し
た後、窒素ガスを1.0Kg/cm2ゲージ圧に加圧し、
強い撹拌を行いながら30分間を要して2−エチル
ヘキサノールの常圧における沸点(183℃)以上
の温度の220℃まで昇温しテレフタル酸のジエス
テル化反応を行つた。220℃のとき反応系の圧力
は3.5Kg/cm2であり、2−エチルヘキサノールは
沸騰していなかつた。220℃に達してから1,2
及び3時間後オートクレーブを急冷し、残存して
いるテレフタル酸及び生成水を定量して反応率を
求めた。 両者の定量により求めた反応率は、ほぼ一致し
た。 なお、未反応のテレフタル酸は、ほぼ全量固体
で回収された。 220℃に達してからの経過時間に対する反応率
を次に示す。 経過時間(時間) 1 2 3 反応率(%) 37 70 91 比較例 1 テレフタル酸166g(1モル)、2−エチルヘキ
サノール287g(2.2モル)及びテトライソプロピル
チタネート0.4ml(対テレフタル酸約0.23重量%)
を撹拌機、コンデンサー及び凝縮液のうち2−エ
チルヘキサノールを還流できるようにした凝縮液
溜を備えた内容積1000c.c.のガラス等のフラスコに
仕込み、常圧下、テレフタル酸が2−エチルヘキ
サノールに十分分散するように撹拌しながら、2
−エチルヘキサノールが沸騰する183℃まで昇温
した。沸騰するまでに25分間を要した。 その後反応系は沸騰しながら反応の進行ととも
に温度が徐々に上昇した。所望の反応温度220℃
になるまでに、183℃に昇温後6時間を要した。 183℃に達してからの経過時間に対する反応温
度及び生成水の定量により求めた反応率を次に示
した。 経過時間(時間) 1 2 3 4 反応度度(℃) 184 191 198 209 反応率(%) 15 37 60 77 実施例 2 実施例1と同様にして、220℃到達後4時間経
過したテレフタル酸ジエステルの反応液を冷却
し、撹拌機、コンデンサー及び凝縮液のうち2−
エチルヘキサノールを還流できるようにした凝縮
液溜を備えたガラス製のフラスコに移し、220℃
で2−エチルヘキサノールの還流を行いながら常
圧から200mmHgまで5時間をかけて反応を行つ
た。反応液にはテレフタル酸の固体は存在せず、
反応液の酸価は0.04mg−KOH/gまで低下して
おり、この酸価の値から算出した反応率は99.9%
以上に達していた。 反応液は、130℃に冷却した後、100mmHgにお
いて水蒸気を2時間吹き込み、残存する2−エチ
ルヘキサノール、その他軽沸分を除去するととも
に、テトライソプロピルチタネートを酸化チタン
に分解した。 この酸化チタンを別除去した後、更に水蒸気
蒸留時の水分を除去するために50mmHg、120℃で
1時間脱水分処理を行つた。 このようにして製造された2−エチルヘキサノ
ールのテレフタル酸ジエステル(DOTP)は、
ほとんど無臭の液体であり、これを塩化ビニル樹
脂の可塑剤に使用すると電気絶縁性の優れた軟質
塩化ビニル樹脂が得られた。 DOTPの物性及び回収2−エチルヘキサノー
ル(2EH)の純度を第1表に示す。(2−エチル
ヘキサノールの純度はガスクロマトグラフイーに
よる。) 比較例 2 比較例1の常温で反応させたPOTPを、常圧か
ら200mmHgまでの反応を実施例2に準じて行つた
結果、反応率99%以上に達するまでに全反応に14
時間以上を要した。 このようにして得られたDOTPの物性及び回
収2−エチルヘキサノールの純度を第1表に併記
した。
The present invention relates to an excellent method for producing a terephthalic acid diester of a higher alcohol. Regarding terephthalic acid diesters, various production methods are known for dimethyl terephthalate (DMT) as a raw material for fibers, resins, etc., but there are no methods for producing terephthalic acid diesters of alcohols with a large number of carbon atoms. In the production of higher alcohol phthalate diesters such as dioctyl phthalate (DOP) and dioctyl adipate (DOA), acids are added in a slight excess of alcohol in the presence or absence of a catalyst under normal pressure or reduced pressure. The esterification reaction is carried out, and the reaction proceeds while the generated water is continuously removed from the reaction system. After that, depending on the purpose of use, alkaline washing,
After post-treatment such as washing with water and adsorption of impurities, plasticizer,
It is used as a solvent, etc. However, when this method is applied to the production of diesters of terephthalic acid, terephthalic acid has no melting point and is insoluble in, for example, 2-ethylhexanol or dioctyl terephthalate, which is an esterified product with 2-ethylhexanol. Furthermore, since the reaction temperature cannot be raised above the boiling point of 2-ethylhexanol, the reaction rate is extremely slow and cannot be used as an industrial method. In the diesterification reaction of terephthalic acid, since terephthalic acid has no melting point and is insoluble in the raw material alcohol, for example, when this reaction is carried out at normal pressure, the boiling point of the alcohol is the limit of the reaction temperature, and the reaction takes a long time. Diesterification progresses gradually. As the reaction progresses, the composition of the diester and alcohol that form the liquid phase changes, the mole fraction of alcohol decreases, and the reaction temperature gradually increases, eventually reaching a predetermined temperature. After that, while monitoring the progress of the reaction, the reaction rate is substantially increased to nearly 100%, water is removed, often by azeotropy with the raw alcohol, and the distilled water and alcohol are separated. Generally, an operation is adopted in which water-free alcohol is returned to the reaction system. Although terephthalic acid diester of higher alcohol can be produced by such a method, the esterification reaction takes a long time and the operation becomes complicated. The present inventors conducted intensive studies on an efficient method for esterifying terephthalic acid and higher alcohols, and found that the reaction system was heated to a temperature higher than the boiling point of the alcohol at normal pressure, and the reaction system was heated to a temperature higher than the vapor pressure of the alcohol. The inventors have discovered that the esterification reaction can proceed extremely efficiently and quickly by reacting under pressure, and have completed the present invention. An object of the present invention is to provide a method for efficiently producing a terephthalic acid diester of a higher alcohol. A method for producing a diester by reacting with a monohydric alcohol of 12, characterized in that the esterification reaction is carried out under pressure, and carried out at a temperature range above the boiling point of the alcohol at normal pressure and below the boiling point under pressure. This is achieved by a method for producing terephthalic acid diester. The method of the present invention will be explained in detail below. The terephthalic acid used in the method of the present invention is a powder that is usually used as a raw material for fibers, resins, etc. The terephthalic acid does not melt and has a high solubility in the raw alcohol and a reaction product, diester. Since the solubility is extremely low or almost non-existent, it is preferable to use particles with as small a particle size as possible in view of the esterification reaction. Alcohols include, but are not limited to, aliphatics, alicyclics, and alicyclics that may have branched chains.
Any aromatic or substituted aromatic alcohol can be used, and the boiling point at normal pressure (760 mmHg) is
A monohydric alcohol having a temperature in the range of 100 to 250°C, particularly 110°C or higher is preferable. Furthermore, alcohols having a carbon atom number in the range of 4 to 12 can be effectively used as the higher alcohol of the present invention. Specifically, n-butanol, isobutyl alcohol, n-pentanol,
2-methylbutanol, isopentyl alcohol, t-pentyl alcohol, n-hexanol, 3-methylpentanol, n-heptanol, n-octanol, 2-ethylhexanol, n-nonanol, isononyl alcohol, n
- aliphatic alcohols such as decanol, isodecanol, n-undecanol, n-dodecanol,
Alicyclic alcohols such as cyclohexanol and methylcyclohexanols, benzyl alcohol,
Aromatic alcohols such as phenylethanol and tolylmethanol can be mentioned, and at least one of these is used. These alcohols have boiling points below 250°C at a pressure of 760 mmHg. Therefore, the amount of alcohol used is 2.0 to 4.0 molar ratio to terephthalic acid, preferably 2.1 to 2.6 molar ratio.
The molar ratio is a desirable embodiment in consideration of economic efficiency, handling of the reaction system, post-treatment operations, and the like. Although the esterification reaction in the method of the present invention can be carried out without using an esterification reaction catalyst, it is desirable to use an esterification catalyst from the viewpoint of improving reaction efficiency. Specific examples of the catalyst include compounds of metals such as tin, titanium, and zinc, such as dimethyltin oxide, dibutyltin oxide,
Dioctyltin oxide, titanium tetraisopropoxide, titanium tetrabutoxide, titanium tetrachloride, zinc acetate, etc. are used. Moreover, the amount of these used is 0.01 to 5% by weight, preferably 0.1 to 1% by weight based on terephthalic acid. The method of the present invention involves mixing terephthalic acid and alcohol under pressure while stirring so that the terephthalic acid powder is sufficiently mixed and dispersed in the alcohol, and at a temperature that is above the boiling point of the alcohol at normal pressure and below the boiling point under pressure. It is necessary to do so. The pressure to pressurize the reaction system is approximately determined by the alcohol used and the reaction temperature, but it is not uniquely determined as the pressure needs to be changed as the reaction progresses. However, the pressurizing pressure needs to be higher than the vapor pressure of the alcohol during the reaction, that is, it is necessary to keep the alcohol during the reaction below the boiling point when pressurizing. Therefore, the applied pressure is adjusted using an inert gas such as nitrogen gas, and the reaction temperature is 120 to 270°C, preferably 170 to 250°C, especially
Desirably, the temperature is in the range of 200 to 250°C. Further, it is desirable that the reaction time be short in terms of the quality and hue of the ester produced and the degree of deterioration of the recovered alcohol. In the diesterification reaction of terephthalic acid and alcohol of the present invention, the predetermined reaction temperature can be reached in a predetermined time by pressurization regardless of the boiling point of the alcohol, and a high reaction rate can be obtained in a short time from the initial stage of the reaction. In addition to significantly shortening the reaction time, it is possible to prevent excessive distillation of alcohol, and the economic effect of saving energy is also large. The pressurization is
The pressure may be slightly higher than the vapor pressure of the alcohol at the reaction temperature; if the pressure is too high, distillation and removal of water becomes difficult, which is disadvantageous. Therefore, by applying appropriate pressure at the reaction temperature, water produced as a result of esterification is also sufficiently removed, and the reaction proceeds rapidly. When the reaction has sufficiently progressed and pressurization is no longer required, the reaction is completed in the same manner as in the reaction under normal pressure or reduced pressure, and post-treatment such as adsorption treatment is performed. The terephthalic acid diester produced by the method of the present invention can be used, for example, as a plasticizer for thermoplastic resins, and as a solvent and diluent for paints. The method of the present invention will be explained in detail below using Examples, but the present invention is not limited to the following Examples unless it departs from the gist thereof. Example 1 83 g (0.5 mol) of terephthalic acid, 143.3 g (1.1 mol) of 2-ethylhexanol and 0.2 ml of tetraisopropyl titanate (approximately 0.23% by weight of terephthalic acid)
is an autoclave with an internal volume of 500 c.c., equipped with a condenser and a condensate reservoir above its flange, and designed so that only 2-ethylhexanol of the condensate can flow back into the reaction system.
After replacing the inside of the system with nitrogen gas, pressurize the nitrogen gas to 1.0 kg/cm 2 gauge pressure,
While vigorously stirring, the temperature was raised to 220° C., which is higher than the boiling point of 2-ethylhexanol at normal pressure (183° C.), over a period of 30 minutes, thereby carrying out a diesterification reaction of terephthalic acid. At 220°C, the pressure of the reaction system was 3.5 Kg/cm 2 and 2-ethylhexanol was not boiling. 1 or 2 after reaching 220℃
After 3 hours, the autoclave was rapidly cooled, and the remaining terephthalic acid and produced water were quantitatively determined to determine the reaction rate. The reaction rates determined by both quantitative measurements were almost the same. Note that almost all of the unreacted terephthalic acid was recovered as a solid. The reaction rate with respect to the elapsed time after reaching 220°C is shown below. Elapsed time (hours) 1 2 3 Reaction rate (%) 37 70 91 Comparative example 1 166 g (1 mol) of terephthalic acid, 287 g (2.2 mol) of 2-ethylhexanol, and 0.4 ml of tetraisopropyl titanate (approximately 0.23% by weight of terephthalic acid) )
was placed in a glass flask with an internal volume of 1000 c.c. equipped with a stirrer, a condenser, and a condensate reservoir capable of refluxing 2-ethylhexanol among the condensed liquid. Under normal pressure, terephthalic acid was dissolved in 2-ethylhexanol. 2 while stirring to ensure sufficient dispersion.
- The temperature was raised to 183°C, where ethylhexanol boils. It took 25 minutes to boil. Thereafter, the reaction system was boiling and the temperature gradually rose as the reaction progressed. Desired reaction temperature 220℃
It took 6 hours after the temperature was raised to 183°C. The reaction temperature versus the elapsed time after reaching 183°C and the reaction rate determined by quantitative determination of produced water are shown below. Elapsed time (hours) 1 2 3 4 Reactivity degree (℃) 184 191 198 209 Reaction rate (%) 15 37 60 77 Example 2 Terephthalic acid diester 4 hours after reaching 220℃ in the same manner as Example 1 The reaction solution is cooled, and the stirrer, condenser, and condensate are
Transfer the ethylhexanol to a glass flask equipped with a condensate reservoir capable of refluxing and heat at 220°C.
The reaction was carried out over a period of 5 hours from normal pressure to 200 mmHg while refluxing 2-ethylhexanol. There was no solid terephthalic acid in the reaction solution.
The acid value of the reaction solution has decreased to 0.04 mg-KOH/g, and the reaction rate calculated from this acid value is 99.9%.
It had reached more than that. After the reaction solution was cooled to 130° C., steam was blown into the solution at 100 mmHg for 2 hours to remove remaining 2-ethylhexanol and other light boiling components, and to decompose tetraisopropyl titanate into titanium oxide. After this titanium oxide was separately removed, dehydration treatment was performed at 50 mmHg and 120° C. for 1 hour to further remove water from steam distillation. The terephthalic acid diester (DOTP) of 2-ethylhexanol produced in this way is
It is an almost odorless liquid, and when used as a plasticizer for vinyl chloride resin, a soft vinyl chloride resin with excellent electrical insulation properties was obtained. Table 1 shows the physical properties of DOTP and the purity of recovered 2-ethylhexanol (2EH). (The purity of 2-ethylhexanol is determined by gas chromatography.) Comparative Example 2 The POTP reacted at room temperature in Comparative Example 1 was reacted from normal pressure to 200 mmHg according to Example 2. As a result, the reaction rate was 99. 14% in total reaction to reach more than 14%
It took more than an hour. The physical properties of DOTP thus obtained and the purity of recovered 2-ethylhexanol are also listed in Table 1.

【表】 なお、本実施例により製造したDOTPは、そ
の一部を水−エタノール一苛性カリ溶液の存在下
で3時間加熱、加水分解を行い、分解生成物の組
成をガスクロマトグラフイー及び紫外部の吸光光
度法により調べた。分解生成物は2−エチルヘキ
サノール及びテレフタル酸であること、並びにそ
れぞれがモル比2:1であることを確認した。 実施例 3 実施例1において、2−エチルヘキサノールの
代りにn−ブタノール87.6g(1.2モル)を用い、
窒素ガス加圧3Kg/cm2、200℃に昇温したほかは
実施例1に準じてn−ブタノールのテレフタル酸
ジエステルを製造した。200℃に昇温時の反応系
圧力は16Kg/cm2となり、200℃に昇温後3時間経
過したときの圧力は8Kg/cm2になり、反応率は87
%であつた。 比較例 3 比較例2で用いた反応フラスコに、2−エチル
ヘキサノールをn−ブタノール153.3gに代えたほ
か比較例1と同様に行つたが、反応系は118℃で
沸騰し、5時間後においても反応系の温度上昇は
見られず、エステル化反応の進行は殆んど認めら
れなかつた。
[Table] A portion of the DOTP produced in this example was heated and hydrolyzed in the presence of a water-ethanol monocaustic potassium solution for 3 hours, and the composition of the decomposition product was determined by gas chromatography and ultraviolet light. It was investigated by spectrophotometry. It was confirmed that the decomposition products were 2-ethylhexanol and terephthalic acid, and that the molar ratio of each was 2:1. Example 3 In Example 1, 87.6 g (1.2 mol) of n-butanol was used instead of 2-ethylhexanol,
A terephthalic acid diester of n-butanol was produced in accordance with Example 1, except that the nitrogen gas pressure was 3 kg/cm 2 and the temperature was raised to 200°C. The reaction system pressure when the temperature was raised to 200℃ was 16Kg/ cm2 , and the pressure after 3 hours had passed after the temperature was raised to 200℃ was 8Kg/ cm2 , and the reaction rate was 87
It was %. Comparative Example 3 The same procedure as Comparative Example 1 was carried out except that 2-ethylhexanol was replaced with 153.3 g of n-butanol in the reaction flask used in Comparative Example 2, but the reaction system was boiled at 118°C and after 5 hours No rise in temperature of the reaction system was observed, and almost no progress of the esterification reaction was observed.

Claims (1)

【特許請求の範囲】 1 エステル化触媒の存在下または不存在下にテ
レフタル酸と炭素原子数4〜12の1価アルコール
とを反応させてジエステルを製造する方法におい
て、該エステル化反応を加圧下で行い、かつアル
コールの常圧における沸点以上、加圧下における
沸点未満の温度範囲で行うことを特徴とするテレ
フタル酸ジエステルの製造方法。 2 アルコールが、常圧(760mmHg)において、
100〜250℃の範囲の沸点を有する1価アルコール
である特許請求の範囲第1項記載のテレフタル酸
ジエステルの製造方法。 3 エステル化反応温度が120〜270℃である特許
請求の範囲第1項記載のテレフタル酸ジエステル
の製造方法。
[Scope of Claims] 1. A method for producing a diester by reacting terephthalic acid with a monohydric alcohol having 4 to 12 carbon atoms in the presence or absence of an esterification catalyst, in which the esterification reaction is carried out under pressure. 1. A method for producing terephthalic acid diester, which is carried out at a temperature range above the boiling point of the alcohol at normal pressure and below the boiling point under pressure. 2 Alcohol at normal pressure (760mmHg),
The method for producing terephthalic acid diester according to claim 1, wherein the monohydric alcohol has a boiling point in the range of 100 to 250°C. 3. The method for producing terephthalic acid diester according to claim 1, wherein the esterification reaction temperature is 120 to 270°C.
JP58110728A 1983-06-20 1983-06-20 Production of terephthalic acid diester Granted JPS604151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58110728A JPS604151A (en) 1983-06-20 1983-06-20 Production of terephthalic acid diester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58110728A JPS604151A (en) 1983-06-20 1983-06-20 Production of terephthalic acid diester

Publications (2)

Publication Number Publication Date
JPS604151A JPS604151A (en) 1985-01-10
JPH034052B2 true JPH034052B2 (en) 1991-01-22

Family

ID=14542991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58110728A Granted JPS604151A (en) 1983-06-20 1983-06-20 Production of terephthalic acid diester

Country Status (1)

Country Link
JP (1) JPS604151A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008094396A1 (en) 2007-01-30 2008-08-07 Eastman Chemical Company Production of terephthalic acid di-esters
WO2022020132A1 (en) 2020-07-23 2022-01-27 Eastman Chemical Company Production of methyl 2-ethylhexyl terephthalate and bis(2-ethylhexyl) terephthalate blends

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001525432A (en) * 1997-12-04 2001-12-11 イーストマン ケミカル カンパニー Preparation of polyesters and esters from compounds containing secondary hydroxyl groups
JP3799796B2 (en) * 1998-02-16 2006-07-19 三菱化学株式会社 Method for producing ester
JP2004300078A (en) * 2003-03-31 2004-10-28 Mitsubishi Chemicals Corp Method for producing terephthalic acid diester
JP4470391B2 (en) * 2003-05-13 2010-06-02 三菱化学株式会社 Method for producing terephthalic acid diester
JP4333317B2 (en) * 2003-10-16 2009-09-16 三菱化学株式会社 Method for producing terephthalic acid diester
US7276621B2 (en) 2005-08-12 2007-10-02 Eastman Chemical Company Production of di-(2-ethylhexyl) terephthalate
JP2007077042A (en) * 2005-09-12 2007-03-29 Mitsubishi Chemicals Corp Method for producing terephthalic acid diester
JP4956945B2 (en) * 2005-09-12 2012-06-20 三菱化学株式会社 Method for producing terephthalic acid diester
JP2007153814A (en) * 2005-12-06 2007-06-21 Mitsubishi Chemicals Corp Method for producing dicarboxylic acid diester
DE102006001795A1 (en) * 2006-01-12 2007-07-19 Oxeno Olefinchemie Gmbh Terephthalic acid dialkyl esters and their use
US7741509B2 (en) 2007-01-30 2010-06-22 Eastman Chemical Company Conversion of terephthalic acid to Di-n-butyl terephthalate
US8344174B2 (en) * 2007-03-13 2013-01-01 Exxonmobil Chemical Patents Inc. Batch esterification
US7361779B1 (en) * 2007-04-18 2008-04-22 Eastman Chemical Company Low-melting mixtures of di-n-butyl and diisobutyl terephthalate
DE102008006400A1 (en) * 2008-01-28 2009-07-30 Evonik Oxeno Gmbh Mixtures of diisononyl esters of terephthalic acid, process for their preparation and their use
JP2009185040A (en) * 2009-03-31 2009-08-20 Mitsubishi Chemicals Corp Method for producing terephthalic acid diester
JP6154289B2 (en) * 2013-10-30 2017-06-28 株式会社Adeka Method for producing ester compound
US9139505B2 (en) 2013-11-08 2015-09-22 Eastman Chemical Company Production of terephthalic acid di-esters using alcohol-amine promoters
RU2656338C1 (en) 2014-09-19 2018-06-05 Публичное акционерное общество "СИБУР Холдинг" Method for obtaining carboxylic acid esters in presence of titanium-containing catalyst
KR101742923B1 (en) * 2016-11-01 2017-06-01 주식회사 엘지화학 Method of preparing ester-based composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5289638A (en) * 1976-01-22 1977-07-27 Chisso Corp Synthesis of phthalic acid esters

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5289638A (en) * 1976-01-22 1977-07-27 Chisso Corp Synthesis of phthalic acid esters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008094396A1 (en) 2007-01-30 2008-08-07 Eastman Chemical Company Production of terephthalic acid di-esters
WO2022020132A1 (en) 2020-07-23 2022-01-27 Eastman Chemical Company Production of methyl 2-ethylhexyl terephthalate and bis(2-ethylhexyl) terephthalate blends

Also Published As

Publication number Publication date
JPS604151A (en) 1985-01-10

Similar Documents

Publication Publication Date Title
JPH034052B2 (en)
EP0646567B1 (en) Organotin catalyzed transesterification
JPS6146465B2 (en)
JP2004507560A (en) Purification method of polyester precursor
JP4396373B2 (en) Method for producing terephthalic acid diester
JP2956504B2 (en) Method for producing sucrose fatty acid ester
JP4096427B2 (en) Method for producing hydroxyalkyl acrylate
JPH11130728A (en) Production of mono-tertiary-alkyl ester of malonic acid
JP2001158760A (en) Method of producing fumaric monoalkyl ester and sodium salt thereof
US3313843A (en) Preparation of cinnamate esters
JP4333317B2 (en) Method for producing terephthalic acid diester
JP2943523B2 (en) Method for producing useful compound from Michael adduct of acrylic acid ester
JP4336961B2 (en) Method for producing 2-methyl-2-hydroxy-1-propyl (meth) acrylate
US3592847A (en) Process for the purification of terephthalic acid
US4002667A (en) Bis-(2-hydroxyethyl)-terephthalate
JP2000001457A (en) Production of acetate ester
JP3608354B2 (en) Dicyclohexyl-2,3,3 ', 4'-tetracarboxylic acid compound
WO1992018459A1 (en) Benzoic ester compound and production thereof
JP2000072719A (en) Production of allyl 2-hydroxyisobutyrate
GB1586671A (en) Manufacture of esters
JPH01110650A (en) Manufacture of purified 2,6-naphthalenedicarboxylic acid bis(2-hydroxyethyl) ester
US3278569A (en) Method for preparing esters from aromatic chloromethyl compounds
US3803212A (en) Mono-(beta-acetoxyethyl) terephthalate and process
US11414370B2 (en) Process for preparing polyglycerol ester of fatty acids
JPS6118543B2 (en)